DEVELOPMENT OF AN IMAGING SYSTEM FOR THE CHARACTERIZATION OF THE THORACIC AORTA.
|
|
- Percival Marsh
- 2 years ago
- Views:
Transcription
1 DEVELOPMENT OF AN IMAGING SYSTEM FOR THE CHARACTERIZATION OF THE THORACIC AORTA. Juan Antonio Martínez Mera Centro Singular de Investigación en Tecnoloxías da Información Universidade de Santiago de Compostela citius.usc.es
2 1 Thoracic Aorta 2 Comercial method (CHUS) 3 Aim. 4 Method. 5 Results. 6 Conclusions.
3 The aorta is the main artery of the body, is the larger vessel throughout the body and is characterized by a thick elastic wall. 1/65
4 2/65
5 3/65
6 4/65
7 5/65
8 The thoracic aorta can be affected by different diseases: Dissection Atherosclerosis Aortitis Aneurysm... 6/65
9 a) b) An aneurysm is local and permanent dilation of a portion of the vessel. This pathologic process affects the wall. 7/65
10 The aortic aneurysm is the most common pathology. Its incidence is de 6/ Risk of rupture 74 %. Its mortality ratio is 90 %. It is a degenerative disease. 8/65
11 When there is an aneurysm? The diameter of the aorta should not exceed a maximum diameter of 5.5 cm in the ascending aorta. For the descending aorta ( cm). The diameters have to be calculated in the normal planes to the wall of the vessel. 9/65
12 1 Thoracic Aorta 2 Comercial method (CHUS) 3 Aim. 4 Method. 5 Results. 6 Conclusions.
13 To diagnose a patient in the hospital: The patients are scanned with a CT. We obtain several images from inside the patient. 10/65
14 To check if a patient has an aneurysm a commercial software (General Electric)is used. This comercial software calculates the normal diameters. 11/65
15 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 12/65
16 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 13/65
17 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 14/65
18 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 15/65
19 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 16/65
20 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 17/65
21 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 18/65
22 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 19/65
23 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 20/65
24 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 21/65
25 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 22/65
26 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 23/65
27 But this comercial software has several drawbacks: The specialist must indicate several points within the vessel. The radiologist uses about 20 minutes to analyze a case. The result may depend on where the radiologist put the initial points 24/65
28 After, the specialist approves several windows of the comercial program and gets this graph. Finally the specialist have to check if this chart is correct, and remove from the graph the branches of the aorta. 25/65
29 26/65
30 The results may be differents in the same clinical case. a b 27/65
31 1 Thoracic Aorta 2 Comercial method (CHUS) 3 Aim. 4 Method. 5 Results. 6 Conclusions.
32 Aim Develop a system to segment and analyze the thoracic aorta. Without intervention of the specialist. System that provides reproducible results that can not get a specialist. 28/65
33 1 Thoracic Aorta 2 Comercial method (CHUS) 3 Aim. 4 Method. 5 Results. 6 Conclusions.
