Why do we have linear chromosomes? A matter of Adam and Eve

Size: px
Start display at page:

Download "Why do we have linear chromosomes? A matter of Adam and Eve"

Transcription

1 Mutation Research 434 Ž Community address: Minireview Why do we have linear chromosomes? A matter of Adam and Eve Fuyuki Ishikawa ), Taku Naito Laboratory of Molecular and Cellular Assembly, Graduate School of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama , Japan Accepted 30 March 1999 Keywords: Linear chromosome; Circular chromosome; Telomere; Meiosis 1. Introduction It is usually assumed that prokaryotic cells have circular chromosomes, whereas eukaryotic cells have linear chromosomes. One of the consequences of linear chromosomes is the presence of chromosomal ends called telomeres. Simple physical ends of DNA, such as those produced by DNA double-strand breaks Ž DSB. by ionizing radiation, are genetically unstable, mutagenic, and sometimes oncogenic Žreviewed in Ref. wx. 1. Telomeres are a complex composed of telomeric DNA and a number of telomere-specific and non-specific proteins. This large molecular assembly that forms the telomeres protects the genomic ends from end-to-end fusion or exonucleolytic erosion Žreviewed in Ref. wx. 2. Due to the end-replication problem, telomeric DNA is shortened as the cell divides wx 3. In most eukaryotes, this shortening of telomeric DNA is compensated by the activity of an enzyme called telomerase that synthesizes telomeric DNA de novo wx 4. However, telomerase is strictly regulated to be inactive in most human somatic cells, and telomere lengths decline as an individual ages wx 5. This results ) Corresponding author. in cellular senescence and cancer development due to telomere insufficiencies Že.g., Ref. wx 6, and rewx. 7. Therefore, telomeres are some- viewed in Ref. times referred to as the the Achilles heel of the chromosome wx 8. Why do we have linear chromosomes that lead to senescence and cancers, instead of circular chromosomes? In this article, we review as to what extent different chromosome configurations are conserved among different kingdoms, and propose a hypothesis to explain why this remarkable conservation has evolved. 2. Chromosome configurations of prokaryotes and eukaryotes In this article, we operatively define chromosomes as genetic materials containing house-keeping genes essential for the cell s survival that replicate synchronously with cell division to distinguish them from extra-chromosomal genetic elements, such as plasmids, bacteriophage and transposons wx 9. The recent invention of molecular biological tools to analyze large DNA structures, especially pulse field gel electrophoresis Ž PFGE., in addition to classical r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved. Ž. PII: S

2 100 F. Ishikawa, T. NaitorMutation Research tools, such as genetic linkage studies, have greatly enriched our knowledge about the chromosome configuration in different species, phyla and kingdoms. Given the very large number of species on the earth, both known and unknown, it is far from possible to make a complete catalogue of the chromosome structures existing among the diverse range of species. However, recent studies have identified the presence of several exceptional cases to the general rule that one circular chromosome is present in prokaryotic cells and more than one linear chromosome are present in eukaryotic cells. Nevertheless, these exceptional cases indeed further strengthen the notion that prokaryotes and eukaryotes have maintained circular and linear chromosomes, respectively, throughout their evolution Prokaryotes Generally, the small sizes of prokaryotic genomes Ž typically 1 10 Mb. make it feasible to carry out physical analyses, such as PFGE and total nucleotide sequencing Žreviewed in Ref. w10 x.. Genome analyses of Archea have lagged behind that of eubacteria. For example, the genome sequencing of only six archebacteria had been completed, whereas 17 eubacteria had been sequenced at the time of this review Ž All archebacteria examined so far contain one circular chromosome. Therefore, we will focus on several exceptional cases in eubacteria, where this general rule is not applied. Borrelia, Treponema and Leptospira are members of the spirochete group Ž Phylum Spirochaetae.. They are pathogenic bacteria, and Borrelia causes Lyme disease. Borrelia burgdorferi has been shown to have one 910-kb linear chromosome w11 13 x. This unique feature is conserved in the other members of the Borrelia genus w14 x. In contrast, other two closely related genera, Treponema and Leptospira, which also belong to the Spirochaetae, contain circular chromosomes w15 17 x. This specific distribution of linear chromosomes in the Borrelia genus suggests that Borrelia s linear chromosomes were evolutionarily derived from the ancestral circular chromosomes after the three genera had diverged. Streptomyces is another genus that has been shown to possess linear chromosomes w18 x. It should be noted that Streptomyces, a member of Phylum Actinomycete, is phylogenically distant from Borrelia. The closely related genus, Mycobacterium, which is within the same phylum, contains a conventional single circular chromosome w19 x, again suggesting the relatively recent origin of the linear chromosome in Streptomyces. Finally, Agrobacterium tumefaciens, a member of Proteobacteria has one 2.1-Mb linear and three 3- Mb, 450-kb and 200-kb circular replicons. It is known that at least the two 1-Mb and 3-Mb replicons contain metabolically essential genes, which classifies them as chromosomes w20 x. The conventional DNA replication mechanism does not replicate the very ends of linear DNA, because all DNA polymerases need primers for initiating synthesis. The diverse range of linear genomes solves this end-replication problem by different strategies. Adenovirus initiates the replication of its linear genome using a protein primer Žterminal protein, TP. w21 x. TP forms a covalent bond with the 5 X -OH of dnmp, and the DNA polymerase starts synthesis using this base as the first nucleotide to be incorporated. As a result, adenovirus DNA has a covalently associated TP at its 5 X -ends. On the other hand, vaccinia virus has a hairpin structure at both ends of its linear genome w22 x. One strand is continuous to the other strand, and DNA synthesis continues onto the next strand after completing one strand. A palindromic sequence is left after nicking the hairpin DNA to resolve the two daughter duplex DNAs. The terminal structures of the linear genomic DNAs of Borrelia and Streptomyces have also been reported. Streptomyces has 5 X -end associated proteins, suggesting that the telomeres are replicated by TP primers in this bacterium w23,24 x. In contrast, Borrelia has hairpin structures with 26-bp inverted repeats at both telomeres, suggesting that its telomeres are replicated in a way similar to vaccinia virus w25 x. These studies indicate that at least three prokaryotic genera possess linear chromosomes, instead of circular ones. However, the appearance of linear chromosomes in prokaryotes seems rather sporadic. First, these three genera are distantly related to each other. Second, closely related genera belonging to the same phylum contain conventional circular chromosomes. Finally, the solutions for the end-replication problems differ between Borrelia and Strep-

