Radio resource management schemes for combined GSM/GPRS mobile systems

Size: px
Start display at page:

Download "Radio resource management schemes for combined GSM/GPRS mobile systems"

Transcription

1 WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. 23; 3: (DOI: 1.12/wcm.96) Radio resource management schemes for combined GSM/GPRS mobile systems C. N. Konstantinopoulou, K. A. Koutsopoulos, P. P. Demestichas and M. E. Theologou*, National Technical University of Athens (NTUA) Department of Electrical and Computer Engineering 9 Heroon Polytechniou Street GR Zographou Athens Greece G. L. Lyberopoulos COSMOTE Mobile Telecommunications S.A Department of Switching and Network Management 9 Marinou Antypa GR N. Iraklion Athens Greece Summary Data services like Web browsing, and file transfer are becoming more and more popular in cellular systems. In contemporary systems like Global System for Mobile communications (GSM), data transfer has been circuit-switched, that is, physical resources are allocated to a user for the entire call/session duration. However, this is inefficient in case of bursty traffic, where bursts are separated by long intervals of inactivity. This has been the main reason for the introduction of General Packet Radio Service (GPRS), which on the one hand acts as a mobile access network to the Internet, while on the other hand it enables the operator to offer a wide variety of value-added services [Wireless Access Protocol (WAP) over GPRS, e/m-banking, e/m-commerce, push services, etc.] efficiently. However, in contemporary commercial implementations of GPRS the radio resource allocation algorithm does not take into account the Quality of Service (QoS)-related service characteristics although such information is exchanged between the terminal and the network and consequently all service requests are treated the same way ( best effort ). In this paper, we propose and evaluate via a simulation platform various Radio Resource Management (RRM) schemes capable of differentiating the handling of service requests (in uplink and downlink), taking into account the GPRS-related QoS parameters (precedence, reliability, delay, mean and peak throughput). The evaluation is performed for a range of voice (circuit-switched) traffic loads, number of Transmit Receive exchange (TRXs), offered data (packet-switched) services characteristics, number of dedicated Packet Data Channels (PDCHs), and so on, taking into account the respective QoS requirements for both service types (circuit- and packet-switched). Copyright 23 John Wiley & Sons, Ltd. Ł Correspondence to: M. E. Theologou, National Technical University of Athens (NTUA), Department of Electrical and Computer Engineering, 9, Heroon Polytechniou Street, , Zographou, Athens, Greece. Copyright 23 John Wiley & Sons, Ltd.

2 358 C. N. KONSTANTINOPOULOU ET AL. KEY WORDS GPRS traffic source models interactive services background services QoS parameters GPRS QoS profile radio resource management (RRM) priority-based RRM schemes 1. Introduction The impressive growth of cellular mobile telephony, as well as the number of Internet users, promises an exciting potential for a market that combines both innovations, that is the cellular wireless data services. It is foreseen that within the next few years there will be an extensive demand for wireless data services. In particular, it is expected that data usage drive up traffic per user as much as 3 to 5 per cent and may also act as a stimulator of additional voice calls, as already witnessed with voice mail. To cope with the inefficiencies, which are inherent to contemporary GSM technologies mainly related to inefficient use of radio resources the GPRS is conceived as the first vital step toward the provision of higher speed data rates. The GPRS, by enabling much more effective data use of the radio spectrum, will allow operators to develop new applications with richer content (e.g. location-based information in conjunction with geographical data) and therefore to further enhance their business role. GPRS may increase the data transfer speed (beyond 1 kb/s), offering session establishment times below one second. We shall stress that the actual transfer rate of a single session depends on a variety of factors that are relevant both to the terminal [multislot capability, Coding Scheme (CS)] and the network (number of active terminals, CSs supported, the utilized slot assignment scheme, the currently available bandwidth for GPRS services, etc.). In addition, GPRS may offer a user-friendlier billing compared to current charging models based on call/session duration since it allows charging based on the volume of transferred data. The advantage for the user is that he/she can be always connected and that charging may be based on the transferred data volume. However, the realization of the GPRS system requires upgrades to the existing GSM network elements (BTS, BSC, MSC and HLR ) as well as the implementation of an IP-based backbone network (Figure 1) consisting of new GPRS-related network elements (SGSN, GGSN, BG, CG, DNS, DHCP/RADIUS, FW ). The GSM/GPRS air-interface will be capable of supporting efficiently circuit-switched and packetswitched (GPRS) traffic demands, taking into account the application/service related QoS parameters. In addition, it is envisaged that owing to the extra GPRS traffic/signaling both the signaling traffic and the overall interference level will increase. To sum up, GPRS improves the utilization of the radio resources, may offer volume-based billing, higher transfer rates, shorter access times, and simplifies the access to packet data networks (e.g. internet) [1 3]. As far as radio resource allocation is concerned, European Telecommunications Standards Institute (ETSI) proposes the fixed and on-demand channel allocation mechanisms [4]. P. Lin and Y. Lin have proposed and evaluated the following four resource allocation mechanisms [5]: (i) Fixed Resource Allocation (FRA), (ii) Dynamic Resource Allocation (DRA), (iii) Fixed Resource Allocation with Queue capability (FRAQ) and (iv) Dynamic Resource Base Transmitter Station (BTS), Base Station Controller (BSC), Mobile Switching Center (MSC), Home Location Register (HLR). Serving GPRS Support Node (SGSN), Gateway GPRS Support Node (GGSN), Border Gateway (BG), Charging Gateway (CG), Domain Name Server (DNS), Dynamic Host Configuration Protocol (DHCP), Remote Access Dial- In User Service (RADIUS), Firewall (FW).

3 RADIO RESOURCE MANAGEMENT SCHEME 359 PSTN BSC MSC Internet Intranet Um RADIUS/ DHCP SGSN BG GPRS GPRS Backbone backbone SS7 CG GGSNs Billing System FW HLR AuC EIR Router Corporate LAN Server Inter-PLMN DNSs To OMC Internet To other PLMNs Intranet Fig. 1. GPRS architecture. Allocation with Queue capability (DRAQ). However, none of these algorithms considers (circuit-switched) voice priority, neither takes into account the QoS characteristics of data sessions. Fixed and on-demand channel allocation have also been investigated by Stuckman and Muller [6,7]. In Reference [6], no voice traffic has been considered in the system, while in Reference [7], circuit-switched voice calls are assigned higher priority than data services, but no distinction between data requests has been implemented. In Reference [8] Stuckman and Muller studied the issue of QoS management of GPRS resources. The data rate and the one-way delay have been considered as QoS parameters, while the traffic source models described in Reference [9] have been adopted. The aim of this paper is to investigate and evaluate (via a simulation platform) various RRM schemes capable of differentiating the handling of service requests (in uplink and downlink) taking into account GPRS-specific QoS parameters. The evaluation will be performed for a range of voice (circuit-switched) traffic loads, number of TRXs, offered services, number of dedicated PDCHs, and so on, taking into account the respective QoS requirements for both service types (circuit- and packet-switched). The simulation platform through which the evaluation of the proposed RRM schemes has been performed exhibits the following capabilities [1]: ž Handling of any number of TRXs. ž Adoption of the frame structure as specified in Reference [4] for GSM/GPRS. ž Uplink and downlink transmissions are performed according to Reference [4]. More specifically, up to seven transmissions (from different terminals jj ) can be assigned to an uplink PDCH, while up to nine transmissions ŁŁ can be assigned to a downlink PDCH. ž Possibility to define dedicated PDCHs for GPRS use only. ž Possibility to assign higher priority to circuitswitched voice calls, by preempting active data sessions. ž Consideration of the GPRS terminal multislot capability in slot assignment procedure. ž Support of all CSs (CS-1, CS-2, CS-3 and CS-4). A dedicated PDCH is a slot that can be used exclusively by GPRS connections. jj DiscriminatedbytheUplink State Flag (USF) value. ŁŁ Discriminated by the Temporary Flow Identity (TFI) value.