34 Method The method is based on the following steps: 29/65
35 Method We apply the Hough transform to determine the correct position of the thoracic aorta. 30/65
36 Method The Hough transform was applied at the most caudal slice of the descending aorta. 31/65
37 Method In this area, a slice s approximate shape is a circle. The Hough transform enables pre-set shapes to be found in an image. Hough transform involves convolving a circular mask with the image given. 32/65
38 Method Volumetric region-growing technique is used to segment the section Z 1 33/65
39 This volumetric region growing consists of the use of the 17 pixel neighbors corresponding to the previous and current slices for the calculation of the mean and variance. X Y Z 34/65
40 The transition from section Z 1 to section Z 2 is characterised by a increase in the size of the segmented region. This region can be approximated by an ellipse in which one of the foci will be used to segment the section Z 2. 35/65
41 Algorithm based on level set is used to segment the section Z 2 36/65
42 We use level set algorithm, because the aorta is connected to the heart, which is filled with blood. For this reason, the boundary between the heart and the aorta is fuzzy. 37/65
43 We applied a pre-processing stage to enhance the border of the image, and next applied a level set algorithm. (a) (b) (c) (d) 38/65
44 The basic idea underlying level set can be stated as follows: Given a 2D closed curve, its representation by a single 2D function is not possible. A solution consists of using a 3D function intersected by a plane at a given height. 39/65
45 Thoracic Aorta Comercial method (CHUS) Aim. Method. Results. Conclusions. Method So, we obtain this result of the segmentation on a clinical case with hybrid method of segmentation. 40/65
46 Method 41/65
47 Once we have the segmentation of the aorta, we need to calculate the normal plane of the vessel. For this reason, we need to calculate the vessel centerline. 42/65
48 Method The centerline is extracted using two different techniques: In sections descending aorta and ascending aorta, the centerline is calculated using the center of mass of the segmented region on each slice. CMX = i=n i=0 GL i x i GL i CMY = i=n i=0 GL i y i GL i (1) 43/65
49 In aortic arch iterative erosion of volumetric image data is applied. This erosion process involves four basic templates. Black symbol are object to be eroded and white symbol is the background. The result to erode corresponds to the centerline of the aortic arch. 44/65
50 Method 45/65
51 Method The points calculated in the previous step are interpolated to smooth the centerline. (B-Splines) 46/65
52 Method 47/65
53 Method The points of the centerline are used to determine the normal vectors corresponding to the cross-sections at each point on the line. 48/65
54 Method 49/65
55 Once normal planes are calculated. Variance-covariance matrix of these planes is calculated too. 50/65
56 Method The eigenvalues of the matrix are the vectors that indicate the orientation of the principal axes. Thus, to obtain the value of maximum and minimum diameters, we compute the size of segmentation in these directions. 51/65
57 Method To determine real dimensions of a vessel diameter, we applied a scale factor. The distance between the slices of the acquisitin system used. The different dimensions of the voxel. PCA is calculated in two dimensions and the vectors must be transformed to 3D. 52/65
58 1 Thoracic Aorta 2 Comercial method (CHUS) 3 Aim. 4 Method. 5 Results. 6 Conclusions.
59 Results The results have been divided into: Segmentation results Diameter results. 53/65
60 Thoracic Aorta Comercial method (CHUS) Aim. Method. Results. Conclusions. Segmentation Results Manual segmentation was considered the gold standard to compare with automatic method. Manual segmentation was performed by two expert vascular radiologists in clinical cases. Database was made of 32 clinical cases y images. 54/65
61 Thoracic Aorta Comercial method (CHUS) Aim. Method. Results. Conclusions. Segmentation Results Manual segmentation was performed in a graphics tablet equipped with software and a light pen for manually tracing borders. 55/65
62 Segmentation Results Only 5 % cases in both plots exceeded the confidence interval (± 1.96σ). There were no statistically significant differences. 56/65
63 The DSC factor was calculated to check the overlapping areas : DSC = 2 A B A B V(A) V(B) DSC error = 2 V(B) (2) (3) DSC=0 indicated that the two areas or volumes did not overlap, DSC=1.0 indicated complete overlap. Expert Asc. Arch Desc. Mean A % % % % B % % % % 57/65
64 Pearson coefficient and Intraclass coefficient were calculted to check the segmentation. Pearson coefficient was greater than 0,9 for each section of the aorta by radiologist A and 0,8 for radiologist B. Intraclass coefficient was between 0,8 and 0,85 in all regions of the aorta for each segmentation. 58/65
65 Diameters Results To check the results of diameters we designed this phantom to test the rotational invariance. 59/65
66 Results Diameters Phantom images were obtained by CT at different spatial projections (X,Y,Z). No statistically significant differences were found between the three subsets. 60/65
67 Thoracic Aorta Comercial method (CHUS) Aim. Method. Results. Conclusions. Results Diameters The diameter of the aorta was calculated with the two methods (the proposed and the commercial) in different clinical cases. Bland Altman plot Difference(COMERCIAL AUTOMÁTICO) Mean of All No statistically significant differences were found. 61/65
68 Maximum and minimum diameters were calculated in a normal section. Pictures a)c) were calculated by PCA, and the diameters of the pictures b)c) were calculated with multidirectional analysis. 62/65
69 PCA method avoids the branches of thoracic aorta. 63/65
70 Thoracic Aorta Comercial method (CHUS) Aim. Method. Results. Conclusions. Clinical case/ the volumetric reconstruction of segmentation/ graph of diameter. 64/65
71 1 Thoracic Aorta 2 Comercial method (CHUS) 3 Aim. 4 Method. 5 Results. 6 Conclusions.
