Why do we have linear chromosomes? A matter of Adam and Eve

Size: px
Start display at page:

Download "Why do we have linear chromosomes? A matter of Adam and Eve"

Transcription

1 Mutation Research 434 Ž Community address: Minireview Why do we have linear chromosomes? A matter of Adam and Eve Fuyuki Ishikawa ), Taku Naito Laboratory of Molecular and Cellular Assembly, Graduate School of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama , Japan Accepted 30 March 1999 Keywords: Linear chromosome; Circular chromosome; Telomere; Meiosis 1. Introduction It is usually assumed that prokaryotic cells have circular chromosomes, whereas eukaryotic cells have linear chromosomes. One of the consequences of linear chromosomes is the presence of chromosomal ends called telomeres. Simple physical ends of DNA, such as those produced by DNA double-strand breaks Ž DSB. by ionizing radiation, are genetically unstable, mutagenic, and sometimes oncogenic Žreviewed in Ref. wx. 1. Telomeres are a complex composed of telomeric DNA and a number of telomere-specific and non-specific proteins. This large molecular assembly that forms the telomeres protects the genomic ends from end-to-end fusion or exonucleolytic erosion Žreviewed in Ref. wx. 2. Due to the end-replication problem, telomeric DNA is shortened as the cell divides wx 3. In most eukaryotes, this shortening of telomeric DNA is compensated by the activity of an enzyme called telomerase that synthesizes telomeric DNA de novo wx 4. However, telomerase is strictly regulated to be inactive in most human somatic cells, and telomere lengths decline as an individual ages wx 5. This results ) Corresponding author. in cellular senescence and cancer development due to telomere insufficiencies Že.g., Ref. wx 6, and rewx. 7. Therefore, telomeres are some- viewed in Ref. times referred to as the the Achilles heel of the chromosome wx 8. Why do we have linear chromosomes that lead to senescence and cancers, instead of circular chromosomes? In this article, we review as to what extent different chromosome configurations are conserved among different kingdoms, and propose a hypothesis to explain why this remarkable conservation has evolved. 2. Chromosome configurations of prokaryotes and eukaryotes In this article, we operatively define chromosomes as genetic materials containing house-keeping genes essential for the cell s survival that replicate synchronously with cell division to distinguish them from extra-chromosomal genetic elements, such as plasmids, bacteriophage and transposons wx 9. The recent invention of molecular biological tools to analyze large DNA structures, especially pulse field gel electrophoresis Ž PFGE., in addition to classical r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved. Ž. PII: S

2 100 F. Ishikawa, T. NaitorMutation Research tools, such as genetic linkage studies, have greatly enriched our knowledge about the chromosome configuration in different species, phyla and kingdoms. Given the very large number of species on the earth, both known and unknown, it is far from possible to make a complete catalogue of the chromosome structures existing among the diverse range of species. However, recent studies have identified the presence of several exceptional cases to the general rule that one circular chromosome is present in prokaryotic cells and more than one linear chromosome are present in eukaryotic cells. Nevertheless, these exceptional cases indeed further strengthen the notion that prokaryotes and eukaryotes have maintained circular and linear chromosomes, respectively, throughout their evolution Prokaryotes Generally, the small sizes of prokaryotic genomes Ž typically 1 10 Mb. make it feasible to carry out physical analyses, such as PFGE and total nucleotide sequencing Žreviewed in Ref. w10 x.. Genome analyses of Archea have lagged behind that of eubacteria. For example, the genome sequencing of only six archebacteria had been completed, whereas 17 eubacteria had been sequenced at the time of this review Ž All archebacteria examined so far contain one circular chromosome. Therefore, we will focus on several exceptional cases in eubacteria, where this general rule is not applied. Borrelia, Treponema and Leptospira are members of the spirochete group Ž Phylum Spirochaetae.. They are pathogenic bacteria, and Borrelia causes Lyme disease. Borrelia burgdorferi has been shown to have one 910-kb linear chromosome w11 13 x. This unique feature is conserved in the other members of the Borrelia genus w14 x. In contrast, other two closely related genera, Treponema and Leptospira, which also belong to the Spirochaetae, contain circular chromosomes w15 17 x. This specific distribution of linear chromosomes in the Borrelia genus suggests that Borrelia s linear chromosomes were evolutionarily derived from the ancestral circular chromosomes after the three genera had diverged. Streptomyces is another genus that has been shown to possess linear chromosomes w18 x. It should be noted that Streptomyces, a member of Phylum Actinomycete, is phylogenically distant from Borrelia. The closely related genus, Mycobacterium, which is within the same phylum, contains a conventional single circular chromosome w19 x, again suggesting the relatively recent origin of the linear chromosome in Streptomyces. Finally, Agrobacterium tumefaciens, a member of Proteobacteria has one 2.1-Mb linear and three 3- Mb, 450-kb and 200-kb circular replicons. It is known that at least the two 1-Mb and 3-Mb replicons contain metabolically essential genes, which classifies them as chromosomes w20 x. The conventional DNA replication mechanism does not replicate the very ends of linear DNA, because all DNA polymerases need primers for initiating synthesis. The diverse range of linear genomes solves this end-replication problem by different strategies. Adenovirus initiates the replication of its linear genome using a protein primer Žterminal protein, TP. w21 x. TP forms a covalent bond with the 5 X -OH of dnmp, and the DNA polymerase starts synthesis using this base as the first nucleotide to be incorporated. As a result, adenovirus DNA has a covalently associated TP at its 5 X -ends. On the other hand, vaccinia virus has a hairpin structure at both ends of its linear genome w22 x. One strand is continuous to the other strand, and DNA synthesis continues onto the next strand after completing one strand. A palindromic sequence is left after nicking the hairpin DNA to resolve the two daughter duplex DNAs. The terminal structures of the linear genomic DNAs of Borrelia and Streptomyces have also been reported. Streptomyces has 5 X -end associated proteins, suggesting that the telomeres are replicated by TP primers in this bacterium w23,24 x. In contrast, Borrelia has hairpin structures with 26-bp inverted repeats at both telomeres, suggesting that its telomeres are replicated in a way similar to vaccinia virus w25 x. These studies indicate that at least three prokaryotic genera possess linear chromosomes, instead of circular ones. However, the appearance of linear chromosomes in prokaryotes seems rather sporadic. First, these three genera are distantly related to each other. Second, closely related genera belonging to the same phylum contain conventional circular chromosomes. Finally, the solutions for the end-replication problems differ between Borrelia and Strep-