4 36 C. N. KONSTANTINOPOULOU ET AL. ž Adoption of realistic traffic source models for a variety of services. ž Possibility to prioritize services requests, both uplink and downlink, based on the applied RRM scheme (see Section 5). The material included in this paper is organized as follows. In Section 2, the QoS profiles specified for the GPRS system are presented. Section 3 assesses some open issues regarding the radio resource allocation in contemporary GPRS systems. The adopted traffic source models for the various data services and the relative parameters are described in Section 4. In Section 5, we propose priority-based RRM schemes, while in Section 6 evaluation results are presented. Finally, in Section 7 some concluding results have been drawn. 2. QoS Issues In GPRS, the Mobile Station (MS), before any information exchange with the system has to perform the so-called Packet Data Protocol (PDP) context activation procedure in order: (i) to be assigned a (public or private) IP address and (ii) to agree upon a QoS profile. A QoS profile comprises the parameters shown in Table I. The combinations of these parameters result in 1 26 different QoS profiles [2]. In GPRS, we may discriminate four QoS profile types (Figure 2): MS SGSN QoS Requested 1 QoS Negotiated Accept 2 Reject 3 Check QoS Subscribed QoS Negotiated (1) At PDP Context Activation request (2) if (QoS Negotiated) > (QoS Minimum) (3) if (QoS Negotiated) < (QoS Minimum) HLR QoS Negotiated Fig. 2. QoS profile information exchange. GGSN 1. The QoS Subscribed profile that is defined at subscription time and is stored at the HLR. 2. The QoS Requested profile that is sent during the PDP Context Activation. 3. The QoS Negotiated profile containing the QoS parameter values that the system can ensure depending on the current loading conditions and the SGSN/GGSN capabilities. 4. The QoS Minimum profile that contains the minimum acceptable values for each QoS parameter for the specific GPRS service. Even if contemporary commercial implementations of GPRS consider QoS profile information exchange between the MS, the SGSN and the GGSN, they never exploit such information. More specifically, the Table I. QoS parameters. QoS parameters Definition # Values Minimum value Maximum value Precedence class Delay class Reliability class Peak throughput class Mean throughput class Indicates the relative importance of maintaining the service commitments under abnormal conditions (e.g. limited resources, network congestion) Defines the maximum values for mean (end-to-end) and 95-percentile delay to be incurred by the transfer of data through the GPRS network(s) Indicates the transmission characteristics that are required by an application Specifies the maximum rate at which data is expected to be transferred across the network for an individual PDP context Specifies the average rate at which data is expected to be transferred across the GPRS network during the remaining lifetime of an activated PDP context 3 1 (High) 4 1 (Predictive) 5 1 (Nonreal time traffic) 9 1 (8 kb/s) 19 1 (¾.22 b/s) 3 (Low) 4 (Best effort) 5 (Real-time traffic) 9 (248 kb/s) 31 (Best effort)

5 RADIO RESOURCE MANAGEMENT SCHEME 361 resource management algorithm that is applied does not take into account the specific GPRS QoS parameters of the services requests, that is, all requests are treated the same way ( best effort ) no priority in handling higher priority requests is employed. In addition, the standards have not proposed resource management algorithms that take into account services QoS requirements. This task has been left to the GPRS vendors, and as such the performance of the GPRS air-interface is strongly dependent on the specific resource management scheme applied by the vendor. 3. Radio Resource Management: Open Issues A nonexhaustive list of the RRM schemes open issues is given below: 1. Currently, the RRM scheme does not take into account QoS parameters. Currently, the commercial versions of the GPRS offer the best effort option only. The relation between user/service QoS parameters and network-related ones has to be investigated. 2. Session Admission Control (SAC) algorithm. In addition, the current versions of the GPRS do not employ a SAC algorithm that takes into account the loading conditions of the radio airinterface. 3. Allocation of the GSM and GPRS slots/pdchs onto the TRXs. One of the main RRM issues is the allocation of timeslots/pdchs to circuit- and packet-switched traffic. In contemporary GSM, slot allocation is based on the low interference criterion, that is, an incoming circuit-switched call is assigned to the slot exhibiting the lowest interference level. For the combined GSM/GPRS case, the following two alternatives can be envisaged: a. Apply the low interference criterion for GPRS traffic too. The GPRS data sessions reserve slots/pdchs as GSM calls, based on low interference. However, in this case, the scheme shall take into account that a GPRS session may need Apart from the resource management scheme used, the performance of the GPRS air-interface depends on service behavior (session arrival rate, session duration), user behavior (user tolerance) and network behavior (number of GPRS capable TRXs, cell reselection criteria, delays, packet interarrival times) parameters. to reserve more than one PDCHs (in the same TRX). Unavailability of PDCHs in a single carrier may lead to performance degradation due to assignment of lower number of PDCHs than requested/needed for a single session although there may be available resources in the system. b. Consecutive slot allocation for both GSM and GPRS. According to this scheme, the system assigns consecutive slots to GSM and GPRS requests starting from different carriers (Figure 3). The major advantage of this scheme is that the GPRS performance is not compromised. On the contrary, it may lead to increase in intracell handovers (under high loading conditions). 4. PDCH selection to be preempted by incoming circuit-switched call during congestion. Criteria shall be defined for the selection of the proper PDCH to be preempted, such as the number of assigned USFs per PDCH. 5. The mechanism that selects the proper PDCHs during the activity periods of a data session so as to satisfy the QoS Negotiated parameters. An efficient RRM scheme will be capable of prioritizing service requests and assigning the proper number of PDCHs as well as those that can provide the maximum throughput (if possible) so as to respect the QoS Negotiated parameter values. 4. Traffic Source Models Source modeling is one of the most important issues that has to be dealt with in this paper, since it is one of the critical parameters that determines the overall performance of the GPRS. We shall stress though that it is impossible to define a generic source model representing all possible service types, for example, conversational, streaming, interactive and background [11]. However, independently of the service type, the traffic source model shall take into account the following: Interactive services are typical instant response-request messaging services. Example services are Web browsing, database retrieval, server access, polling for measurement records and automatic database enquiries (telemachines). In this service type, the end user (typically a computer) sends and receives data files in the background. Examples are background deliveries of s, database downloads, reception of measurement records, and so on.

6 362 C. N. KONSTANTINOPOULOU ET AL. TRX # C C C C Signaling TRX #2 TRX #3 C C C C C C C C C C C C C Circuit-swithced slots Slots occupied by circuit-swithced voice GPRS PDCHs TRX #4 C C C Dedicated GPRS PDCHs GSM/GPRS border GSM/GPRS border Fig. 3. Consecutive slot allocation. ž A data session consists of a sequence of packet calls, each composed of a (bursty) sequence of datagrams. ž Session parameters such as number of packet calls per session, number of datagrams/packet call, packets interarrival time, packet call size. ž User behavior parameters (e.g., user tolerance). Since this paper focuses on GPRS, we only consider interactive and background service classes; more specifically Web-browsing, ftp upload, ftp download. The source models for the above-mentioned service types are described in the following subsections Interactive Services A typical example of a Web-browsing data session is depicted in Figure 4, while its detailed traffic source model is shown in Figure 5. As shown, four different states can be identified: ž Active state (A active, B inactive). The user initiates a request. As shown, the user (A) is active, while User request Uplink Downlink Waiting state A packet call A data session Reading state Waiting state Datagrams Fig. 4. Example of a Web-browsing data session. t t the host (B), which for example is the Web server for Web-browsing, is inactive. ž Waiting state (A inactive, B inactive). This state represents the time interval between the completion of transfer of user request for uplink and the beginning of downlink transmission. This state includes delays due to GPRS network itself as well as external networks (e.g. Internet). ž Receiving information state (A inactive, B active). This state represents the download information transfer phase. ž Reading state (A inactive, B inactive). It represents the time that the user needs to read the downloaded information before proceeding in a new request. The active state can be decomposed in several phases. First, the MS sends a packet channel request and enters the contention phase. On collision, the MS sends again its request after back-off time. If no collision occurred, but there are no available uplink PDCHs, the request is queued. When the system finds resources, it sends the uplink Packet Assignment Message (PAM) to the MS, containing a list of assigned PDCHs, the USF(s) per PDCH(s), the TFI, as well as timing advance and power control information, if available. The MS monitors the PDCHs in the downlink channel, in order to identify its USF(s). If the MS detects its USF(s), it transmits a radioblock to the corresponding uplink PDCH(s). After the radioblock transmission, if the MS has more information to send, it waits until it listens to its USF(s) again [3,4]. In the downlink, the system after a certain number of MS radioblocks (e.g. 1 to 15) sends positive acknowledgments (ACKs) to verify The radioblock is the basic transmission unit in GPRS and it is formed by four slots in consecutive TDMA frames.

7 RADIO RESOURCE MANAGEMENT SCHEME 363 Session setup Active state Packet channel request Contention ti Session release (*) List of uplink PDCHs, USF per PDCH, TFI, timing advance, power control (*) ) Wait for packet uplink assignment Packet uplink assignment Check assigned PDCHs for its own USFs Uplink transmission of a radioblock per assigned PDCH (**) List of Downlink PDCHs, TFI, Timing Advance, Power Control Wait for Packet Downlink Assignment (**) Waiting state Fig. 5. Detailed source traffic model for Web-browsing. Reading state Check assigned downlink PDCHs for its own TFI Receiving info state that information has been received successfully, or negative acknowledgments (NACK) indicating the erroneous radioblocks. If there is information to be sent to the MS, the system sends a downlink PAM, containing a list of downlink PDCHs, the TFI, as well as timing advance and power control information, if available. The MS monitors the assigned downlink PDCHs, in order to identify the packets addressed to it through its TFI. Downlink packets are kept in a queue until downlink resources become available and each time a single radioblock is transmitted in each assigned PDCH, until the downlink information is successfully completed [3,4]. After this phase, the user shall read the downloaded information, and then proceeds in requesting a new packet call (in the same session), thus returning to the contention phase. As before, ACKs/NACKs are sent periodically in the uplink to verify the correct transmission of data or to indicate the erroneous radioblocks and ask for retransmission. We shall stress that the user may initiate a session release: 1. In the active state, if he waits for a long time in the uplink queue until the system finds available resources. 2. When the downlink response is too delayed. 3. After the reading state where the user can decide to initiate a request for a new session, releasing at the same time the existing one Background Services Upload background services A detailed traffic source model for a background upload service (suitable for , FTP upload, etc.) is depicted in Figure 6(a). As it is shown, the model is similar to the one described for interactive services, as far as uplink transmission concerns. The difference in this case is that there is only one contention phase. After the assignment of required PDCHs to the MS, the uplink transmission is performed in the specific resources, whenever the MS identifies its USF in the downlink, until the completion of the data upload. In the downlink channel, the system sends ACKs periodically to verify that information has been received successfully or NACKs indicating the erroneous radioblocks. Normally, session release occurs when the user has successfully transmitted the entire information. Abnormal session release may be initiated either by the system or the user himself whenever the QoS falls below certain limits for example, so far offered mean bit rate falls below a certain percentage