72 Conclusions Alternative to manual segmentation. Highly reproducible, while manual segmentation is not reproducible. The method developed automates the calculation of the diameter of the aorta. Shown the potential of PCA for determination of diameters, and to prevent lateral branches. 65/65
73 final Se acabo
4D Magnetic Resonance Analysis. MR 4D Flow. Visualization and Quantification of Aortic Blood Flow
4D Magnetic Resonance Analysis MR 4D Flow Visualization and Quantification of Aortic Blood Flow 4D Magnetic Resonance Analysis Pie Medical Imaging, manufacturer of Quantitative Analysis software for cardiology
Imaging of Thoracic Endovascular Stent-Grafts
Imaging of Thoracic Endovascular Stent-Grafts Tariq Hameed, M.D. Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana Disclosures: No relevant financial
Clinical Training for Visage 7 Cardiac. Visage 7
Clinical Training for Visage 7 Cardiac Visage 7 Overview Example Usage 3 Cardiac Workflow Examples 4 Remove Chest Wall 5 Edit Chest Wall Removal 6 Object Display Popup 7 Selecting Optimal Phase 8 Thick
Part-Based Recognition
Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple
Computational Tools for Vascular Biology
Computational Tools for Vascular Biology Computational Solid Mechanics Models of Wall Stress in Abdominal Aortic Aneurysms Biochemistry Kinetic Models Involved in Abdominal Aortic Aneurysm Development
Binary Image Analysis
Binary Image Analysis Segmentation produces homogenous regions each region has uniform gray-level each region is a binary image (0: background, 1: object or the reverse) more intensity values for overlapping
5.4 CT Number Accuracy and Noise
186 Chapter 5 5.4 CT Number Accuracy and Noise In many clinical practices, radiologists rely on the value of measured CT numbers to differentiate healthy tissue from disease pathology. Although this practice
Automatic Liver Segmentation using the Random Walker Algorithm
Automatic Liver Segmentation using the Random Walker Algorithm F. Maier 1,2, A. Wimmer 2,3, G. Soza 2, J. N. Kaftan 2,4, D. Fritz 1,2, R. Dillmann 1 1 Universität Karlsruhe (TH), 2 Siemens Medical Solutions,
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
Fourier Descriptors For Shape Recognition. Applied to Tree Leaf Identification By Tyler Karrels
Fourier Descriptors For Shape Recognition Applied to Tree Leaf Identification By Tyler Karrels Why investigate shape description? Hard drives keep getting bigger. Digital cameras allow us to capture, store,
Classification of Fingerprints. Sarat C. Dass Department of Statistics & Probability
Classification of Fingerprints Sarat C. Dass Department of Statistics & Probability Fingerprint Classification Fingerprint classification is a coarse level partitioning of a fingerprint database into smaller
Model Based Detection of Tubular Structures in 3D Images
Model ased Detection of Tubular Structures in 3D Images Karl Krissian Grégoire Malandain Nicholas Ayache Epidaure project INRIA 2004 route des Lucioles 06902 Sophia Antipolis France; and Régis Vaillant
Contrast enhancement of soft tissues in Computed Tomography images
Contrast enhancement of soft tissues in Computed Tomography images Roman Lerman, Daniela S. Raicu, Jacob D. Furst Intelligent Multimedia Processing Laboratory School of Computer Science, Telecommunications,
Image Segmentation and Registration
Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation
The impact of the degree competitive flow on bypass graft occlusion.