3 F. Ishikawa, T. NaitorMutation Research tomyces. Accordingly, it is suggested that prokaryote linear chromosomes have not been inherited directly from one ancient prokaryote that had linear chromosomes. Instead, they most likely have developed recently from the circular chromosomes of an ancestor species. Therefore, it may be concluded that the prokaryote genomes have been maintained phylogenically in circular forms Eukaryotes Eukaryotes contain larger genomes than prokaryotes Ž typically larger than 10 Mb.. Accordingly, in many cases, the chromosomes can be visualized by microscopy to analyze the gross structures. However, large chromosome sizes are a disadvantage in another respect, since it is usually difficult to construct a physical map of the genome. As will be reviewed here, many reports have been published showing the presence of circular chromosomes. However, the evidence for covalently linked circular chromosomes is not available in most cases. To avoid possible confusion, circular chromosomes judged solely on morphological criteria will be called ring chromosomes in this review. Circular chromosomes have been reported both in budding yeast w26,27x and fission yeast w28,29 x. They were isolated spontaneously or artificially, and have been shown to be circular by either a genetic or a physical approach. In each case, only one circular chromosome was identified, and it was unstable mitotically and meiotically. As there are many opportunities to examine karyotypes in a variety of medical settings, many cases of ring chromosomes have been reported to be associated with a variety of clinical manifestations. In most cases, the ring chromosomes have been found in somatic cells, either normal or cancerous, and either constitutively or in mosaicism. However, few notable cases in which one ring chromosome had apparently been inherited from one of the parents who also had the same ring chromosomes have been reported Že.g., Ref. w30 x.. In these cases, the parents generally showed mosaic ring chromosomes, suggesting that an individual who has a ring chromosome constitutively is infertile. There has been no report describing the inheritance of more than one ring chromosomes. These results have suggested that in some rare cases, a single ring chromosome may be normally segregated in meiosis, and fertilized. In summary, circular or ring chromosomes have been found sporadically in eukaryotes. With some rare exceptions, they are not usually inherited. However, there have been no reports describing eukaryotic cells having more than one circular or ring chromosome that have been meiotically transmitted. These results suggest that ring chromosomes face some difficulty in sexual reproduction. Since mitochondrial DNAs are circular in most eukaryotes, chromosome circularity itself is obviously not incompatible with inheritance. Circular chromosomes may be incompatible with a process specific to sexual reproduction, such as meiosis. This section has shown that two chromosome configurations, circular and linear, are remarkably conserved in prokaryotes and eukaryotes, respectively. In an evolutionary sense, linear chromosomes require extra energy to maintain intact telomeres, which is not a requirement for circular chromosomes. This reasoning suggests that there must be some advantages to eukaryotes that have been acquired in a trade-off for this extra burden. One of the most direct experiments to test this hypothesis would be to construct a eukaryotic cell that maintains its genome in a circular form, and to see what biological functions this cell has lost. However, until recently, there has been no report that describes the existence of eukaryotic cells that maintain completely circular genomes. 3. ATM family genes and telomeres Telomeres are comprised of many components to accomplish its functions. Proteins involved in telomere maintenance are now being studied in some detail, especially in simple eukaryotic cells such as yeast Žreviewed in Ref. w31 x.. One group of interesting proteins thus identified is the ATM family. The Saccharomyces cereõisiae TEL1 gene was originally identified by screening for mutants with short telomw32 x. When this gene was cloned, it ere phenotypes turned out to have a significant level of homology with the human ATM gene, whose mutations cause the hereditary disease, ataxia telangiectasia Ž A-T.

4 102 F. Ishikawa, T. NaitorMutation Research w33,34 x. Interestingly, telomeres in A-T cells also showed excessive shortening w35,36 x, suggesting that the ATM family genes are involved in telomere maintenance in all cells from yeast to human. There is at least more than one member of the ATM family genes present in one species w37 x. The budding yeast Saccharomyces has TEL1 and MEC1 genes, and human has ATM, ATR and the relatively distant member DNA-PK. All these proteins have a PI3 Ž phosphatidylinositol 3. -kinase-like domain at the C-termini, yet they have protein kinase activity. Fission yeast, Schizosaccharomyces pombe, also has two ATM family genes, named rad3 q and tel1 q w x q q 38,39. The mutant defective for rad3 or tel1 shows moderate to minimal telomere shortenings w39,40 x. However, when both ATM family genes were mutated, there was an additive effect, and the fission yeast chromosomes essentially lost all telomw39 x. Thus, the ATM family genes are ere sequences redundant but essential for stable telomere maintenance. The rad3 tel1 double mutant cells grow very slowly with a low viability, and showed aberrantly irregular colony shapes, as expected for cells suffering from extensive telomere shortening. However, derivative cells that showed apparently normal colony shapes appeared spontaneously among these double mutants at a relatively high frequency. Surprisingly, these derivative cells contain three self-circularized chromosomes Žfission yeast contains three linear chromosomes. w39 x. This case is the first report describing the existence of eukaryotic cells that maintain the genome exclusively in circular forms. Previously, it had been postulated that eukaryotic cells do not have circular chromosomes because if an odd number of crossing-over events occurs between the two sister chromatids by SCE, this would result in the formation of dicentric circular chromosomes. Thus, formed circular dimer chromosomes would be eventually broken during mitosis by the two spindles pulling them apart Že.g., see discussions in Refs. w41,42 x.. Since yeasts undergo efficient homologous recombination and SCEs, we would expect that complete circular genomes in yeast should be highly unstable and lead to cell death. Indeed, the fission yeast rad3 tel1 mutant with the three circular chromosomes showed anaphase bridges and some degree of aneuploidy Ž Naito and Ishikawa, unpublished.. However, the fact that this mutant grew well mitotically as a mass suggests that the SCE of dicentric circular chromosomes may have a relatively small effect. Indeed, SCE happens in prokaryotic cells to produce circular dimers. In Escherichia coli, these circular dimers are known to be resolved by both the reca-independent resolvases, XerC and XerD, that act on a specific locus called dif located at the replication terminus, and the reca-dependent recombination pathway Žreviewed in Refs. w43,44 x.. In higher eukaryotes, genomic DNA is organized into multiple loops by tight association of matrix-associated region Ž MAR. on DNA with nuclear scaffolds. In a topological sense, each loop can be assumed microscopically to be a closed circle. Therefore, closed circular oligomers may also be formed by SCE in linear eukaryotic genomes, making the hypothesis that the circular dimer formation prohibits circular chromosomes in eukaryotes unlikely. Eukaryotes may have mechanisms similar to XerCD and reca-dependent recombination in E. coli to resolve these microscopic oligomers. Indeed, RAD51-deficient chicken cells, the eukaryote recahomologue, are shown to be arrested in G2rM phase and to accumulate chromosome breaks, suggesting the possible involvement of the Rad51 protein in resolving SCE-intermediates w45 x. 4. Sister chromatid exchanges SCEs and circular dimer formation 5. Meiosis and telomeres Telomeres perform a number of important functions in different biological situations. Recently, the role of the telomeres in meiosis has come into light Žreviewed in Ref. w46 x.. The first hint came from the cytological observation that telomeres are closely clustered with each other at a specific stage of meiosis. There have been ample observations that telomeres and centromeres are positioned asymmetrically in nuclei Žreviewed in Ref. w47 x.. In mitotic interphase, the centromeres have a tendency to cluster around the centriole, presumably reflecting the