8 364 C. N. KONSTANTINOPOULOU ET AL. (a) Session setup Packet channel request Contention Session release Wait for packet uplink assignment (*) List of uplink PDCHs, USF per PDCH, TFI, timing advance, power control (*) Packet uplink assignment Check assigned PDCHs for its own USFs Uplink transmission of a radioblock per assigned PDCH (b) Session setup Active state Packet channel request Contention Session release Wait for packet uplink assignment (*) List of uplink PDCHs, USF per PDCH, TFI, timing advance, power control (* ) Packet uplink assignment Check assigned PDCHs for its own USFs Uplink transmission of a radioblock per assigned PDCH (**) List of downlink PDCHs, TFI, timing advance, power control Wait for packet downlink assignment (**) Waiting state Check assigned downlink PDCHs for its own TFI Fig. 6. (a) Traffic source model for background upload services and (b) detailed traffic source model for background download services. (e.g. 6% to 7%) and remains there for a certain time period (e.g. 3 min) Download background services In the case of a download background service the detailed traffic source model is depicted in Figure 6(b). As it is shown, the session set-up procedure and the transmission of the uplink request are performed as previously. There is only one contention phase, and after the assignment of resources and the successful transmission of the uplink request, the system sends a downlink PAM and the user starts

9 RADIO RESOURCE MANAGEMENT SCHEME 365 monitoring the assigned downlink PDCHs to identify the packets addressed to him through his TFI. Both downlink and uplink transmissions are performed in radioblocks, as described for interactive services. As before, ACKs/NACKs are sent periodically in the uplink to verify the correct transmission of data or to indicate the erroneous radioblocks and ask for retransmission. After the completion of download phase, a normal session release follows. Abnormal session release may be initiated either by the system or the user himself whenever the QoS falls below certain limits, for example, so far offered mean bit rate falls below a certain percentage (e.g. 6% to 7%) and remains there for a certain time period (e.g. 3 min) Source Models Parameters The source models parameters for interactive and background services are listed below [12]: ž Service APN. This is a descriptive name, the Access Point Name (APN), sent during the PDP Context Activation (e.g. wap, internet ). It can be utilized as an extra priority level for services having the same precedence class (e.g. health-care applications and Web-browsing of the same precedence class). ž QoS parameters. Precedence, Delay, Reliability, Peak Throughput and Mean Throughput class ([2]). ž Service parameters (Table II), which characterize the service behavior; these are as follows: Number of packet calls per session, N pc.this is a geometrically distributed random variable with a mean µ Npc (packet calls). Packet call size, S pc. The size of the packet call (bytes). This follows Pareto distribution with cut-off. Datagram Size, S d. Uniformly distributed between an upper and a lower bound (bytes). Table II. Interactive and background traffic source model parameters. Service characteristics Interactive Download background Upload background p p p N pc p D pc (sec) p N/A p N/A D rr (sec) p p N/A p N d p p p D d (sec) p p p S d (bytes) User behavior p N ur p N/A N/A T ut (sec) N/A N/A Interarrival time between datagrams within a packet call, D d. This is an exponentially distributed random variable with a mean µ Dd (model time steps). Reading time between packet calls, D pc.this is an exponentially distributed random variable with a mean µ Dpc (model time steps). Note that the reading time starts when the last datagram of the packet call is successfully received by the user and ends normally when the user makes a new request. GPRS and external network(s) delay, D GI.This is an exponentially distributed random variable with a mean µ Drr. This parameter represents the time interval between the successful transmission of the uplink packet call and the transmission of the first datagram in the downlink. ž User behavior parameters (Table II), which characterize the user behavior; these are as follows: User tolerance time, T ut. This is a constant variable, which mostly models user behavior. This time starts after the user uplink packet channel request. If this time expires before the user has received the expected information, the user makes a retry for the same request. Maximum number of user retries, N ur.thisis a constant variable representing the maximum number of user retries performed in the case that the user tolerance time has expired before the complete reception of the expected information. 5. Proposed RRM Schemes In our study, we propose and evaluate a number of RRM schemes, which enable services prioritization, based on precedence, service APN and mean throughput QoS parameters. As such, the following schemes have been implemented: PST: Prioritized by Precedence Service APN mean Throughput PTS: Prioritized by Precedence class mean Throughput Service APN TSP: Prioritized by mean Throughput Service APN Precedence class TPS: Prioritized by mean Throughput Precedence class Service APN STP: Prioritized by Service APN mean Throughput Precedence class SPT: Prioritized by Service APN Precedence class mean Throughput

10 366 C. N. KONSTANTINOPOULOU ET AL. Note: For the sake of comparison, the classical nonpriority ( best effort ) scheme, the so-called Round Robin (RR) scheme has been implemented Priority-based RRM Schemes Call/session admission control When a new voice call arrives, the system searches for a free slot in both uplink and downlink. If not found and if there are PDCHs allocated to GPRS (not dedicated), it will preempt a PDCH (uplink and downlink) and allocate it to the incoming voice call. The selection of the proper GPRS PDCH will be based on the following: ž The number of packet calls that each GPRS PDCH serves. ž The number of packet calls of services with the highest priority that each GPRS PDCH serves. Otherwise, the voice call is blocked. Note: Voice call dropping has not been considered because (a) intracell handovers are not performed because of radio quality violation but for respecting the consecutive slot implementation (Figure 3) and (b) intercells handovers have not been assumed. All incoming data sessions enter the system session blocking is not performed. An active data session is dropped when the QoS parameters are violated as described in Sections 4.1 and Slot allocation to GSM/GPRS domain In our study, we have adopted the consecutive slot allocation scheme (Figure 3) that operates as follows: the assignment of slots to circuit-switched connections starts from the beginning of the first TRX, while for the GPRS connections the allocation of PDCHs starts from the end of the last TRX. Every slot may be used either by GSM or GPRS connections, unless a slot has been characterized as dedicated PDCH. If dedicated PDCHs have been defined by the operator, these should be located at the end of the last TRX (Figure 3). Additionally, the PDCHs that have been assigned to a terminal for transmission or reception must belong to the same TRX Upgrading/downgrading the GPRS domain A GPRS domain upgrade is issued when a certain percentage (e.g. 8%) of the USFs of the existing PDCHs have been allocated to data sessions. In the case that available slots are found in another TRX, an intracell handover shall be performed first (Figure 3). If the GPRS domain upgrade fails, the request is reactivated as soon as a slot is released. A GPRS domain downgrade occurs whenever a PDCH preemption occurs PDCH/USF assignment mechanism The proposed PDCH/USF Assignment Mechanism is responsible for allocating the proper number of USFs to packet calls, determines which packet call(s) shall transmit a radioblock and when. It is obvious that such a mechanism shall guarantee the QoS negotiated of the active packet calls, ensuring at the same time that high priority services have a special treatment. Services prioritization is implemented by a (fixed length) queue per PDCH, containing all the packet calls to which a USF has been assigned (see Figure 7). It is evident that a packet call may have many instances (entries in queues) depending on the number of USFs currently allocated to it. Packet calls that do not have any assigned USF(s) (e.g. during congestion periods) are stored in a separate queue, the so-called pending queue. The handling of a new uplink packet call is depicted in Figure 8(a). As shown, as soon as the contention phase is completed successfully, the system checks whether there is an available USF jjjj in one of the existing PDCHs. ž If available, a PAM is sent to the MS, which starts monitoring the assigned PDCH in order to listen its USF. As soon as it detects its USF, it transmits a radioblock starting from the next frame. It shall be stressed that a radioblock transmission implies that the packet call has been placed first in the queue of the corresponding PDCH, as indicated by the applied RRM scheme. Additional USF/PDCH (if available) may be assigned to the corresponding packet call, if the QoS-related system measurements (e.g. mean throughput) dictate so. Release of a USF may occur when (i) the corresponding USF/PDCH is preemptied by a circuitswitched call (Note 1), (ii) a higher priority packet call, for which the QoS-negotiated profile is not respected, is assigned the USF, or (iii) the (so-far) jjjj In the PDCH currently offering the maximum throughput, if possible.