The impact of the degree competitive flow on bypass graft occlusion. Poster No.: C-2651 Congress: ECR 2013 Type: Authors: Keywords: Scientific Exhibit I. Menkov, I. Zheleznyak, S. Rud, G. E. Trufanov;
SHU Chang 1, 2, FANG Kun 1, 2, LI Ming 1, 2, LI Xin 1, 2, WANG Tun 1, 2, CHANG Qian 3. Corresponding author: SHU Chang,
Chinese Journal of General Surgery DOI:10.7659/j.issn.1005-6947.2013.12.004 http://www.zpwz.net/cn/abstract/abstract3717.shtml SHU Chang 1, 2, FANG Kun 1, 2, LI Ming 1, 2, LI Xin 1, 2, WANG Tun 1, 2, CHANG
Twelve. Figure 12.1: 3D Curved MPR Viewer Window
Twelve The 3D Curved MPR Viewer This Chapter describes how to visualize and reformat a 3D dataset in a Curved MPR plane: Curved Planar Reformation (CPR). The 3D Curved MPR Viewer is a window opened from
Authors: Masahiro Watanabe*, Motoi Okuda**, Teruo Matsuzawa*** Speaker: Masahiro Watanabe**
Visualization of the Blood flow and the Stress distribution with the Diagnostic Support System for Circulatory Disease in the Volume Communications Environment Authors: Masahiro Watanabe*, Motoi Okuda**,
Graphing in SAS Software
Graphing in SAS Software Prepared by International SAS Training and Consulting Destiny Corporation 100 Great Meadow Rd Suite 601 - Wethersfield, CT 06109-2379 Phone: (860) 721-1684 - 1-800-7TRAINING Fax:
SUPPLEMENTARY INFORMATION
A Poly(vinyl alcohol) 3D Platform for the Evaluation of Hepatocytes Response to External Stimuli Alessandra Stampella a, Alessio Papi b, Giuseppe Rizzitelli b, Marco Costantini b, Cristina Colosi b, Andrea
Development of Simulation Tools Software
Development of Simulation Tools Software Vincent Luboz Department of Biosurgery and Surgical Technology Imperial College London BSc VR Surgical Simulation Software Slide 1 Contents Virtual Reality VR Surgical
Face detection is a process of localizing and extracting the face region from the
Chapter 4 FACE NORMALIZATION 4.1 INTRODUCTION Face detection is a process of localizing and extracting the face region from the background. The detected face varies in rotation, brightness, size, etc.
CHAPTER 5 SENDER AUTHENTICATION USING FACE BIOMETRICS
74 CHAPTER 5 SENDER AUTHENTICATION USING FACE BIOMETRICS 5.1 INTRODUCTION Face recognition has become very popular in recent years, and is used in many biometric-based security systems. Face recognition
AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden
AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden Fysiologisk mätteknik Anatomy of the heart The complex myocardium structure right ventricle
Abdominal aortic aneurysm (AAA) screening
CHEST HEART AORTA WITH AN ANEURYSM ABDOMEN Abdominal aortic aneurysm (AAA) screening A free NHS check for men aged 65 and over Who is this leaflet for? This leaflet provides information on abdominal aortic
Geometric Image Transformations
Geometric Image Transformations Part One 2D Transformations Spatial Coordinates (x,y) are mapped to new coords (u,v) pixels of source image -> pixels of destination image Types of 2D Transformations Affine
3D POINT CLOUD CONSTRUCTION FROM STEREO IMAGES
3D POINT CLOUD CONSTRUCTION FROM STEREO IMAGES Brian Peasley * I propose an algorithm to construct a 3D point cloud from a sequence of stereo image pairs that show a full 360 degree view of an object.
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
Ultrasound in Vascular Surgery. Torbjørn Dahl
Ultrasound in Vascular Surgery Torbjørn Dahl 1 The field of vascular surgery Veins dilatation and obstruction (varicose veins and valve dysfunction) Arteries dilatation and narrowing (aneurysms and atherosclerosis)
Introducing MIPAV. In this chapter...