5 F. Ishikawa, T. NaitorMutation Research association between these two structures during the last anaphase. This centromere clustering is named the Rabl w48x orientation after the German scientist who first described it. However, during meiotic prophase, this relative distribution of centromeres and telomeres is reversed: In the leptotenerzygotene stage, telomeres, instead of centromeres, are clustered at the inner surface of the nuclear envelope. The centromeres are distributed randomly in the nucleus at this stage. This polarized chromosomal distribution is called the bouquet arrangement w49 x, and is found during meiosis in many species Žre- w50 x.. The functional significance of viewed in Ref. this peculiar conformation has been recently revealed. In fission yeast, two haploid cells of opposite mating types conjugate to produce diploid cells Ž karyogamy., and enter meiosis Ž zygotic meiosis.. Immediately after karyogamy, the fused nucleus forms an elongated shape, called a horse-tail w51 x. Using time-elapsed image recording, the fused horse-tail nuclei were found to undergo a dynamic to-and-fro oscillating movement w52 x. Moreover, by a combination of telomere-specific fluorescence in situ hybridization Ž FISH. and immunostaining of the spindle pole body ŽSPB, a centriole-counterpart in yeast., it was shown that six telomeres of the three fission yeast chromosomes are closely associated with SPB, and they lead the front edge of this horse-tail movement. In fission yeast, the bouquet arrangement is established by an association between the telomeres and SPB. In this way, the microtubule enucleated from the SPB promotes the dynamic nuclear movement by pulling the telomeres and dragging the chromosomes behind as a mass Žreviewed in Ref. w53 x.. Recently, three additional genetic studies have further indicated the importance of telomeres in the meiotic process. Telomere DNA consists of wellconserved G-rich simple tandem repeats. Telomere DNA-specific binding proteins are known to exist in several species. These include TRF1 and TRF2 in human w54 x, Rap1 in budding yeast w55 x, and taz1p in fission yeast w56 x. Fission yeast mutants defective for taz1 q failed to form the telomere clustering at the horse-tail stage of pre-meiosis, and showed reduced spore viability w57,58 x. Taz1p is presumably involved in the SPB-telomere association w53 x. The rad3 tel1 fission mutant with the three circular chromosomes was examined for spore viability after azygotic meiosis w39 x. In this case, diploid cells derived from two haploid cells harboring circular chromosomes produced no viable spores, a phenotype more profound than that of the taz1 mutant. These studies clearly indicated that telomeres are essential for a productive meiotic process. 6. How telomeres are essential for meiosis Several scenarios can be proposed to explain why functional telomeres are essential for meiosis. Meiosis consists of two successive cell divisions, called meiosis I and meiosis II. Meiosis II is similar to mitotic cell division, but meiosis I is unique. Meiosis is a process that produces four haploid cells from one diploid cell. Meiosis I is responsible for this reduction of ploidy by segregating the two homologous chromosomes to the two daughter cells. To accomplish this reductional segregation, each pair of homologous chromosomes needs to be paired before the onset of meiosis I Žreviewed in Ref. w59 x.. Homologous chromosome pairing has another important role in inducing homologous recombination between the two homologues. This homologous recombination shuffles the two alleles originally derived from different individuals Ž father and mother., and ensures that the haploid cells contain chimeric genetic information. Moreover, the recombination and segregation are interdependent, since the covalent associations formed by the recombinational Holiday junction between the two homologues Ž chiasmata. are thought to be essential for stable homologue pairing, and ensuring proper segregation. Therefore, homologue-pairing is at the heart of the mechanism of meiosis. Circular chromosomes potentially undergo more than one pathway during meiosis, and in all cases, they have very small probabilities of proper segregation Ž Fig. 1.. In normal meiotic prophase, linear chromosomes gather together by telomere-clustering Ž Fig. 1A.. Telomere associations of homologous chromosomes may help the homologue pairing by aligning the two chromosomes that are now tethered at both ends. After successful pairing, homologous recombination occurs between the two homologues,

6 104 F. Ishikawa, T. NaitorMutation Research Ž. Ž. Fig. 1. Meiosis I of linear chromosomes A and possible pathways in meiosis I of circular chromosomes B. For details, see the text.

7 F. Ishikawa, T. NaitorMutation Research and this covalent association further contributes to the stable chromosome pairing. In anaphase I, the Holiday junctions are resolved and the two homologues are segregated to different daughter cells. In contrast, circular chromosomes may undergo several different pathways Ž Fig. 1B.. As circular chromosomes lack functional telomeres, two homologues cannot be positioned in proximity. In this case, no homologue pairing and recombination occur, and the homologues are randomly segregated to daughter cells Ž pathway 1.. Two homologues may be positioned closely by chance, and somehow may pair and undergo recombination Ž pathway 2.. However, if an odd number of crossing-over events occurs between two homologues, this results in the formation of dicentric circular chromosomes Ž pathway 3.. If resolvase fails to resolve this form into monomers, the dicentric circle enters anaphase. When the spindles of different origins attach to each of the two kinetochores, the chromosome will be pulled apart and tear Ž pathway 4.. When a common spindle attaches to both of the two kinetochores, the chromosome is segregated to only one cell, with the other cell receiving no homologue. In either case, daughter cells will lose a significant amount of genetic information. When an even number of crossing-over events occurs Ž pathway 7., or the dicentric circles are resolved into monomeric circles Ž pathway 6., the two homologues may be segregated properly to the two daughter cells. However, even in this case, it is not known if spindles correctly attach to the kinetochores of chromosomes that have not been associated with telomeres during the meiotic prophase. Overall, the chance that one particular circular chromosome is segregated properly in meiosis I is very small. All eukaryotes contain more than one and usually many chromosomes. The chance, that one daughter cell will have all chromosomes properly segregated in circular forms, is the multiple of these small probabilities for each circular chromosome, and should be negligible. In conclusion, there is essentially no chance that all circular chromosomes are properly segregated during meiosis. This essential role of telomeres in accomplishing reductional chromosome segregation in meiosis must be the major reason that linear chromosomes are strikingly conserved in eukaryotes, which are characterized by the presence of sexual reproduction in most cases. 7. Conclusion We have stated that linear chromosomes are essential for productive meiosis. Meiosis Ža mechanism to generate haploid cells. is a prerequisite for shuffling the genetic information between individuals. It has been proposed that the production of genetically diverse offspring is advantageous in an ever-changw60 x. Indeed, the num- ing or saturated environment ber of absolutely asexual eukaryotic organisms is very small Žreviewed in Refs. w61,62 x., and the conservation of the potential of sexual reproduction seems to be as strong as the conservation of linear chromosomes in eukaryotes. Recent studies have indicated that chromosome linearity is important for meiosis, and we would like to propose that the correlation between sex and linear chromosomes is based on a mechanistic reason, and not on a superficial parallelism. Once upon a time, two groups of living creatures emerged from a common ancestor. One group decided to maintain genomes in circular forms, because this form is more economical without the need to maintain telomeres. However, the progeny of this group Ž Bacteria. is not able to exchange genomic information by meiosis and fertilization, and thus, needs to grow faster and keep the genome size as small as possible. The other group decided to maintain the genomes in linear forms. Although this strategy requires extra energy to maintain telomeres, these organisms have enjoyed the dynamic flow of genomic information by sexual reproduction. This process has allowed this group Ž Eukaryota. the chance to produce a variety of offspring. Accordingly, eukaryotes have complicated systems, and grow less rapidly than prokaryotes. Acknowledgements We thank E.A. Kamei Ž Gunma University. and H. Niki Ž Kumamoto University. for critical reading of and comments on the manuscript. The excellent secretarial works of F. Nishizaki, K. Saito and K. Yokoyama are acknowledged. This work was supported by a grant-in-aid from the Organization for Pharmaceutical Safety and Research, Japan.