11 RADIO RESOURCE MANAGEMENT SCHEME 367 GSM/GPRS border Applied RRM scheme: 1. Precedence 2. Service ID 3. Mean throughput GSM/GPRS border t t Comparison P=1 P=1 P=1 P=1 P=1 P=1 Transmission of S=1 S=1 S=1 S=1 S=1 S=1 T=11T=12T=12 T=11T=12T=12 a radioblock/pdch P=1 P=1 P=2 S=2 S=1 S=2 T=11T=11T=11 P=1 P=1 P=2 S=2 S=1 S=2 T=11T=11T=11 P=1 P=1 P=2 S=2 S=2 S=2 T=1T=11T=1 P=1 P=1 P=2 S=2 S=1 S=2 T=1T=1T=1 P=2 P=1 P=2 S=1 S=2 S=2 T=11T=1 T=9 P=2 P=1 P=2 S=1 S=2 S=2 T=11T=11 T=9 P=2 P=2 P=3 Preemption P=2 P=1 P=3 S=2 S=3 S=2 T=11T=1 T=1 of the packet call with the lowest S=2 S=2 S=2 T=11T=1T=1 P=2 P=2 P=3 QoS requirements P=2 P=2 P=3 S=2 S=3 S=2 & S=2 S=3 S=2 T=1 T= 9 T= 9 queues sorting T=1T=1 T=9 P=3 P=3 P=3 P=3 P=2 P=3 S=2 S=3 S=3 S=2 S=3 S=3 T=11 T= 9 T=1 T=11 T= 9 T=1 New P=1 arrival S=1 T=1 P=2 P=2 P=2 P= P= P= S=2 S=2 S=2 S= S= S= P=2 P=2 P=2 P=3 P= P= P= S=2 S=2 S=2 S=3 S= S= S= T=12T=11T=1 T= T= T= T=12T=11 T=1 T= 9 T= T= T= Pending queue Pending queue Fig. 7. PDCH assignment scheme an example. offered mean throughput exceeds a certain percentage (e.g. 2%) of the negotiated one (Note 2). In any case of USF(s)/PDCH(s) reallocation a packet reassignment message is sent to the MS. ž If not available, the comparison phase starts. During this phase it is checked whether the new packet call has higher priority as dictated by the RRM scheme than at least one packet call to which a USF has currently been allocated to. If so, the USF of the existing packet call with the lowest QoS requirements is released and assigned to the new packet call. Otherwise, the new packet call enters the pending queue. Note: Packet calls in pending queue are also sorted according to the applied RRM scheme and the first is assigned a USF when a packet call transmission has been completed successfully. As shown in Figure 8(b), the downlink packet call transmission is similar to the uplink one, apart from the use of TFI(s) instead of USF(s) Nonpriority-based RRM Schemes In the RR RRM scheme, the slot allocation to GSM and GPRS domains, the call/session acceptance control algorithm and the GPRS upgrade/downgrade procedures are performed as described in the priority-based schemes. However, in this case, the PDCH/USF assignment is performed on a roundrobin basis that is, prioritization in USF and pending queues is not considered. 6. Case Studies and Results 6.1. Generic Working Assumptions ž Studies are restricted in a single cell. ž MSs are uniformly distributed within the cell area. ž Terminal multislot capability: 3 C 1 (3 slots downlink and 1 slot uplink). ž Mean voice call duration: 6 s. ž Error-free environment has been assumed (ideal C/I). ž QoS criteria: Voice call blocking probability 1% Data session dropping probability 1%. ž All CSs are supported. More specifically, three CS zones have been defined: Zone A (close to the cell border), where the CS-1 and CS-2 are available Zone B (in the inner part of the cell), where CS-2 and CS-3 are available

12 368 C. N. KONSTANTINOPOULOU ET AL. (a) Uplink packet call (PC) request Contention successful? YES NO YES 1 USF (PDCH) available? YES NO Packet assignment message New PC Higher priority (*) than at least one existing PC? YES Release USF from the PC with the lowest QoS requirements NO (*) Based on applied RRM scheme Pending queue Release resources Additional USFs/PDCHs? (Note 2) NO (Note 1) MS waits for its USF(s) Radioblock transmission per PDCH Only assigned USF of preemptied PC? YES NO Update system statistics NO Last radioblock? YES Packet reassignment message END (b) Downlink packet call arrival YES 1 TFI (PDCH) available? YES NO Packet assignment message New PC Higher priority (*) than at least one existing PC? YES Release TFI from the PC with the lowest QoS requirements NO (*) Based on applied RRM scheme Pending queue Release resources Additional TFIs/PDCHs? (Note 2) NO (Note 1) MS waits for its TFI(s) Radioblock transmission per PDCH Only assigned TFI of preemptied PC? YES NO Update system statistics NO Last radioblock? YES Packet reassignment Message END Fig. 8. (a) Uplink data transfer and (b) downlink data transfer.

13 RADIO RESOURCE MANAGEMENT SCHEME 369 Zone C (close to the BTS), where CS-3 and CS-4 are available. The data sessions are equally distributed among the zones A, B and C, while in each zone the corresponding CSs have been equally utilized (Figure 9). ž Simulation time depends on the time the system needs to converge in terms of QoS criteria for both voice and data. Table III depicts specific working assumptions for the case studies that have been performed and are described in the following sections. The results concern a set of performance parameters shown in Table IV Case Study I The aim of this study is to assess the performance ŁŁŁ of a GSM/GPRS radio link for a range of voice traffic loads. The study has been performed for CS3 CS4 Zone A Zone B Zone C Fig. 9. Coding schemes zones. CS1 CS2 CS2 CS3 ŁŁŁ The system performance is expressed as the maximum CAR of offered services that the system can withstand respecting the QoS parameters. ž a single data service (Web-browsing), ž one and two TRXs, ž various data services characteristics (e.g. number of packet calls per session, packet call size), ž use of dedicated PDCHs or not. The results concern a set of performance parameters such as ž the maximum supported Call Arrival Rate (CAR) for the data service for various voice traffic loads, ž the percentage of slot utilization (for GSM and GPRS), ž the mean access delay (both uplink and downlink) for the data service, ž the maximum supported CAR for the data service for different number of packet calls per session, ž the maximum supported CAR for the data service for different packet call lengths, ž the maximum supported CAR for the data service, assuming that the number of dedicated PDCHs ranges from to Input data The input data for Case study I are depicted in Table V Results Figure 1(a) depicts the maximum sustainable CAR for the Web-browsing service for a range of voice CARs, provided that the QoS parameters for both voice and data service are respected. The results indicate that the Web-browsing CAR decreases as voice load increases. This has been expected, as voice calls have higher priority over the GPRS data services implemented as follows: a circuit-switched call will reserve a timeslot (in uplink and downlink) that has been allocated to GPRS if there are no other free timeslots. Table III. Specific working assumptions for each case study. Case study 1 Case study 2 Case study 3 Case study 4 #TRXs # Signaling channels # Dedicated PDCHs 4 Assumed services Circuit-switched voice, Web-browsing Circuit-switched voice, gold web, silver Web (Table 6) Circuit-switched voice, Web-browsing, FTP upload, FTP download Circuit-switched voice, Web-browsing, FTP upload, FTP download Applied RRM scheme RR PTS RR PTS PTS

14 37 C. N. KONSTANTINOPOULOU ET AL. Table IV. Performance parameters. Performance parameters Maximum supported data call arrival rate Voice call blocking probability (%) Data session dropping probability (%) Percentage of slots utilization (%) Mean uplink access delay (sec) Mean downlink access delay (sec) Mean downlink queuing delay (ms/kb) Mean downlink queue transfer rate (KB/s) Mean offered throughput (kbps) Definition The maximum CAR that the system can support provided that the QoS criteria for both voice and data services are respected The percentage of incoming voice calls that have not been accepted by the system owing to resources unavailability The percentage of active data sessions that have not been completed successfully The percentage of traffic slots that have been used for information transfer (voice and/or data) The time between the uplink packet channel request and the start of transmission (first datagram of the packet call) The time between the arrival of a packet call in the downlink queue [PDCH(s) queue(s)] and the start of transmission The total time a kilobyte of information remains in the downlink queues [PDCH(s) queue(s), pending queue] The rate of information leaving the downlink queues, not including the transmission periods The mean throughput that the system managed to offer to the sessions of a data service Table V. Case study 1 input data. Service APN Data services parameters Web-browsing # Uplink packet calls per session 1 # Downlink packet calls per session 1 Uplink packet call size (kb).5 Downlink packet call size (kb) 87.5 Uplink datagram size (bytes) 2 8 Downlink datagram size (bytes) 2 8 Uplink datagram interarrival within a 1 packet call (ms) Downlink datagram interarrival within a 1 packet call (ms) Reading time between packet calls (s) 3 GPRS and external networks delay (s).5 Precedence class GPRS QoS parameters Low Mean throughput (kbps) 4 Peak throughput (kbps) 8 User behavior parameters User tolerance time (min) 5 Maximum number of user retries 3 (data) services. The results indicate that when only voice service is available the overall slot utilization (uplink, downlink) reaches the 6% for voice call blocking probability 1%, while in the presence of GPRS data the downlink slot utilization ranges from 7% to 8%, depending on voice traffic load. Figure 12 illustrates the uplink and downlink access delay for Web-browsing sessions for a range of voice CARs. As shown, the Web-browsing downlink access delay increases as voice traffic load increases. This is justified by the fact that under high voice traffic loads the majority of downlink slots are occupied by voice connections, thus it is more difficult for Webbrowsing sessions to find available slots. The same applies for uplink too. However, the uplink access delay is lower than the corresponding downlink, as the uplink data volume is significantly lower than the downlink one. Figure 13(a) illustrates the impact of the session duration on the system performance, as a function of packet calls per session, considering that the packet call size (kb) remains the same. More specifically we have assumed Figure 1(b) depicts the maximum supported Webbrowsing CAR for 1 and 2 TRXs and for a range of voice traffic loads (up to the maximum voice traffic supported by a single TRX, according to Erlang-B formula). The results indicate that the Web-browsing CAR can at least be double. Figure 11 depicts the percentage of slot utilization in uplink and downlink for GSM (voice) and GPRS ž Case A: 1 packet calls per session ž Case B: 15 packet calls per session As expected, the Web-browsing CAR that the system can support is higher in Case A than the corresponding one for Case B. We shall notice that Case A/Case B CAR is about 1.5, as is the ratio of number of packet calls per session (15/1).