1 Introducing MIPAV In this chapter... Platform independence on page 44 Supported image types on page 45 Visualization of images on page 45 Extensibility with Java plug-ins on page 47 Sampling of MIPAV
Voxar 3D TM. A suite of advanced visualization and analysis software tools
Voxar 3D TM A suite of advanced visualization and analysis software tools The power to deliver advanced visualization throughout the enterprise To effectively manage the rapid growth of large volumetric
Administrative. Patient name Date compare with previous Position markers R-L, upright, supine Technical quality
CHEST X-RAY Administrative Patient name Date compare with previous Position markers R-L, upright, supine Technical quality AP or PA ( with x-ray beam entering from back of patient, taken at 6 feet) Good
We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model
CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant
The ABC s of Heart Disease
William Herring, M.D. 2003 The ABC s of Heart Disease In Slide Show mode, to advance slides, press spacebar or click left mouse button William Herring, M.D. Albert Einstein Medical Center Philadelphia,
Interpretation of forest plots Part I
Interpretation of forest plots Part I 1 At the end of this lecture, you should be able to understand the principles and uses of forest plot. You should also be able to modify the forest plots. 2 What is
TINA Demo 003: The Medical Vision Tool
TINA Demo 003 README TINA Demo 003: The Medical Vision Tool neil.thacker(at)manchester.ac.uk Last updated 6 / 10 / 2008 (a) (b) (c) Imaging Science and Biomedical Engineering Division, Medical School,
Digital Image Processing
Digital Image Processing Using MATLAB Second Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Steven L. Eddins The MathWorks, Inc. Gatesmark Publishing A Division
Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.
An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points
Clipping Plane. Overview Posterior
Automated 3D Video Documentation for the Analysis of Medical Data S. Iserhardt-Bauer 1, C. Rezk-Salama 2, T. Ertl 1,P. Hastreiter 3,B.Tomandl 4, und K. Eberhardt 4 1 Visualization and Interactive Systems
Manifold Learning Examples PCA, LLE and ISOMAP
Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition
Automatic Reconstruction of Parametric Building Models from Indoor Point Clouds. CAD/Graphics 2015
Automatic Reconstruction of Parametric Building Models from Indoor Point Clouds Sebastian Ochmann Richard Vock Raoul Wessel Reinhard Klein University of Bonn, Germany CAD/Graphics 2015 Motivation Digital
REVISED GCSE Scheme of Work Mathematics Higher Unit T3. For First Teaching September 2010 For First Examination Summer 2011
REVISED GCSE Scheme of Work Mathematics Higher Unit T3 For First Teaching September 2010 For First Examination Summer 2011 Version 1: 28 April 10 Version 1: 28 April 10 Unit T3 Unit T3 This is a working
Virtual Resection with a Deformable Cutting Plane
Virtual Resection with a Deformable Cutting Plane Olaf Konrad-Verse 1, Bernhard Preim 2, Arne Littmann 1 1 Center for Medical Diagnostic Systems and Visualization, Universitaetsallee 29, 28359 Bremen,
Endovascular stent graft placement in thoracic aortic aneurysms and dissections
Issue date: June 2005 Endovascular stent graft placement in thoracic aortic Understanding NICE guidance information for people considering the procedure, and for the public Information about NICE Interventional
Finding skewness and deskewing scanned document
Finding skewness and deskewing scanned document Sunita Parashar[1],Sharuti Sogi[2] Department of Computer Sc. & Engineering, H.C.T.M, Kaithal, Haryana (India) Sunita.tu@gmail.com[1],jindal.shruti88@gmail.com[2]
B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.
B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER
GeoGebra. 10 lessons. Gerrit Stols
GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter
Presentation Slides to be used in conjunction with the Developing Spatial Thinking Curriculum.