8 106 F. Ishikawa, T. NaitorMutation Research References wx 1 T. de Lange, Telomere dynamics and genome instability in human cancer, in: E.H. Blackburn, C.W. Greider Ž Eds.., Telomeres, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1995, pp wx 2 E.H. Blackburn, Structure and function of telomeres, Nature 350 Ž wx 3 J.D. Watson, Origin of concatemeric T7 DNA, Nature of New Biology 239 Ž wx 4 E.H. Blackburn, Telomerase, Annu. Rev. Biochem. 61 Ž wx 5 C.B. Harley, B. Villeponteau, Telomeres and telomerase in aging and cancer, Curr. Opin. Genet. Dev. 5 Ž wx 6 S. Hatakeyama, K. Fujita, M. Omine, F. Ishikawa, The jumping translocation at 1q21 involves shortened telomeres, Blood 91 Ž wx 7 F. Ishikawa, Telomere crisis, the driving force in cancer cell evolution, Biochem. Biophys. Res. Commun. 230 Ž wx 8 C.B. Harley, A.B. Futcher, C.W. Greider, Telomeres shorten during ageing of human fibroblasts, Nature 345 Ž wx 9 S. Krawiec, M. Riley, Organization of the bacterial chromosome, Microbiol. Rev. 54 Ž w10x S. Casjens, The diverse and dynamic structure of bacterial genomes, Annu. Rev. Genet. 32 Ž w11x M.S. Ferdows, A.G. Barbour, Megabase-sized linear DNA in the bacterium, Borrelia burgdorferi, the Lyme disease agent, Proc. Natl. Acad. Sci. USA 86 Ž w12x B.E. Davidson, J. MacDougall, I. Saint Girons, Physical map of the linear chromosome of the bacterium, Borrelia burgdorferi 212, a causative agent of Lyme disease, and localization of rrna genes, J. Bacteriol. 174 Ž w13x C.M. Fraser, S. Casjens, W.M. Huang, G.G. Sutton, R. Clayton, R. Lathigra, O. White, K.A. Ketchum, R. Dodson, E.K. Hickey, M. Gwinn, B. Dougherty, J.F. Tomb, R.D. Fleischmann, D. Richardson, J. Peterson, A.R. Kerlavage, J. Quackenbush, S. Salzberg, M. Hanson, R. van Vugt, N. Palmer, M.D. Adams, J. Gocayne, J.C. Venter, Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi, Nature 390 Ž w14x S. Casjens, M. Delange, H.L.r. Ley, P. Rosa, W.M. Huang, Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order, J. Bacteriol. 177 Ž w15x R.L. Zuerner, Physical map of chromosomal and plasmid DNA comprising the genome of Leptospira interrogans, Nucleic Acids Res. 19 Ž w16x E.M. Walker, J.K. Howell, Y. You, A.R. Hoffmaster, H. JD, G.M. Weinstock, S.J. Norris, Physical map of the genome of Treponema pallidum subsp. pallidum Ž Nichols., J. Bacteriol. 177 Ž w17x J. MacDougall, I. Saint Girons, Physical map of the Treponema denticola circular chromosome, J. Bacteriol. 177 Ž w18x Y.S. Lin, H.M. Kieser, D.A. Hopwood, C.W. Chen, The chromosomal DNA of Streptomyces liõidans 66 is linear, Mol. Microbiol. 10 Ž w19x K. Eiglmeier, N. Honore, S.A. Woods, B. Caudron, S.T. Cole, Use of an ordered cosmid library to deduce the genomic organization of Mycobacterium leprae, Mol. Microbiol. 7 Ž w20x A. Allardet-Servent, S. Michaux-Charachon, E. Jumas-Bilak, L. Karayan, M. Ramuz, Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome, J. Bacteriol. 175 Ž w21x M.D. Challberg, S.V. Desiderio, T.J.J. Kelly, Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands, Proc. Natl. Acad. Sci. USA 77 Ž w22x B.M. Baroudy, S. Venkatesan, B. Moss, Incompletely basepaired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain, Cell 28 Ž w23x A. Lezhava, T. Mizukami, T. Kajitani, D. Kameoka, M. Redenbach, H. Shinkawa, O. Nimi, H. Kinashi, Physical map of the linear chromosome of Streptomyces griseus, J. Bacteriol. 177 Ž w24x C.W. Chen, Complications and implications of linear bacterial chromosomes, Trends Genet. 12 Ž w25x S. Casjens, M. Murphy, M. DeLange, L. Sampson, R. van Vugt, W.M. Huang, Telomeres of the linear chromosomes of Lyme disease spirochetes: nucleotide sequence and possible exchange with linear plasmid telomeres, Mol. Microbiol. 26 Ž w26x J.E. Haber, P.C. Thorburn, D. Rogers, Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cere- Õisiae, Genetics 106 Ž w27x S.A. Greenfeder, C.S. Newlon, A replication map of a 61-kb circular derivative of Saccharomyces cereõisiae chromosome III, Mol. Biol. Cell 3 Ž w28x O. Niwa, T. Toda, M. Yanagida, Triploid meiosis and aneuploidy in Schizosaccharomyces pombe: an unstable disomic for chromosome III, Curr. Genet. 9 Ž w29x J.B. Fan, M. Rochet, C. Gaillardin, C.L. Smith, Detection and characterization of a ring chromosome in the fission yeast Schizosaccharomyces pombe, Nucleic Acids Res. 20 Ž w30x J. Jenderny, A. Caliebe, C. Beyer, W. Grote, Transmission of a ring chromosome 18 from a mother with 46,XXr47,XX,q rž 18. mosaicism to her daughter, resulting in a 46,XX,rŽ 18. karyotype, J. Med. Genet. 30 Ž w31x D. Shore, Telomeres unsticky ends, Science 281 Ž w32x A.J. Lustig, T.D. Petes, Identification of yeast mutants with altered telomere structure, Proc. Natl. Acad. Sci. USA 83 Ž w33x D.M. Morrow, D.A. Tagle, Y. Shiloh, F.S. Collins, P. Hieter, TEL1, an S. cereõisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1, Cell 82 Ž w34x K. Savitsky, A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L.