15 RADIO RESOURCE MANAGEMENT SCHEME 371 (a) 3 Web-browsing CAR (sessions/ h) Session dropping 1% Voice blocking 1% Voice CAR (calls/ h) (b) 7 Web-browsing CAR (sessions/ h) TRX 2 TRXs Voice CAR (calls/ h) Fig. 1. (a) Maximum supported web-browsing CAR vs various voice CARs and (b) maximum supported Web-browsing CAR for 1 and 2 of TRXs Voice CAR (calls/h) % slot utilization GSM uplink GPRS uplink GSM downlink GPRS downlink Fig. 11. Percentage of slots utilization for GSM and GPRS services for various voice traffic loads.

16 372 C. N. KONSTANTINOPOULOU ET AL. Access Delay (s) Uplink access delay Downlink access delay Session dropping 1% Voice blocking 1% Voice CAR (calls/ h) Fig. 12. Web-browsing access delay (uplink and downlink) vs various voice CARs. (a) Web-browsing CAR (sessions/ h) Web-browsing CAR (sessions/ h) (b) Session dropping 1% Voice blocking 1% Session dropping 1% Voice blocking 1% Voice CAR (calls/ h) 1 packet calls per session 15 packet calls per session File size 85 kb File size: 42.5 kb Voice CAR (calls/ h) Fig. 13. (a) Maximum supported Web-browsing CAR for different session durations (# packet calls per session) and (b) maximum supported Web-browsing CAR for different packet call lengths.

17 RADIO RESOURCE MANAGEMENT SCHEME 373 Web-browsing CAR (sessions/ h) Voice CAR = 144 calls h 1 Web browsing Web browsing Voice CAR = 8 calls h 1 Voice CAR = 144 calls h 1 Web-browsing CAR Dedicated PDCHs Voice blocking Voice blocking Voice CAR = 8 calls h 1 Voice call blocking probability Fig. 14. Maximum supported Web-browsing CAR and voice call blocking probability vs number of dedicated PDCHs for medium and high voice traffic Voice call blocking probability (%) Figure 13(b) illustrates the impact of packet call size on the system performance, considering that the number of packet calls per session remains the same. More specifically we have assumed: ž Case A: 85 kb ž Case B: 42.5 kb (the half of Case A) Results show that in Case A the system can withstand less Web data sessions than in Case B. This has been expected, as in Case A more data have to be transmitted per packet call and consequently per session. Figure 14 depicts the impact of the existence of dedicated PDCHs to the overall system performance, assuming ž the maximum supported voice CAR, which corresponds (for a single TRX) to 144 calls/h, according to Erlang-B formula and ž a medium voice traffic load (8 calls/h). We may observe that as the number of dedicated PDCHs increases, the data CAR increases because dedicated PDCHs cannot be preempted by voice calls. That is why voice call blocking increases too. We shall note that in high voice traffic loads (144 calls/h), the use of dedicated PDCHs is prohibitive, as voice call blocking probability exceeds the limit of 1%. On the contrary, in medium voice traffic loads (8 calls/h) the operator may use up to two dedicated PDCHs, as the criterion voice call blocking probability 1% is respected Case Study II The aim of this study is to investigate how the system performance is affected by the application of various RRM schemes at the presence of more than one data services with different QoS parameters. In particular, we have considered ž a 2 TRX-based GSM/GPRS radio link, ž two data services (Gold Web, Silver Web). The results concern a set of performance parameters such as ž the maximum supported total data CAR for various voice traffic loads and different service mixes, ž the maximum supported total data CAR when different RRM schemes are applied, ž the data session dropping probability, ž the mean downlink queuing delay (s/kb). ž The mean downlink queue transfer rate (kb/s) Input data The input data for Case study II are depicted in Table VI.

18 374 C. N. KONSTANTINOPOULOU ET AL. Table VI. Case study 2 input data. Data services parameters Service APN Gold Web Silver Web # Uplink packet calls per session 1 1 # Downlink packet calls per session 1 1 Uplink packet call size (kb).5.5 Downlink packet call size (kb) Uplink datagram size (bytes) Downlink datagram size (bytes) Uplink datagram interarrival within a packet call (ms) 1 1 Downlink datagram interarrival within a packet call (ms) 1 1 Reading time between packet calls (s) 3 3 GPRS and external networks delay (s).5.5 GPRS QoS parameters Precedence class High Normal Mean throughput (kbps) 6 3 Peak throughput (kbps) 1 6 User behavior parameters User tolerance time (min) 5 5 Maximum number of user retries Results Figure 15(a) illustrates the maximum total CAR for data services that the system can support, when the PTS RRM scheme is applied, for various voice CARs and different service mixes: ž Case A: 75% Gold Web, 25% Silver Web ž Case B: 5% Gold Web, 5% Silver Web ž Case C: 25% Gold Web, 75% Silver Web As shown in Figure 15(a), as far as the percentage of Gold Web decreases, the maximum total data CAR that the system can support increases. This is justified by the fact that the Gold Web service is more demanding than Silver Web and it also has higher priority based on its precedence class. Figure 15(b) illustrates the maximum total data CAR that the system can withstand (Case B), for a range of voice traffic loads for PTS and RR RRM schemes. For both schemes the restriction that data session dropping probability should be 1% has to be respected. As shown, for PTS scheme the system can support higher data traffic loads, ensuring also that the higher priority service is better served. Figure 16 compares the data session dropping probability for Gold and Silver Web for PTS and RR for Case B, assuming that the same data CARs are offered in both schemes. Results indicate that for Gold Web session dropping ž is lower than the corresponding one of Silver Web when PTS scheme is applied and ž is significantly lower than the corresponding one of Gold Web when RR scheme is applied The low data session dropping for Gold Web in the case that PTS scheme is applied is due to the fact that it is of higher precedence class and thus is served better. In the case that the RR scheme is applied, even if all services are treated the same, data session dropping for Gold Web is high enough because of its increased throughput demands. Figure 17(a) and (b) depict, respectively, the mean downlink queuing delay for Case B when PTS and RR RRM schemes are applied. We have assumed that there is no voice traffic in the system. Results indicate that in the case of PTS the mean downlink queuing delay for Gold Web is significantly lower than that of Silver Web. On the other hand, for RR scheme, the results show that the mean downlink queuing delay is almost the same for both services. This was more or less expected as RR scheme treats all data sessions the same way without taking into account their precedence class value. Figure 18(a) and (b) present how the different RRM schemes affect the mean downlink queuing transfer rate for Case B. We have also assumed no voice traffic in the system. Results indicate that for PTS scheme the mean downlink queuing transfer rate for Gold Web is higher than that of Silver Web. This is justified by the fact that for PTS scheme the higher

19 RADIO RESOURCE MANAGEMENT SCHEME 375 (a) 3 5% Gold Web -5% Silver Web Overall data CAR (sessions/ h) Gold Web Precedence = high Min. throughput = 6 Max. throughput = 1 Session dropping 1% Voice blocking 1% RRM scheme: PTS Silver Web Precedence = normal Min. throughput = 3 Max. throughput = 6 75% Gold Web -25% Silver Web 25% Gold Web -75% Silver Web Voice CAR (calls/ h) (b) Overall data CAR (sessions/ h) % Gold Web 5% Silver Web Session dropping 1% Voice blocking 1% PTS RR Voice CAR (calls/ h) Fig. 15. (a) Maximum supported total data CAR vs various voice CARs for different service mixes and (b) maximum supported total data CAR for different RRM schemes applied. priority service is better served. On the other hand, for RR scheme, the mean downlink queue transfer rate for both services is almost the same, as all offered services are served the same way Case Study III The aim of this study is to investigate the overall system performance for various offered data service mixes. For this study we have considered ž a 2 TRX-based GSM/GPRS radio link, ž the PTS RRM scheme has been selected. The results concern a set of performance parameters such as ž the maximum supported total data CAR for various voice traffic loads and different service mixes, ž the data session dropping probability, ž the percentage of slot utilization (for GSM and GPRS), ž the offered mean throughput for the data services.