Presentation Slides to be used in conjunction with the Developing Spatial Thinking Curriculum. Module 1 Solids of Revolution Module 2 Combining Solids Module 3 Isometric Sketching Module 4 Orthographic
Image Analysis for Volumetric Industrial Inspection and Interaction
Image Analysis for Volumetric Industrial Inspection and Interaction Rasmus Larsen Mads F. Hansen, Hildur Olafsdottir, Thomas H. Mosbech, Lasse F. Laursen DTU Informatics (CT) reconstruction from few projections
APPLYING COMPUTER VISION TECHNIQUES TO TOPOGRAPHIC OBJECTS
APPLYING COMPUTER VISION TECHNIQUES TO TOPOGRAPHIC OBJECTS Laura Keyes, Adam Winstanley Department of Computer Science National University of Ireland Maynooth Co. Kildare, Ireland lkeyes@cs.may.ie, Adam.Winstanley@may.ie
Blood Vessel Classification into Arteries and Veins in Retinal Images
Blood Vessel Classification into Arteries and Veins in Retinal Images Claudia Kondermann and Daniel Kondermann a and Michelle Yan b a Interdisciplinary Center for Scientific Computing (IWR), University
A SECURE EMAIL CLIENT APPLICATION USING RETINAL IMAGE MATCHING
A SECURE EMAIL CLIENT APPLICATION USING RETINAL IMAGE MATCHING ANKITA KANTESH 1, SUPRIYA S. BEHERA 2, JYOTI BHOITE 3, ANAMIKA KUMARI 4 1,2,3,4 B.E, University of Pune Abstract- As technology advances,
Page 1. Introduction The blood vessels of the body form a closed delivery system that begins and ends at the heart.
Anatomy Review: Blood Vessel Structure & Function Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction The blood vessels
MODERN VOXEL BASED DATA AND GEOMETRY ANALYSIS SOFTWARE TOOLS FOR INDUSTRIAL CT
MODERN VOXEL BASED DATA AND GEOMETRY ANALYSIS SOFTWARE TOOLS FOR INDUSTRIAL CT C. Reinhart, C. Poliwoda, T. Guenther, W. Roemer, S. Maass, C. Gosch all Volume Graphics GmbH, Heidelberg, Germany Abstract:
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel International GCSE Centre Number Mathematics B Paper 1R Candidate Number Wednesday 14 May 2014 Morning Time: 1 hour 30 minutes Paper Reference 4MB0/01R
3D Modelling and Volume Rotation of 2D Medical Images
3D Modelling and Volume Rotation of 2D Medical Images Himani S. Bhatt 1, Sima K. Gonsai 2 Student (ME-CSE), Dept. of ECE, L. D. College of Engineering, Ahmedabad, India 1 Assistant Professor, Dept. of
INDUSTRIAL TECHNOLOGY TECHNICAL DRAWING LEVEL 9
INDUSTRIAL TECHNOLOGY TECHNICAL DRAWING LEVEL 9 Reduction and enlargement of plane figures to reduce plane figure by lengths of sides using the polar method. - Reading Suppose the ratio is skills. 1:3.
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles mjhustc@ucla.edu and lunbo
Pro/ENGINEER Wildfire 4.0 Basic Design
Introduction Datum features are non-solid features used during the construction of other features. The most common datum features include planes, axes, coordinate systems, and curves. Datum features do
ENG4BF3 Medical Image Processing. Image Visualization
ENG4BF3 Medical Image Processing Image Visualization Visualization Methods Visualization of medical images is for the determination of the quantitative information about the properties of anatomic tissues
52. Explain interrupt scheme for retrieving input data. Also explain any one algorithm for input device handling. 53. Explain the process of 3-D
Computer Graphics 1. Derive the equation for the intercept form of the line. 2. Explain the frame buffer, point and pixels. 3. Describe the Digital Differential Analyzer (DDA) for line drawing. 4. Explain
Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors. Content of the Precalculus Subpackage
Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft This article provides a systematic exposition
Interactive Math Glossary Terms and Definitions
Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas
17.1 Cross Sections and Solids of Rotation
Name Class Date 17.1 Cross Sections and Solids of Rotation Essential Question: What tools can you use to visualize solid figures accurately? Explore G.10.A Identify the shapes of two-dimensional cross-sections
2. MATERIALS AND METHODS
Difficulties of T1 brain MRI segmentation techniques M S. Atkins *a, K. Siu a, B. Law a, J. Orchard a, W. Rosenbaum a a School of Computing Science, Simon Fraser University ABSTRACT This paper looks at
16 Circles and Cylinders
16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two
Cone Beam Reconstruction Jiang Hsieh, Ph.D.