9 F. Ishikawa, T. NaitorMutation Research Vanagaite, D.A. Tagle, S. Smith, T. Uziel, S. Sfez, M. Ashkenazi, I. Pecker, M. Frydman, R. Harnik, S.R. Patanjali, A. Simmons, G.A. Clines, A. Sartiel, R.A. Gatti, L. Chessa, O. Sanal, M.F. Lavin, A single ataxia telangiectasia gene with a product similar to PI-3 kinase, Science 268 Ž w35x J.A. Metcalfe, J. Parkhill, L. Campbell, M. Stacey, P. Biggs, P.J. Byrd, A.M. Taylor, Accelerated telomere shortening in ataxia telangiectasia, Nat. Genet. 13 Ž w36x S.J. Xia, M.A. Shammas, R.J. Shmookler Reis, Reduced telomere length in ataxia telangiectasia fibroblasts, Mutat. Res. 364 Ž w37x V.A. Zakian, ATM-related genes: what do they tell us about functions of the human gene?, Cell 82 Ž w38x N.J. Bentley, D.A. Holtzman, G. Flaggs, K.S. Keegan, A. DeMaggio, J.C. Ford, M. Hoekstra, A.M. Carr, The Schizosaccharomyces pombe rad3 checkpoint gene, EMBO J. 15 Ž w39x T. Naito, A. Matsuura, F. Ishikawa, Circular chromosome formation in a fission yeast mutant defective in two ATM homologues, Nat. Genet. 20 Ž w40x M. Dahlen, T. Olsson, G. Kanter-Smoler, A. Ramne, P. Sunnerhagen, Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe, Mol. Biol. Cell 9 Ž w41x S.A. Endow, D.J. Komma, K.C. Atwood, Ring chromosomes and rdna magnification in Drosophila, Genetics 108 Ž w42x S. Sutou, Reversal of DNA polarity as revealed by sister chromatid exchanges in ring chromosomes, Mutat. Res. 394 Ž w43x A. Lobner-Olesen, P.L. Kuempel, Chromosome partitioning in Escherichia coli, J. Bacteriol. 174 Ž w44x L.I. Rothfield, Bacterial chromosome segregation, Cell 77 Ž w45x E. Sonoda, M.S. Sasaki, J.M. Buerstedde, O. Bezzubova, A. Shinohara, H. Ogawa, M. Takata, Y. Yamaguchi-Iwai, S. Takeda, Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death, EMBO J. 17 Ž w46x T. de Lange, Ending up with the right partner, Nature 392 Ž w47x A.F. Dernburg, J.W. Sedat, W.Z. Cande, H.W. Bass, Cytology of telomeres, in: E.H. Blackburn, C.W. Greider Ž Eds.., Telomeres, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1995, pp w48x C. Rabl, Uber zelltheilung, Morphol. Jahrb. 10 Ž w49x G. Eisen, The spermatogenesis of Batrachoseps, J. Morphol. 17 Ž w50x D. Zickler, N. Kleckner, The leptotene zygotene transition of meiosis, Annu. Rev. Genet. 32 Ž w51x C. Robinow, The number of chromosomes in Schizosaccharomyces pombe: light microscopy of stained preparations, Genetics 87 Ž w52x Y. Chikashige, D.Q. Ding, H. Funabiki, T. Haraguchi, S. Mashiko, M. Yanagida, Y. Hiraoka, Telomere-led premeiotic chromosome movement in fission yeast, Science 264 Ž w53x Y. Hiraoka, Meiotic telomeres: a matchmaker for homologous chromosomes, Genes Cells 3 Ž w54x D. Broccoli, A. Smogorzewska, L. Chong, T. de Lange, Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2, Nat. Genet. 17 Ž w55x A.J. Lustig, S. Kurtz, D. Shore, Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length, Science 250 Ž w56x J.P. Cooper, E.R. Nimmo, R.C. Allshire, T.R. Cech, Regulation of telomere length and function by a Myb-domain protein in fission yeast, Nature 385 Ž w57x E.R. Nimmo, A.L. Pidoux, P.E. Perry, R.C. Allshire, Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe, Nature 392 Ž w58x J.P. Cooper, Y. Watanabe, P. Nurse, Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination, Nature 392 Ž w59x G.S. Roeder, Meiotic chromosomes: it takes two to tango, Genes Dev. 11 Ž w60x G.C. Williams, Sex and Evolution, Princeton University Press, Princeton, w61x G. Bell, The Masterpiece of Nature, University of California Press, Berkeley, w62x O.P. Judson, B.B. Normark, Ancient asexual scandals, TREE 11 Ž

Lecture 7 Mitosis & Meiosis

Lecture 7 Mitosis & Meiosis Lecture 7 Mitosis & Meiosis Cell Division Essential for body growth and tissue repair Interphase G 1 phase Primary cell growth phase S phase DNA replication G 2 phase Microtubule synthesis Mitosis Nuclear

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation.

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation. Meiosis 1. P. J. van Beneden proposed that an egg and a sperm, each containing half the complement of chromosomes found in somatic cells, fuse to produce a single cell called a. 2. is a process of nuclear

More information

Chapter 8: The Cellular Basis of Reproduction and Inheritance

Chapter 8: The Cellular Basis of Reproduction and Inheritance Chapter 8: The Cellular Basis of Reproduction and Inheritance Introduction Stages of an Organism s Life Cycle: Development: All changes that occur from a fertilized egg or an initial cell to an adult organism.

More information

BIOL100 Laboratory Assignment 4: Mitosis and Meiosis. Name:

BIOL100 Laboratory Assignment 4: Mitosis and Meiosis. Name: BIOL100 Laboratory Assignment 4: Mitosis and Meiosis Name: Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe the activities of chromosomes and microtubules in the

More information

List, describe, diagram, and identify the stages of meiosis.

List, describe, diagram, and identify the stages of meiosis. Meiosis and Sexual Life Cycles In this topic we will examine a second type of cell division used by eukaryotic cells: meiosis. In addition, we will see how the 2 types of eukaryotic cell division, mitosis

More information

Mitosis & Meiosis. Bio 103 Lecture Dr. Largen

Mitosis & Meiosis. Bio 103 Lecture Dr. Largen 1 Mitosis & Meiosis Bio 103 Lecture Dr. Largen 2 Cells arise only from preexisting cells all cells come from cells perpetuation of life based on reproduction of cells referred to as cell division 3 Cells

More information

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Name Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Introduction During your lifetime you have grown from a single celled zygote into an organism made up of trillions of cells. The vast

More information

Cell Growth and Reproduction Module B, Anchor 1

Cell Growth and Reproduction Module B, Anchor 1 Cell Growth and Reproduction Module B, Anchor 1 Key Concepts: - The larger a cell becomes, the more demands the cell places on its DNA. In addition, a larger cell is less efficient in moving nutrients

More information

2. Discrete units of hereditary information consisting of duplicated DNA are called.

2. Discrete units of hereditary information consisting of duplicated DNA are called. LAB TOPIC 7 BSC 2010L (Principles of Biology 1 Laboratory, Professor Chiappone) MITOSIS AND MEIOSIS (Investigating Biology, 7 th edition) PRACTICE QUIZ QUESTIONS 1. DNA is found in structures called. (a)