20 376 C. N. KONSTANTINOPOULOU ET AL % Gold Web 18 ses/h ses/h Dropping probability (%) ses/h ses/h 4.8 ses/h Voice CAR (calls/ h) Gold Web (PTS) Silver Web (PTS) Gold Web (RR) Silver Web (RR) Fig. 16. Percentage of data session dropping vs various voice CARs for the same data CAR Input data The input data for Case study III are depicted in Table VII Results Figure 19(a) illustrates the maximum total CAR for data services that the system can support, when the PTS RRM scheme is applied, for various voice CARs and different service mixes: ž Case A: 5% Web-browsing, 25% FTP download, 25% FTP upload ž Case B: 6% Web-browsing, 3% FTP download, 1% FTP upload ž Case C: 5% Web-browsing, 4% FTP download, 1% FTP upload As shown in Figure 19(a), the system performance is mainly affected 1. firstly by the percentage of Web-browsing, owing to the higher precedence class, 2. and secondly by the percentage of FTP download, as system performance is determined by the performance of the downlink direction. Consequently, on the basis of the above the system behaves better for Case A, then Case C and finally Case B. Figure 19(b) depicts the session dropping probability for Case B and for various voice CARs. As shown, session dropping probability remains low for Web-browsing and FTP upload, while it reaches the limit of 1% for FTP download. This is justified by the fact that ž FTP download, like Web-browsing, are downlink demanding services, but FTP download is not served as well as Web-browsing because of its lower precedence class, ž FTP upload is served well, even if it is of low precedence class, because of the low aggregate traffic in the uplink direction. Figure 2 depicts the percentage of slots utilization in uplink and downlink for voice (GSM) and/or data (GPRS) services (Case B). As shown, the percentage of slots utilization ž reaches the 8%, at the presence of voice service only and for voice call blocking probability 1%, ž ranges from 7% to 8% for the downlink when voice and data services coexist, depending on voice traffic load,

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS Edward Nowicki and John Murphy 1 ABSTRACT The General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly simplify wireless

More information

Mobile Network Evolution Part 1. GSM and UMTS

Mobile Network Evolution Part 1. GSM and UMTS Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems

More information

Improved Channel Allocation and RLC block scheduling for Downlink traffic in GPRS

Improved Channel Allocation and RLC block scheduling for Downlink traffic in GPRS Improved Channel Allocation and RLC block scheduling for Downlink traffic in GPRS Haibo Wang, Devendra Prasad, Xin Zhou Jimena Martinez Llorente, François Delawarde, Gwénaël Coget, Patrick Eggers, Hans

More information

Radio Resource Allocation in GSM/GPRS Networks

Radio Resource Allocation in GSM/GPRS Networks Radio Resource Allocation in GSM/GPRS Networks Jean-Lien C. Wu 1, Wei-Yeh Chen 2, and Hung-Huan Liu 1 1 Department of Electronic Engineering, National Taiwan University of Science and Technology, 43, Keelung

More information

CURRENT wireless personal communication systems are

CURRENT wireless personal communication systems are Efficient Radio Resource Allocation in a GSM and GPRS Cellular Network David E Vannucci & Peter J Chitamu Centre for Telecommunications Access and Services School of Electrical and Information Engineering

More information

Measured Performance of GSM HSCSD and GPRS

Measured Performance of GSM HSCSD and GPRS Measured Performance of GSM HSCSD and Jouni Korhonen Olli Aalto Andrei Gurtov Heimo Laamanen Sonera Corporation P.O.Box 97 51 Helsinki, Finland Abstract In this paper we present results of measurements

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

EDGE: The Introduction of High Speed Data in GSM / GPRS Networks

EDGE: The Introduction of High Speed Data in GSM / GPRS Networks 10 September 2003 EDGE: The Introduction of High Speed Data in GSM / GPRS Networks Wendy Florence Ericsson South Africa Rev A 10 September 2003 1 Agenda What is EDGE? Implementing EDGE Network and transmission

More information

ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; Suresh.Leroy@alcatel.be +32/3/240.7830; Guy.Reyniers@alcatel.

ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; Suresh.Leroy@alcatel.be +32/3/240.7830; Guy.Reyniers@alcatel. Contact: ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; Suresh.Leroy@alcatel.be +32/3/240.7830; Guy.Reyniers@alcatel.be Voice over (Vo) was developed at some universities to diminish

More information

A Performance Evaluation of Internet Access via the General Packet Radio Service of GSM

A Performance Evaluation of Internet Access via the General Packet Radio Service of GSM A Performance Evaluation of Internet Access via the General Packet Radio Service of GSM Simon Hoff, Michael Meyer, Andreas Schieder Ericsson Eurolab Deutschland Ericsson Allee 1, 52134 Herzogenrath, Germany

More information

SERVICE DISCIPLINES PERFORMANCE FOR BEST-EFFORT POLICIES IN WWW TRAFFIC OVER PACKET-SWITCHED WIRELESS CELLULAR NETWORKS

SERVICE DISCIPLINES PERFORMANCE FOR BEST-EFFORT POLICIES IN WWW TRAFFIC OVER PACKET-SWITCHED WIRELESS CELLULAR NETWORKS SERVICE DISCIPLINES PERFORMANCE FOR BEST-EFFORT POLICIES IN WWW TRAFFIC OVER PACKET-SWITCHED WIRELESS CELLULAR NETWORKS Wessam AJIB * wajib@infres.enst.fr Philippe GODLEWSKI * godlewski@infres.enst.fr

More information

2G/3G Mobile Communication Systems

2G/3G Mobile Communication Systems 2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management

More information

Handoff in GSM/GPRS Cellular Systems. Avi Freedman Hexagon System Engineering

Handoff in GSM/GPRS Cellular Systems. Avi Freedman Hexagon System Engineering Handoff in GSM/GPRS Cellular Systems Avi Freedman Hexagon System Engineering Outline GSM and GSM referemce model GPRS basics Handoffs GSM GPRS Location and Mobility Management Re-selection and routing

More information

QoS of Internet Access with GPRS

QoS of Internet Access with GPRS Dept. of Prof. Dr. P. Tran-Gia QoS of Internet Access with GPRS Dirk Staehle 1, Kenji Leibnitz 1, and Konstantin Tsipotis 2 1 [staehle,leibnitz]@informatik.uni-wuerzburg.de 2 Libertel-Vodafone k.tsipotis@libertel.nl

More information

Clearing the Way for VoIP

Clearing the Way for VoIP Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.

More information

Implementation of Mobile Measurement-based Frequency Planning in GSM

Implementation of Mobile Measurement-based Frequency Planning in GSM Implementation of Mobile Measurement-based Frequency Planning in GSM Comp.Eng. Serkan Kayacan (*), Prof. Levent Toker (**) (*): Ege University, The Institute of Science, Computer Engineering, M.S. Student

More information

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: j.cao@student.rmit.edu.au

More information

Mobile Wireless Overview

Mobile Wireless Overview Mobile Wireless Overview A fast-paced technological transition is occurring today in the world of internetworking. This transition is marked by the convergence of the telecommunications infrastructure

More information

PERFORMANCE OF THE GPRS RLC/MAC PROTOCOLS WITH VOIP TRAFFIC

PERFORMANCE OF THE GPRS RLC/MAC PROTOCOLS WITH VOIP TRAFFIC PERFORMANCE OF THE GPRS RLC/MAC PROTOCOLS WITH VOIP TRAFFIC Boris Bellalta 1, Miquel Oliver 1, David Rincón 2 1 Universitat Pompeu Fabra, Psg. Circumval lació 8, 83 - Barcelona, Spain, boris.bellalta,

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

Wireless Access of GSM

Wireless Access of GSM Wireless Access of GSM Project Report FALL, 1999 Wireless Access of GSM Abstract: Global System for Mobile communications (GSM) started to be developed by Europeans when the removal of many European trade

More information

Mobile Communications

Mobile Communications October 21, 2009 Agenda Topic 2: Case Study: The GSM Network 1 GSM System General Architecture 2 GSM Access network. 3 Traffic Models for the Air interface 4 Models for the BSS design. 5 UMTS and the path

More information

Lecture overview. History of cellular systems (1G) GSM introduction. Basic architecture of GSM system. Basic radio transmission parameters of GSM

Lecture overview. History of cellular systems (1G) GSM introduction. Basic architecture of GSM system. Basic radio transmission parameters of GSM Lecture overview History of cellular systems (1G) GSM introduction Basic architecture of GSM system Basic radio transmission parameters of GSM Analogue cellular systems 70 s In the early 70 s radio frequencies

More information

AN ANALYSIS OF DELAY OF SMALL IP PACKETS IN CELLULAR DATA NETWORKS

AN ANALYSIS OF DELAY OF SMALL IP PACKETS IN CELLULAR DATA NETWORKS AN ANALYSIS OF DELAY OF SMALL IP PACKETS IN CELLULAR DATA NETWORKS Hubert GRAJA, Philip PERRY and John MURPHY Performance Engineering Laboratory, School of Electronic Engineering, Dublin City University,

More information

Measuring Data and VoIP Traffic in WiMAX Networks

Measuring Data and VoIP Traffic in WiMAX Networks JOURNAL OF TELECOMMUNICATIONS, VOLUME 2, ISSUE 1, APRIL 2010 Measuring Data and VoIP Traffic in WiMAX Networks 1 Iwan Adhicandra Abstract Due to its large coverage area, low cost of deployment and high

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Wireless Technologies for the 450 MHz band

Wireless Technologies for the 450 MHz band Wireless Technologies for the 450 MHz band By CDG 450 Connectivity Special Interest Group (450 SIG) September 2013 1. Introduction Fast uptake of Machine- to Machine (M2M) applications and an installed

More information

Introduction to EDGE. 2.1 What Is EDGE?

Introduction to EDGE. 2.1 What Is EDGE? 2 Introduction to EDGE This chapter is the first of a series dedicated to EDGE. It introduces the different EDGE concepts from a global point of view, explaining how they have been introduced into the

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks 1 Mr. Praveen S Patil, 2 Mr. Rabinarayan Panda, 3 Mr. Sunil Kumar R D 1,2,3 Asst. Professor, Department of MCA, The Oxford College of Engineering,

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

3GPP Wireless Standard

3GPP Wireless Standard 3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation

More information

R2. The word protocol is often used to describe diplomatic relations. How does Wikipedia describe diplomatic protocol?