Cone Beam Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced acquisition
Leitlinien Aortenisthmusstenose
Title Coarctation of the aorta In infancy and childhood N.A. Haas, Bad Oeynhausen P. Ewert, Berlin A. Hager, München C. Schlensak, Freiburg 2. Definition - narrowing at the distal arch to descending aorta
Computer Vision: Filtering
Computer Vision: Filtering Raquel Urtasun TTI Chicago Jan 10, 2013 Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 1 / 82 Today s lecture... Image formation Image Filtering Raquel Urtasun (TTI-C) Computer
Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling
81 Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling Andrey Dimitrov 1 and Mani Golparvar-Fard 2 1 Graduate Student, Depts of Civil Eng and Engineering
Poker Vision: Playing Cards and Chips Identification based on Image Processing
Poker Vision: Playing Cards and Chips Identification based on Image Processing Paulo Martins 1, Luís Paulo Reis 2, and Luís Teófilo 2 1 DEEC Electrical Engineering Department 2 LIACC Artificial Intelligence
How to look at a chest X-ray
CHAPTER 1 How to look at a chest X-ray 1.1 Basic interpretation is easy 2 1.2 Technical quality 4 1.3 Scanning the PA film 10 1.4 How to look at the lateral film 13 1.1 Basic interpretation is easy 1.1
VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.
VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject
PATIENT INFORMATION BOOKLET Thoracic Stent Grafts: A Treatment for Thoracic Aortic Aneurysms
PATIENT INFORMATION BOOKLET Thoracic Stent Grafts: A Treatment for Thoracic Aortic Aneurysms TABLE OF CONTENTS Introduction 1 Glossary 2 Thoracic Aorta 3 Thoracic Aortic Aneurysm (TAA) 4 Causes 5 Symptoms
PCA to Eigenfaces. CS 510 Lecture #16 March 23 th A 9 dimensional PCA example
PCA to Eigenfaces CS 510 Lecture #16 March 23 th 2015 A 9 dimensional PCA example is dark around the edges and bright in the middle. is light with dark vertical bars. is light with dark horizontal bars.
Segmentation of Ureteric and Bladder Calculi in Ultrasound Images
Journal of Computer Science 8 (5): 716-720, 2012 ISSN 1549-3636 2012 Science Publications Segmentation of Ureteric and Bladder Calculi in Ultrasound Images Sridhar, S. Department of Information Science
Geometric Modelling & Curves
Geometric Modelling & Curves Geometric Modeling Creating symbolic models of the physical world has long been a goal of mathematicians, scientists, engineers, etc. Recently technology has advanced sufficiently
Calypso Construction Features
Calypso The Construction drop-down menu contains several useful construction features that can be used to compare two other features or perform special calculations. Construction features will show up
Meta Imaging Series MetaMorph
Meta Imaging Series MetaMorph 3D Module User s Guide Version 7.0 for Microsoft Windows XP 1020 2601-03 Copyrights, Notices, and Trademarks 2004 2006 Molecular Devices Corporation. All rights reserved.
VASCULAR SURGERY. 4. Assess the vascular system by appropriate skills in history-taking and in clinical examination.
VASCULAR SURGERY PGY-1 Medical Knowledge 1. Describe human arterial and venous anatomy. 2. Describe basic arterial and venous hemodynamics. 3. Review the basic clinical manifestations of vascular disorders.