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Meiosis and Sexual Life Cycles Chapter 13 1 Ojectives Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid. List the phases of meiosis I and

More information

LAB EXERCISE: Mitosis and Meiosis

LAB EXERCISE: Mitosis and Meiosis LAB EXERCISE: Mitosis and Meiosis Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe the activities of chromosomes and microtubules in the cell cycle, including all

More information

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section BCOR 011, Exam 3 Name KEY Section Multiple Choice: Select the best possible answer. 1. A parent cell divides to form two genetically identical daughter cells in the nuclear process of mitosis. For mitosis

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact structures called chromosomes. These are rod-shaped structures made

More information

Multiple Choice Review Mitosis & Meiosis

Multiple Choice Review Mitosis & Meiosis Multiple Choice Review Mitosis & Meiosis 1. Which of the following accurately describes the one of the major divisions of mitosis? a. During the mitotic phase, cells are performing their primary function

More information

The cell cycle, mitosis and meiosis

The cell cycle, mitosis and meiosis The cell cycle, mitosis and meiosis Learning objective This learning material is about the life cycle of a cell and the series of stages by which genetic materials are duplicated and partitioned to produce

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Los Angeles Mission College Biology 3 Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial

More information

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells Cell Growth and Reproduction 1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells A. is half of that of the parent cell. B. remains the same as in the

More information

The correct answer is b DNA and protein B. Answer b is correct. When DNA binds with histone proteins it forms chromatin.

The correct answer is b DNA and protein B. Answer b is correct. When DNA binds with histone proteins it forms chromatin. 1. Which of the following is NOT involved in binary fission in prokaryotes? a. Replication of DNA b. Elongation of the cell c. Separation of daughter cells by septum formation d. Assembly of the nuclear

More information

Exercise 1: Q: B.1. Answer Cell A: 2 Q: B.3. Answer (a) Somatic (body). CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME. Cell B: 4 Q: B.

Exercise 1: Q: B.1. Answer Cell A: 2 Q: B.3. Answer (a) Somatic (body). CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME. Cell B: 4 Q: B. CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME Exercise 1: Q: B.1 Cell A: 2 Cell B: 4 Q: B.2 (a) - Metaphase. (b) - Telophase. (c) - Prophase. (d) - Anaphase. Q: B.3 (a) Somatic (body). (b) Four.

More information

EXPERIMENT #8 CELL DIVISION: MITOSIS & MEIOSIS

EXPERIMENT #8 CELL DIVISION: MITOSIS & MEIOSIS Introduction Cells, the basic unit of life, undergo reproductive acts to maintain the flow of genetic information from parent to offspring. The processes of mitosis and meiosis are cellular events in which

More information

Lab 10 Mitosis. Background. Mitosis. Prokaryotic fission. Prophase During prophase, the chromatin. Eukaryotic cell division

Lab 10 Mitosis. Background. Mitosis. Prokaryotic fission. Prophase During prophase, the chromatin. Eukaryotic cell division Lab 10 Mitosis Background Reproduction means producing a new organism from an existing organism. The new offspring must receive hereditary information and enough cytoplasmic material to maintain its own

More information

Workshop: Cellular Reproduction via Mitosis & Meiosis

Workshop: Cellular Reproduction via Mitosis & Meiosis Workshop: Cellular Reproduction via Mitosis & Meiosis Introduction In this workshop you will examine how cells divide, including how they partition their genetic material (DNA) between the two resulting

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs.

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs. 1. The Law of Segregation: Genes exist in pairs and alleles segregate from each other during gamete formation, into equal numbers of gametes. Progeny obtain one determinant from each parent. 2. The Law

More information

Milestones of bacterial genetic research:

Milestones of bacterial genetic research: Milestones of bacterial genetic research: 1944 Avery's pneumococcal transformation experiment shows that DNA is the hereditary material 1946 Lederberg & Tatum describes bacterial conjugation using biochemical

More information

Asexual Reproduction in Eukaryotes: Mitosis

Asexual Reproduction in Eukaryotes: Mitosis Asexual Reproduction in Eukaryotes: Mitosis The Argentine band The real thing going on inside their cells Nuclear Genomes and Chromosomes Genome size in bp (or kbp or Mbp or Gbp) = C value S. cerevisiae

More information

growth and tissue repair in multicellular organisms (mitosis)

growth and tissue repair in multicellular organisms (mitosis) Cell division: mitosis and meiosis I. Cell division -- introduction - roles for cell division: reproduction -- unicellular organisms (mitosis) growth and tissue repair in multicellular organisms (mitosis)

More information

Chapter 8 Cell division. Review

Chapter 8 Cell division. Review Chapter 8 Cell division Mitosis/Meiosis Review This spot that holds the 2 chromatid copies together is called a centromere The phase of the cell cycle in which cells stop dividing all together. G 0 Cell

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Example 2. What is meant by the cell cycle? Concept 12.1

More information

Sexual Reproduction and Meiosis

Sexual Reproduction and Meiosis 12 Sexual Reproduction and Meiosis Concept Outline 12.1 Meiosis produces haploid cells from diploid cells. Discovery of Reduction Division. Sexual reproduction does not increase chromosome number because

More information

Lecture 2: Mitosis and meiosis

Lecture 2: Mitosis and meiosis Lecture 2: Mitosis and meiosis 1. Chromosomes 2. Diploid life cycle 3. Cell cycle 4. Mitosis 5. Meiosis 6. Parallel behavior of genes and chromosomes Basic morphology of chromosomes telomere short arm

More information

www.njctl.org PSI Biology Mitosis & Meiosis

www.njctl.org PSI Biology Mitosis & Meiosis Mitosis and Meiosis Mitosis Classwork 1. Identify two differences between meiosis and mitosis. 2. Provide an example of a type of cell in the human body that would undergo mitosis. 3. Does cell division

More information

Lab 6. Cellular Reproduction: Mitosis and Meiosis

Lab 6. Cellular Reproduction: Mitosis and Meiosis Lab 6. Cellular Reproduction: Mitosis and Meiosis Cell Division - Mitosis Sexually-reproducing, multicellular organisms begin life as a single cell, the fertilized egg. This cell, the zygote, through the

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

Cell Cycle and Cell Division

Cell Cycle and Cell Division Very Short Answer Type Questions Cell Cycle and Cell Division 1. Between a prokaryote and a eukaryote, which cell has a shorter cell division time? A: Prokaryotes have shorter cell division time. 2. Among

More information

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. II - Mitosis, Cytokinesis, Meiosis and Apoptosis - Michelle Gehringer

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. II - Mitosis, Cytokinesis, Meiosis and Apoptosis - Michelle Gehringer MITOSIS, CYTOKINESIS, MEIOSIS AND APOPTOSIS Michelle Gehringer Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa Keywords: Cell cycle, checkpoints, growth factors,

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Reproduction Growth and development Tissue removal Example

More information

Mitosis and Cytokinesis

Mitosis and Cytokinesis B-2.6 Summarize the characteristics of the cell cycle: interphase (called G1, S, G2); the phases of mitosis (called prophase, metaphase, anaphase, and telophase); and plant and animal cytokinesis. The