3 F. Ishikawa, T. NaitorMutation Research tomyces. Accordingly, it is suggested that prokaryote linear chromosomes have not been inherited directly from one ancient prokaryote that had linear chromosomes. Instead, they most likely have developed recently from the circular chromosomes of an ancestor species. Therefore, it may be concluded that the prokaryote genomes have been maintained phylogenically in circular forms Eukaryotes Eukaryotes contain larger genomes than prokaryotes Ž typically larger than 10 Mb.. Accordingly, in many cases, the chromosomes can be visualized by microscopy to analyze the gross structures. However, large chromosome sizes are a disadvantage in another respect, since it is usually difficult to construct a physical map of the genome. As will be reviewed here, many reports have been published showing the presence of circular chromosomes. However, the evidence for covalently linked circular chromosomes is not available in most cases. To avoid possible confusion, circular chromosomes judged solely on morphological criteria will be called ring chromosomes in this review. Circular chromosomes have been reported both in budding yeast w26,27x and fission yeast w28,29 x. They were isolated spontaneously or artificially, and have been shown to be circular by either a genetic or a physical approach. In each case, only one circular chromosome was identified, and it was unstable mitotically and meiotically. As there are many opportunities to examine karyotypes in a variety of medical settings, many cases of ring chromosomes have been reported to be associated with a variety of clinical manifestations. In most cases, the ring chromosomes have been found in somatic cells, either normal or cancerous, and either constitutively or in mosaicism. However, few notable cases in which one ring chromosome had apparently been inherited from one of the parents who also had the same ring chromosomes have been reported Že.g., Ref. w30 x.. In these cases, the parents generally showed mosaic ring chromosomes, suggesting that an individual who has a ring chromosome constitutively is infertile. There has been no report describing the inheritance of more than one ring chromosomes. These results have suggested that in some rare cases, a single ring chromosome may be normally segregated in meiosis, and fertilized. In summary, circular or ring chromosomes have been found sporadically in eukaryotes. With some rare exceptions, they are not usually inherited. However, there have been no reports describing eukaryotic cells having more than one circular or ring chromosome that have been meiotically transmitted. These results suggest that ring chromosomes face some difficulty in sexual reproduction. Since mitochondrial DNAs are circular in most eukaryotes, chromosome circularity itself is obviously not incompatible with inheritance. Circular chromosomes may be incompatible with a process specific to sexual reproduction, such as meiosis. This section has shown that two chromosome configurations, circular and linear, are remarkably conserved in prokaryotes and eukaryotes, respectively. In an evolutionary sense, linear chromosomes require extra energy to maintain intact telomeres, which is not a requirement for circular chromosomes. This reasoning suggests that there must be some advantages to eukaryotes that have been acquired in a trade-off for this extra burden. One of the most direct experiments to test this hypothesis would be to construct a eukaryotic cell that maintains its genome in a circular form, and to see what biological functions this cell has lost. However, until recently, there has been no report that describes the existence of eukaryotic cells that maintain completely circular genomes. 3. ATM family genes and telomeres Telomeres are comprised of many components to accomplish its functions. Proteins involved in telomere maintenance are now being studied in some detail, especially in simple eukaryotic cells such as yeast Žreviewed in Ref. w31 x.. One group of interesting proteins thus identified is the ATM family. The Saccharomyces cereõisiae TEL1 gene was originally identified by screening for mutants with short telomw32 x. When this gene was cloned, it ere phenotypes turned out to have a significant level of homology with the human ATM gene, whose mutations cause the hereditary disease, ataxia telangiectasia Ž A-T.