Nonlinear Iterative Partial Least Squares Method
Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for
CT an Important Diagnostic Tool for ED Patient Management
CT an Important Diagnostic Tool for ED Patient Management Dr. Nicolas Grenier In recent years, the volume of CT examinations conducted in Emergency Departments (ED) has dramatically increased. CT is now
Diagnosis Code Crosswalk : ICD 9 CM to ICD 10 CM Coronary and Peripheral Vascular
Diagnosis Code Crosswalk : to Coronary and Peripheral Vascular 411.1 Intermediate coronary syndrome (unstable angina) I20.0 Unstable angina 412 Old myocardial infarction I25.2 Old myocardial infarction
Tutorial on Exploratory Data Analysis
Tutorial on Exploratory Data Analysis Julie Josse, François Husson, Sébastien Lê julie.josse at agrocampus-ouest.fr francois.husson at agrocampus-ouest.fr Applied Mathematics Department, Agrocampus Ouest
Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS
Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS 1. Introduction, and choosing a graph or chart Graphs and charts provide a powerful way of summarising data and presenting them in
AQUATICS reconstruction software: the design of a diagnostic tool based on computer vision algorithms
AQUATICS reconstruction software: the design of a diagnostic tool based on computer vision algorithms Andrea Giachetti 1 and Gianluigi Zanetti 1 CRS4 - Parco Scientifico e Tecnologico POLARIS, Edificio
RUN-LENGTH ENCODING FOR VOLUMETRIC TEXTURE
RUN-LENGTH ENCODING FOR VOLUMETRIC TEXTURE Dong-Hui Xu, Arati S. Kurani, Jacob D. Furst, Daniela S. Raicu Intelligent Multimedia Processing Laboratory, School of Computer Science, Telecommunications, and
Object Recognition and Template Matching
Object Recognition and Template Matching Template Matching A template is a small image (sub-image) The goal is to find occurrences of this template in a larger image That is, you want to find matches of
Model-based Chart Image Recognition
Model-based Chart Image Recognition Weihua Huang, Chew Lim Tan and Wee Kheng Leow SOC, National University of Singapore, 3 Science Drive 2, Singapore 117543 E-mail: {huangwh,tancl, leowwk@comp.nus.edu.sg}
Multi-slice Helical CT Scanning of the Chest
Multi-slice Helical CT Scanning of the Chest Comparison of different low-dose acquisitions Lung cancer is the main cause of deaths due to cancer in human males and the incidence is constantly increasing.
Laboratory 16a Blood Vessels and Peripheral Circulation
Laboratory 16a Blood Vessels and Peripheral Circulation Objectives: Describe differences between arteries and veins, both at a gross anatomical level and at a histological level. Identify the major arteries
Abdominal Aortic Aneurysm (AAA) General Information. Patient information Leaflet
Abdominal Aortic Aneurysm (AAA) General Information Patient information Leaflet 1 st July 2016 WHAT IS THE AORTA? The aorta is the largest artery (blood vessel) in the body. It carries blood from the heart
Joint models for classification and comparison of mortality in different countries.
Joint models for classification and comparison of mortality in different countries. Viani D. Biatat 1 and Iain D. Currie 1 1 Department of Actuarial Mathematics and Statistics, and the Maxwell Institute
STRUCTURAL ANALYSIS OF POLYMERIC FOAMS BY SUB-µM X-RAY COMPUTED TOMOGRAPHY
STRUCTURAL ANALYSIS OF POLYMERIC FOAMS BY SUB-µM X-RAY COMPUTED TOMOGRAPHY Johann KASTNER, Richard KICKINGER, Dietmar SALABERGER Upper Austria University of Applied Sciences, Wels Campus, A - 4600, Austria
(Refer Slide Time: 1:21)
Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 5 Polygon Clipping and Polygon Scan Conversion We have been
SbLRS: Shape based Leaf Retrieval System
SbLRS: Shape based Leaf Retrieval System Komal Asrani Department of Information Technology B.B.D.E.C., Lucknow, India Renu Jain Deptt. of C.S.E University Institute of Engineering and Technology, Kanpur,
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
Lobar Fissure Extraction in Isotropic CT Lung Images - An Application to Cancer Identification
Lobar Fissure Extraction in Isotropic CT Lung Images - An Application to Cancer Identification T. Manikandan Associate Professor Raalakshmi Engineering College Chennai-602 105 Dr. N. Bharathi Professor
Strategies for Efficient Chest ct interpretation
10th Annual International Symposium on Multidetector-Row CT Stanford Radiology, Las Vegas, May 13-16, 2008 Strategies for Efficient Chest ct interpretation Justus E. Roos Stanford University 1 History