More information

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3. Chapter 3 Cell Division Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.3: Mock Meiosis Goals Following this exercise students should be able to Recognize

More information

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis 4.2 Meiosis Assessment statements State that meiosis is a reduction division of a diploid nucleus to form haploid nuclei. Define homologous chromosomes. Outline the process of meiosis, including pairing

More information

MITOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

MITOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU MITOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU Mitosis is the process by which a cell duplicates In mitosis, chromosomes in the cell nucleus are separated into two identical sets of chromosomes, each

More information

Part 1: Mitosis & Cytokinesis

Part 1: Mitosis & Cytokinesis Lab 5 - Bio 160 Name: Part 1: Mitosis & Cytokinesis OBJECTIVES Το observe the stages of mitosis in prepared slides of whitefish blastula and onion root tips. Το gain a better understanding of the process

More information

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as 1. True or false? The chi square statistical test is used to determine how well the observed genetic data agree with the expectations derived from a hypothesis. True 2. True or false? Chromosomes in prokaryotic

More information

CELL DIVISION: MITOSIS AND MEIOSIS

CELL DIVISION: MITOSIS AND MEIOSIS CELL DIVISION: MITOSIS AND MEIOSIS How do eukaryotic cells divide to produce genetically identical cells or to produce gametes with half the normal DNA? BACKGROUND One of the characteristics of living

More information

Mitosis. Cellular Reproduction Part I

Mitosis. Cellular Reproduction Part I Mitosis Cellular Reproduction Part I Cells must reproduce, the cell cycle describes how cells reproduce and what regulates reproduction. All somatic cells (non sex cells) go through the cell cycle. It

More information

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis Cell Division CELL DIVISION Anatomy and Physiology Text and Laboratory Workbook, Stephen G. Davenport, Copyright 2006, All Rights Reserved, no part of this publication can be used for any commercial purpose.

More information

11.4 Meiosis. Lesson Objectives. Lesson Summary

11.4 Meiosis. Lesson Objectives. Lesson Summary 11.4 Meiosis Lesson Objectives Contrast the number of chromosomes in body cells and in gametes. Summarize the events of meiosis. Contrast meiosis and mitosis. Describe how alleles from different genes

More information

Appendix C DNA Replication & Mitosis

Appendix C DNA Replication & Mitosis K.Muma Bio 6 Appendix C DNA Replication & Mitosis Study Objectives: Appendix C: DNA replication and Mitosis 1. Describe the structure of DNA and where it is found. 2. Explain complimentary base pairing:

More information

Forensic DNA Testing Terminology

Forensic DNA Testing Terminology Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.

More information

Practice Problems 4. (a) 19. (b) 36. (c) 17

Practice Problems 4. (a) 19. (b) 36. (c) 17 Chapter 10 Practice Problems Practice Problems 4 1. The diploid chromosome number in a variety of chrysanthemum is 18. What would you call varieties with the following chromosome numbers? (a) 19 (b) 36

More information

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t)

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t) GENETIC CROSSES In minks, a single gene controls coat color. The allele for a brown (B) coat is dominant to the allele for silver-blue (b) coats. 1. A homozygous brown mink was crossed with a silverblue

More information

General Biology 1004 Chapter 8 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 8 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C.

More information

If and when cancer cells stop dividing, they do so at random points, not at the normal checkpoints in the cell cycle.

If and when cancer cells stop dividing, they do so at random points, not at the normal checkpoints in the cell cycle. Cancer cells have escaped from cell cycle controls Cancer cells divide excessively and invade other tissues because they are free of the body s control mechanisms. Cancer cells do not stop dividing when

More information

Cell Cycle and Mitosis

Cell Cycle and Mitosis Cell Cycle and Mitosis THE CELL CYCLE The cell cycle, or cell-division cycle, is the series of events that take place in a eukaryotic cell between its formation and the moment it replicates itself. These

More information

Cellular Reproduction

Cellular Reproduction 9 Cellular Reproduction section 1 Cellular Growth Before You Read Think about the life cycle of a human. On the lines below, write some of the stages that occur in the life cycle of a human. In this section,

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

MITOSIS AND MEISOSIS

MITOSIS AND MEISOSIS MITOSIS AND MEISOSIS The two labs dealing with cell division are juxtaposed as they are closely related and yet have some significant differences. Learning to compare and contrast mechanisms is very important

More information

The Somatic Cell Cycle

The Somatic Cell Cycle The Somatic Cell Cycle Maternal chromosome Diploid Zygote Diploid Zygote Paternal chromosome MITOSIS MITOSIS Maternal chromosome Diploid organism Diploid organism Paternal chromosome Int terpha ase The

More information

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns

More information

Types of cell divisions - Mitosis and Meiosis. MITOSIS or Equational Division

Types of cell divisions - Mitosis and Meiosis. MITOSIS or Equational Division CELL DIVISION In multicellular organisms, growth is caused due to the cumulative effect of cell division cell elongation and cell differentiation Cell division is essential for growth and reproduction

More information

Eukaryotic Cells and the Cell Cycle

Eukaryotic Cells and the Cell Cycle Eukaryotic Cells and the Cell Cycle Mitosis, Meiosis, & Fertilization Learning Goals: After completing this laboratory exercise you will be able to: 1. Identify the stages of the cell cycle. 2. Follow

More information

Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome.

Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome. Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome. Define the terms karyotype, autosomal and sex chromosomes. Explain how many of

More information

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions! AS Biology Unit 2 Key Terms and Definitions Make sure you use these terms when answering exam questions! Chapter 7 Variation 7.1 Random Sampling Sampling a population to eliminate bias e.g. grid square

More information

Biotechnology and Recombinant DNA

Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Recombinant DNA procedures - an overview Biotechnology: The use of microorganisms, cells, or cell components to make a product. Foods, antibiotics, vitamins, enzymes Recombinant

More information

Lab: Mitosis & Meiosis

Lab: Mitosis & Meiosis Bio 101 Name Lab: Mitosis & Meiosis OBJECTIVES To observe the stages of mitosis in prepared slides of whitefish blastula and onion root tips. To gain a better understanding of the process of mitosis in

More information

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES Sexual Reproduction Sexual Reproduction We know all about asexual reproduction 1. Only one parent required. 2. Offspring are identical to parents. 3. The cells that produce the offspring are not usually

More information

CHAPTER 10 CELL CYCLE AND CELL DIVISION

CHAPTER 10 CELL CYCLE AND CELL DIVISION CHAPTER 10 CELL CYCLE AND CELL DIVISION Cell division is an inherent property of living organisms. It is a process in which cells reproduce their own kind. The growth, differentiation, reproduction and

More information

Pre-lab Homework Lab 2: Mitosis and the Cell Cycle

Pre-lab Homework Lab 2: Mitosis and the Cell Cycle Pre-lab Homework Lab 2: Mitosis and the Cell Cycle Name: Date/Lab time: 1. Label the figure with the following phases of the cell cycle (note the position of interphase and mitosis): G 1 G 2 S Anaphase

More information

Gene Mapping Techniques

Gene Mapping Techniques Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction

More information

Worksheet for Morgan/Carter Laboratory #7 Mitosis and Meiosis

Worksheet for Morgan/Carter Laboratory #7 Mitosis and Meiosis Worksheet for Morgan/Carter Laboratory #7 Mitosis and Meiosis Ex. 7-1: MODELING THE CELL CYCLE AND MITOSIS IN AN ANIMAL CELL Lab Study A: Interphase How many pairs of homologous chromosomes are present

More information

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis Introduction - Fields of Genetics To answer the following question, review the three traditional subdivisions of

More information

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true?