R2. The word protocol is often used to describe diplomatic relations. How does Wikipedia describe diplomatic protocol? Chapter 1 Review Questions R1. What is the difference between a host and an end system? List several different types of end systems. Is a Web server an end system? 1. There is no difference. Throughout

More information

Chapter 3 ATM and Multimedia Traffic

Chapter 3 ATM and Multimedia Traffic In the middle of the 1980, the telecommunications world started the design of a network technology that could act as a great unifier to support all digital services, including low-speed telephony and very

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

Verizon Wireless White Paper. Verizon Wireless Broadband Network Connectivity and Data Transport Solutions

Verizon Wireless White Paper. Verizon Wireless Broadband Network Connectivity and Data Transport Solutions Verizon Wireless White Paper Verizon Wireless Broadband Network Connectivity and Data Transport Solutions Verizon Wireless White Paper Verizon Wireless Broadband Network Connectivity and Data Transport

More information

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

King Fahd University of Petroleum & Minerals Computer Engineering g Dept King Fahd University of Petroleum & Minerals Computer Engineering g Dept COE 543 Mobile and Wireless Networks Term 111 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724 Email: ashraf@kfupm.edu.sa 12/24/2011

More information

Index. Common Packet Channel (CPCH) 25 Compression 265, 279 82, 288 header compression 284

Index. Common Packet Channel (CPCH) 25 Compression 265, 279 82, 288 header compression 284 bindex.fm Page 296 Tuesday, March 22, 2005 7:17 AM Index 2G, 2.5G, 3G 13 3GPP 118 Release 5 (Rel 5) 124 Release 6 (Rel 6) 125 Release 97/98 (Rel 97/98) 119 Release 99 (Rel 99) 120 4 3GPP2 129 4G 13, 44

More information

1 Introduction to mobile telecommunications

1 Introduction to mobile telecommunications 1 Introduction to mobile telecommunications Mobile phones were first introduced in the early 1980s. In the succeeding years, the underlying technology has gone through three phases, known as generations.

More information

Priority-Based Congestion Control Algorithm for Cross-Traffic Assistance on LTE Networks

Priority-Based Congestion Control Algorithm for Cross-Traffic Assistance on LTE Networks Priority-Based Congestion Control Algorithm for Cross-Traffic Assistance on LTE Networks Lung-Chih Tung, You Lu, Mario Gerla Department of Computer Science University of California, Los Angeles Los Angeles,

More information

Packetized Telephony Networks

Packetized Telephony Networks Packetized Telephony Networks Benefits of Packet Telephony Networks Traditionally, the potential savings on long-distance costs was the driving force behind the migration to converged voice and data networks.

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular

More information

The Evolution of 3G CDMA Wireless Networks. David W. Paranchych IEEE CVT Luncheon January 21, 2003

The Evolution of 3G CDMA Wireless Networks. David W. Paranchych IEEE CVT Luncheon January 21, 2003 The Evolution of 3G CDMA Wireless Networks David W. Paranchych IEEE CVT Luncheon January 21, 2003 Outline Past: cdma2000 1xRTT Present: 1xEV-DO What is it? How does it work? How well does it work? What

More information

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS? 18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic

More information

Voice over Internet Protocol (VoIP) systems can be built up in numerous forms and these systems include mobile units, conferencing units and

Voice over Internet Protocol (VoIP) systems can be built up in numerous forms and these systems include mobile units, conferencing units and 1.1 Background Voice over Internet Protocol (VoIP) is a technology that allows users to make telephone calls using a broadband Internet connection instead of an analog phone line. VoIP holds great promise

More information

Core Network Planning, Optimization and Forecasting in GSM/GPRS Networks

Core Network Planning, Optimization and Forecasting in GSM/GPRS Networks Core Network Planning, Optimization and Forecasting in GSM/GPRS Networks C.N.Konstantinopoulou, K.A.Koutsopoulos, G.L.Lyberopoulos and M.E.Theologou National Technical University of Athens (NTUA) Dept.

More information

Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA

Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA CASE STUDY Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA Stephen Yablonski and Steven Spreizer Globecomm Systems,

More information

VOICE OVER WI-FI CAPACITY PLANNING

VOICE OVER WI-FI CAPACITY PLANNING VOICE OVER WI-FI CAPACITY PLANNING Version 1.0 Copyright 2003 Table of Contents Introduction...3 Wi-Fi RF Technology Options...3 Spectrum Availability and Non-Overlapping Wi-Fi Channels...4 Limited

More information

VOICE OVER IP AND NETWORK CONVERGENCE

VOICE OVER IP AND NETWORK CONVERGENCE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Assaid O. SHAROUN* VOICE OVER IP AND NETWORK CONVERGENCE As the IP network was primarily designed to carry data, it

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

1. Public Switched Telephone Networks vs. Internet Protocol Networks

1. Public Switched Telephone Networks vs. Internet Protocol Networks Internet Protocol (IP)/Intelligent Network (IN) Integration Tutorial Definition Internet telephony switches enable voice calls between the public switched telephone network (PSTN) and Internet protocol

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

WHITE PAPER. Mobility Services Platform (MSP) Using MSP in Wide Area Networks (Carriers)

WHITE PAPER. Mobility Services Platform (MSP) Using MSP in Wide Area Networks (Carriers) WHITE PAPER Mobility Services Platform (MSP) Using MSP in Wide Area Networks (Carriers) Table of Contents About This Document... 1 Chapter 1 Wireless Data Technologies... 2 Wireless Data Technology Overview...

More information

DATA SECURITY 1/12. Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0

DATA SECURITY 1/12. Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0 DATA SECURITY 1/12 Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0 Contents 1. INTRODUCTION... 3 2. REMOTE ACCESS ARCHITECTURES... 3 2.1 DIAL-UP MODEM ACCESS... 3 2.2 SECURE INTERNET ACCESS

More information

EDGE: Enhanced Data Rates for GSM Evolution

EDGE: Enhanced Data Rates for GSM Evolution EDGE: Enhanced Data Rates for GSM Evolution SIDDARTH WANDRE ID: 999-29-3194 CS 548: Broadband Networks ILLINOIS INSTITUTE OF TECHNOLOGY Abstract:- This paper gives an overview of the EDGE concept. It gives

More information

Chapter 4. VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network)

Chapter 4. VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network) Chapter 4 VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network) 4.1 Introduction Traffic Engineering can be defined as a task of mapping traffic

More information

192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4]

192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] 192620010 Mobile & Wireless Networking Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] Geert Heijenk Outline of Lecture 5 Cellular Systems (UMTS / LTE) (1/2) q Evolution of cellular

More information

Cellular Backhaul: Extending the Edge of the Network November 2008

Cellular Backhaul: Extending the Edge of the Network November 2008 Cellular Backhaul: Extending the Edge of the Network November 2008-0 - Introduction The global demand for voice and data services delivered over cellular networks continues to grow as new markets open

More information

Mobility and cellular networks

Mobility and cellular networks Mobility and cellular s Wireless WANs Cellular radio and PCS s Wireless data s Satellite links and s Mobility, etc.- 2 Cellular s First generation: initially debuted in Japan in 1979, analog transmission

More information

DYNAMIC RADIO RESOURCE MANAGEMENT IN GSM/GPRS USING SCALABLE RESOURCE ALLOCATION TECHNIQUE

DYNAMIC RADIO RESOURCE MANAGEMENT IN GSM/GPRS USING SCALABLE RESOURCE ALLOCATION TECHNIQUE DYNAMIC RADIO RESOURCE MANAGEMENT IN GSM/GPRS USING SCALABLE RESOURCE ALLOCATION TECHNIQUE Seok Y Tang, Shyamalie Thilakawardana and Rahim Tafazolli Mobile Communications Research Group Centre for Communications

More information

Keywords Wimax,Voip,Mobility Patterns, Codes,opnet

Keywords Wimax,Voip,Mobility Patterns, Codes,opnet Volume 5, Issue 8, August 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Effect of Mobility

More information

GPRS and 3G Services: Connectivity Options

GPRS and 3G Services: Connectivity Options GPRS and 3G Services: Connectivity Options An O2 White Paper Contents Page No. 3-4 5-7 5 6 7 7 8-10 8 10 11-12 11 12 13 14 15 15 15 16 17 Chapter No. 1. Executive Summary 2. Bearer Service 2.1. Overview

More information

LTE Overview October 6, 2011

LTE Overview October 6, 2011 LTE Overview October 6, 2011 Robert Barringer Enterprise Architect AT&T Proprietary (Internal Use Only) Not for use or disclosure outside the AT&T companies except under written agreement LTE Long Term

More information

GSM v. CDMA: Technical Comparison of M2M Technologies

GSM v. CDMA: Technical Comparison of M2M Technologies GSM v. CDMA: Technical Comparison of M2M Technologies Introduction Aeris provides network and data analytics services for Machine-to- Machine ( M2M ) and Internet of Things ( IoT ) applications using multiple

More information

GSM System Architecture

GSM System Architecture Intersystem Operation and Mobility Management David Tipper Associate Professor Graduate Program in Telecommunications and Networking University it of Pittsburgh Telcom 2700 Slides 6 http://www.tele.pitt.edu/tipper.html

More information

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse Cellular Network Organization Cellular Wireless Networks Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

GPRS Systems Performance Analysis

GPRS Systems Performance Analysis GPRS Systems Performance Analysis Fátima de Lima Procópio Duarte, Antonio A.F. Loureiro, Leonardo Barbosa e Oliveira, Cláudio Márcio de Souza Vicente Federal University of Minas Gerais, Belo Horizonte,

More information

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set

More information

Dimensioning and Deployment of GSM Networks

Dimensioning and Deployment of GSM Networks Case Study: Dimensioning and Deployment of GSM Networks Acknowledgement: some of these slides are based on originals and information kindly provided by Ian O Shea of Altobridge Ltd. 2011 1 GSM System Architecture

More information

Implementing VoIP support in a VSAT network based on SoftSwitch integration

Implementing VoIP support in a VSAT network based on SoftSwitch integration Implementing VoIP support in a VSAT network based on SoftSwitch integration Abstract Satellite communications based on geo-synchronous satellites are characterized by a large delay, and high cost of resources.