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true? Chapter 25 DNA Metabolism Multiple Choice Questions 1. DNA replication Page: 977 Difficulty: 2 Ans: C The Meselson-Stahl experiment established that: A) DNA polymerase has a crucial role in DNA synthesis.

More information

EUKARYOTIC CHROMOSOMES, MITOSIS AND MEIOSIS

EUKARYOTIC CHROMOSOMES, MITOSIS AND MEIOSIS EUKARYOTIC CHROMOSOMES, MITOSIS AND MEIOSIS 1 Chromosomes contain the genetic material Genes are physically located within the chromosomes Chromosomes are composed of DNA and proteins Primary function

More information

Cell cycle & Mitosis. Cellular Organization of the Genetic Material 2016-06- 13

Cell cycle & Mitosis. Cellular Organization of the Genetic Material 2016-06- 13 Cell cycle & Mitosis Review In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for Development from a fertilized cell Growth Repair

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

Asexual - in this case, chromosomes come from a single parent. The text makes the point that you are not exact copies of your parents.

Asexual - in this case, chromosomes come from a single parent. The text makes the point that you are not exact copies of your parents. Meiosis The main reason we have meiosis is for sexual reproduction. It mixes up our genes (more on that later). But before we start to investigate this, let's talk a bit about reproduction in general:

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

Cellular Reproduction In Eukaryotic Cells

Cellular Reproduction In Eukaryotic Cells Cellular Reproduction In Eukaryotic Cells OBJECTIVE: By the end of the exercise you should be able to: 1. Describe the events associated with the cell cycle. 2. Describe the events associated with mitosis.

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

STUDENT ID NUMBER, LAST NAME,

STUDENT ID NUMBER, LAST NAME, EBIO 1210: General Biology 1 Name Exam 3 June 25, 2013 To receive credit for this exam, you MUST bubble in your STUDENT ID NUMBER, LAST NAME, and FIRST NAME No. 2 pencils only You may keep this exam to

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Cell Division Mitosis and the Cell Cycle

Cell Division Mitosis and the Cell Cycle Cell Division Mitosis and the Cell Cycle A Chromosome and Sister Chromatids Key Points About Chromosome Structure A chromosome consists of DNA that is wrapped around proteins (histones) and condensed Each

More information

Lecture 11 The Cell Cycle and Mitosis

Lecture 11 The Cell Cycle and Mitosis Lecture 11 The Cell Cycle and Mitosis In this lecture Cell division Chromosomes The cell cycle Mitosis PPMAT Apoptosis What is cell division? Cells divide in order to reproduce themselves The cell cycle

More information

This phase of mitosis is? This phase of mitosis is? - This phase of mitosis is? This phase of mitosis is? Graphic source:

This phase of mitosis is? This phase of mitosis is? - This phase of mitosis is? This phase of mitosis is? Graphic source: 1 2 This phase of mitosis is? This phase of mitosis is? - 3 4 This phase of mitosis is? This phase of mitosis is? 5 6 What are the stages of mitosis in chronological order? This phase of mitosis is? -Anaphase,

More information

Chapter 12: The Cell Cycle (Mitosis) Cell division is an integral part of the cell cycle

Chapter 12: The Cell Cycle (Mitosis) Cell division is an integral part of the cell cycle Chapter 12: The Cell Cycle (Mitosis) Cell division is an integral part of the cell cycle Concept 12.1: Cell division results in genetically identical daughter cells Most cell division (mitosis) results

More information

CCR Biology - Chapter 5 Practice Test - Summer 2012

CCR Biology - Chapter 5 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 5 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If a cell cannot move enough material

More information

Cells, Mitosis-Meiosis, Photosynthesis-Cellular Respiration Notes F

Cells, Mitosis-Meiosis, Photosynthesis-Cellular Respiration Notes F Cells, Mitosis-Meiosis, Photosynthesis-Cellular Respiration Notes F Chromosomes and Mitosis Vocabulary anaphase centromere chromatid chromatin chromosome gene homologous chromosomes metaphase prophase

More information

Pre-lab Homework Lab 4: Meiosis and Vertebrate Reproduction

Pre-lab Homework Lab 4: Meiosis and Vertebrate Reproduction Lab Section: Name: Pre-lab Homework Lab 4: Meiosis and Vertebrate Reproduction 1. Today s lab requires you to understand a bit of vocabulary. Briefly draw or explain the following terms. Chromosome: Gene:

More information

Mitosis How do living things grow and repair themselves?

Mitosis How do living things grow and repair themselves? Mitosis How do living things grow and repair themselves? Why? Living things must grow and develop. At times they suffer injuries or damage, or cells simply wear out. New cells must be formed for the living

More information

2.3: Eukaryotic Evolution and Diversity pg. 67. For about 1.5 billion years Prokaryotes were on the only living organism on Earth.

2.3: Eukaryotic Evolution and Diversity pg. 67. For about 1.5 billion years Prokaryotes were on the only living organism on Earth. 2.3: Eukaryotic Evolution and Diversity pg. 67 For about 1.5 billion years Prokaryotes were on the only living organism on Earth. 3.5 to 2 billion years ago Prokaryotes thrive in many different environments.

More information

CLASSICAL GENETICS: TETRAD ANALYSIS and RECOMBINATION. References

CLASSICAL GENETICS: TETRAD ANALYSIS and RECOMBINATION. References CLASSICAL GENETICS: TETRAD ANALYSIS and RECOMBINATION References 1. Perkins, D.D. (1962) Crossing-over and interference in a multiply marked chromosome arm of Neurosopora. Genetics 47, 1253-1274. Classic

More information

Biotechnology Test Test

Biotechnology Test Test Log In Sign Up Biotechnology Test Test 15 Matching Questions Regenerate Test 1. Plasmid 2. PCR Process 3. humulin 4. pluripotent 5. polymerase chain reaction (PCR) a b Is much smaller than the human genome,

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Chapter 9 Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Q&A Interferons are species specific, so that interferons to be used in humans must be produced in human cells. Can you think

More information

FINDING RELATION BETWEEN AGING AND

FINDING RELATION BETWEEN AGING AND FINDING RELATION BETWEEN AGING AND TELOMERE BY APRIORI AND DECISION TREE Jieun Sung 1, Youngshin Joo, and Taeseon Yoon 1 Department of National Science, Hankuk Academy of Foreign Studies, Yong-In, Republic

More information