More information

Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks

Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Ayman Wazwaz, Computer Engineering Department, Palestine Polytechnic University, Hebron, Palestine, aymanw@ppu.edu Duaa sweity

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Agilent Testing Push-to-talk Over Cellular. Application Note

Agilent Testing Push-to-talk Over Cellular. Application Note Agilent Testing Push-to-talk Over Cellular Application Note Table of Contents Introduction... 3 New Network Elements... 4 Error Sources... 5 Testing the Links... 5 Simulating Cell Transitions... 5 Signaling

More information

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving 1 Space Division Multiple Access of the signals from the MSs A BTS with n directed antennae covers mobile stations

More information

Indian Journal of Advances in Computer & Information Engineering Volume.1 Number.1 January-June 2013, pp.1-5 @ Academic Research Journals.

Indian Journal of Advances in Computer & Information Engineering Volume.1 Number.1 January-June 2013, pp.1-5 @ Academic Research Journals. Cellular System Rajat Chugh, Parag Jasoria, Tushar Arora, Nitin Ginotra and Vivek Anand V Semester, Department of Computer Science and Engineering, Dronacharya College of Engineering, Khentawas, Farukhnagar,

More information

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh, Ph.D. benveniste@ieee.org Mesh 2008, Cap Esterel, France 1 Abstract Abundant hidden node collisions and correlated channel access

More information

GSM Architecture Training Document

GSM Architecture Training Document Training Document TC Finland Nokia Networks Oy 1 (20) The information in this document is subject to change without notice and describes only the product defined in the introduction of this documentation.

More information

A Policy-Based Admission Control Scheme for Voice over IP Networks

A Policy-Based Admission Control Scheme for Voice over IP Networks Journal of Computer Science 5 (11): 817-821, 2009 ISSN 1549-3636 2009 Science Publications A Policy-Based Admission Control Scheme for Voice over IP Networks Sami Alwakeel and Agung Prasetijo Department

More information

General Packet Radio Service (GPRS)

General Packet Radio Service (GPRS) General Packet Radio Service (GPRS) What is GPRS? GPRS (General Packet Radio Service) a packet oriented data service for IP and X.25 over GSM networks enables packet-switched services on the resources

More information

NOVEL PRIORITISED EGPRS MEDIUM ACCESS REGIME FOR REDUCED FILE TRANSFER DELAY DURING CONGESTED PERIODS

NOVEL PRIORITISED EGPRS MEDIUM ACCESS REGIME FOR REDUCED FILE TRANSFER DELAY DURING CONGESTED PERIODS NOVEL PRIORITISED EGPRS MEDIUM ACCESS REGIME FOR REDUCED FILE TRANSFER DELAY DURING CONGESTED PERIODS D. Todinca, P. Perry and J. Murphy Dublin City University, Ireland ABSTRACT The goal of this paper

More information

2G Mobile Communication Systems

2G Mobile Communication Systems 2G Mobile Communication Systems 2G Review: GSM Services Architecture Protocols Call setup Mobility management Security HSCSD GPRS EDGE References Jochen Schiller: Mobile Communications (German and English),

More information

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications Veselin Rakocevic School of Engineering and Mathematical Sciences City University, London, UK V.Rakocevic@city.ac.uk

More information

Evolution of GSM in to 2.5G and 3G

Evolution of GSM in to 2.5G and 3G CMPE 477 Wireless and Mobile Networks Evolution of GSM in to 2.5G and 3G New Data Services for GSM CMPE 477 HSCSD GPRS 3G UMTS IMT2000 UMTS Architecture UTRAN Architecture Data services in GSM I Data transmission

More information

GSM Channels. Physical & Logical Channels. Traffic and Control Mutltiframing. Frame Structure

GSM Channels. Physical & Logical Channels. Traffic and Control Mutltiframing. Frame Structure GSM Channels Physical & Logical Channels Traffic and Control Mutltiframing Frame Structure Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Radio Interface The radio interface

More information

GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides)

GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides) GSM Example of a PLMN (Public Land Mobile Network) At present most successful cellular mobile system (over 200 million subscribers worldwide) Digital (2 nd Generation) cellular mobile system operating

More information

Global System for Mobile Communication Technology

Global System for Mobile Communication Technology Global System for Mobile Communication Technology Mobile Device Investigations Program Technical Operations Division DHS - FLETC GSM Technology Global System for Mobile Communication or Groupe Special

More information

A Multiple Access Protocol for Multimedia Transmission over Wireless Networks

A Multiple Access Protocol for Multimedia Transmission over Wireless Networks A Multiple Access Protocol for Multimedia Transmission over Wireless Networks Hong Yu and Mohammed Arozullah Department of Electrical Engineering and Computer Science Capitol College, Maryland, USA yhong@capitol-college.edu

More information

Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks

Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks Tim Farnham, Brian Foxon* Home Communications Department HP Laboratories Bristol HPL-98-123 June, 1998 broadband,

More information

THE EVOLUTION OF EDGE

THE EVOLUTION OF EDGE 285 23-3107 Uen Rev A THE EVOLUTION OF EDGE February 2007 White Paper With EDGE Evolution higher data rates and improved coverage will be introduced, further strengthening GSM/EDGE as being an attractive

More information

Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks

Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks Jian Chen and Victor C.M. Leung Department of Electrical and Computer Engineering The

More information

EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP

EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP Scientific Bulletin of the Electrical Engineering Faculty Year 11 No. 2 (16) ISSN 1843-6188 EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP Emil DIACONU 1, Gabriel PREDUŞCĂ 2, Denisa CÎRCIUMĂRESCU

More information

Ch 2.3.3 GSM PENN. Magda El Zarki - Tcom 510 - Spring 98

Ch 2.3.3 GSM PENN. Magda El Zarki - Tcom 510 - Spring 98 Ch 2.3.3 GSM In the early 80 s the European community decided to work together to define a cellular system that would permit full roaming in all countries and give the network providers freedom to provide

More information

Broadcast Services and QoS Control Provided by 3rd-generation Mobile Communication Technology 1xEV-DO

Broadcast Services and QoS Control Provided by 3rd-generation Mobile Communication Technology 1xEV-DO Hitachi Review Vol. 55 (Feb. 2006) 1 Broadcast Services and QoS Control Provided by 3rd-generation Mobile Communication Technology 1xEV-DO Naohisa Hamaguchi Takashi agei Shiro Mazawa Yosuke Takahashi OVERVIEW:

More information

Introduction VOIP in an 802.11 Network VOIP 3

Introduction VOIP in an 802.11 Network VOIP 3 Solutions to Performance Problems in VOIP over 802.11 Wireless LAN Wei Wang, Soung C. Liew Presented By Syed Zaidi 1 Outline Introduction VOIP background Problems faced in 802.11 Low VOIP capacity in 802.11

More information

Mobile Computing. Basic Call Calling terminal Network Called terminal 10/25/14. Public Switched Telephone Network - PSTN. CSE 40814/60814 Fall 2014

Mobile Computing. Basic Call Calling terminal Network Called terminal 10/25/14. Public Switched Telephone Network - PSTN. CSE 40814/60814 Fall 2014 Mobile Computing CSE 40814/60814 Fall 2014 Public Switched Telephone Network - PSTN Transit switch Transit switch Long distance network Transit switch Local switch Outgoing call Incoming call Local switch

More information

The GSM and GPRS network T-110.300/301

The GSM and GPRS network T-110.300/301 The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic

More information

Mobile Application Part protocol implementation in OPNET

Mobile Application Part protocol implementation in OPNET Mobile Application Part protocol implementation in OPNET Vladimir Vukadinovic and Ljiljana Trajkovic School of Engineering Science Simon Fraser University Vancouver, BC, Canada E-mail: {vladimir, ljilja}@cs.sfu.ca

More information

Modeling and Simulation of Quality of Service in VoIP Wireless LAN

Modeling and Simulation of Quality of Service in VoIP Wireless LAN Journal of Computing and Information Technology - CIT 16, 2008, 2, 131 142 doi:10.2498/cit.1001022 131 Modeling and Simulation of Quality of Service in VoIP Wireless LAN A. Al-Naamany, H. Bourdoucen and

More information

51-10-50 Circuit-Switched Router Connections Nathan J. Muller

51-10-50 Circuit-Switched Router Connections Nathan J. Muller Previous screen 51-10-50 Circuit-Switched Router Connections Nathan J. Muller Payoff LAN managers will find that routers supporting dial backup, bandwidth-on-demand, and dial-on-demand enable more flexible

More information