4 102 F. Ishikawa, T. NaitorMutation Research w33,34 x. Interestingly, telomeres in A-T cells also showed excessive shortening w35,36 x, suggesting that the ATM family genes are involved in telomere maintenance in all cells from yeast to human. There is at least more than one member of the ATM family genes present in one species w37 x. The budding yeast Saccharomyces has TEL1 and MEC1 genes, and human has ATM, ATR and the relatively distant member DNA-PK. All these proteins have a PI3 Ž phosphatidylinositol 3. -kinase-like domain at the C-termini, yet they have protein kinase activity. Fission yeast, Schizosaccharomyces pombe, also has two ATM family genes, named rad3 q and tel1 q w x q q 38,39. The mutant defective for rad3 or tel1 shows moderate to minimal telomere shortenings w39,40 x. However, when both ATM family genes were mutated, there was an additive effect, and the fission yeast chromosomes essentially lost all telomw39 x. Thus, the ATM family genes are ere sequences redundant but essential for stable telomere maintenance. The rad3 tel1 double mutant cells grow very slowly with a low viability, and showed aberrantly irregular colony shapes, as expected for cells suffering from extensive telomere shortening. However, derivative cells that showed apparently normal colony shapes appeared spontaneously among these double mutants at a relatively high frequency. Surprisingly, these derivative cells contain three self-circularized chromosomes Žfission yeast contains three linear chromosomes. w39 x. This case is the first report describing the existence of eukaryotic cells that maintain the genome exclusively in circular forms. Previously, it had been postulated that eukaryotic cells do not have circular chromosomes because if an odd number of crossing-over events occurs between the two sister chromatids by SCE, this would result in the formation of dicentric circular chromosomes. Thus, formed circular dimer chromosomes would be eventually broken during mitosis by the two spindles pulling them apart Že.g., see discussions in Refs. w41,42 x.. Since yeasts undergo efficient homologous recombination and SCEs, we would expect that complete circular genomes in yeast should be highly unstable and lead to cell death. Indeed, the fission yeast rad3 tel1 mutant with the three circular chromosomes showed anaphase bridges and some degree of aneuploidy Ž Naito and Ishikawa, unpublished.. However, the fact that this mutant grew well mitotically as a mass suggests that the SCE of dicentric circular chromosomes may have a relatively small effect. Indeed, SCE happens in prokaryotic cells to produce circular dimers. In Escherichia coli, these circular dimers are known to be resolved by both the reca-independent resolvases, XerC and XerD, that act on a specific locus called dif located at the replication terminus, and the reca-dependent recombination pathway Žreviewed in Refs. w43,44 x.. In higher eukaryotes, genomic DNA is organized into multiple loops by tight association of matrix-associated region Ž MAR. on DNA with nuclear scaffolds. In a topological sense, each loop can be assumed microscopically to be a closed circle. Therefore, closed circular oligomers may also be formed by SCE in linear eukaryotic genomes, making the hypothesis that the circular dimer formation prohibits circular chromosomes in eukaryotes unlikely. Eukaryotes may have mechanisms similar to XerCD and reca-dependent recombination in E. coli to resolve these microscopic oligomers. Indeed, RAD51-deficient chicken cells, the eukaryote recahomologue, are shown to be arrested in G2rM phase and to accumulate chromosome breaks, suggesting the possible involvement of the Rad51 protein in resolving SCE-intermediates w45 x. 4. Sister chromatid exchanges SCEs and circular dimer formation 5. Meiosis and telomeres Telomeres perform a number of important functions in different biological situations. Recently, the role of the telomeres in meiosis has come into light Žreviewed in Ref. w46 x.. The first hint came from the cytological observation that telomeres are closely clustered with each other at a specific stage of meiosis. There have been ample observations that telomeres and centromeres are positioned asymmetrically in nuclei Žreviewed in Ref. w47 x.. In mitotic interphase, the centromeres have a tendency to cluster around the centriole, presumably reflecting the

5 F. Ishikawa, T. NaitorMutation Research association between these two structures during the last anaphase. This centromere clustering is named the Rabl w48x orientation after the German scientist who first described it. However, during meiotic prophase, this relative distribution of centromeres and telomeres is reversed: In the leptotenerzygotene stage, telomeres, instead of centromeres, are clustered at the inner surface of the nuclear envelope. The centromeres are distributed randomly in the nucleus at this stage. This polarized chromosomal distribution is called the bouquet arrangement w49 x, and is found during meiosis in many species Žre- w50 x.. The functional significance of viewed in Ref. this peculiar conformation has been recently revealed. In fission yeast, two haploid cells of opposite mating types conjugate to produce diploid cells Ž karyogamy., and enter meiosis Ž zygotic meiosis.. Immediately after karyogamy, the fused nucleus forms an elongated shape, called a horse-tail w51 x. Using time-elapsed image recording, the fused horse-tail nuclei were found to undergo a dynamic to-and-fro oscillating movement w52 x. Moreover, by a combination of telomere-specific fluorescence in situ hybridization Ž FISH. and immunostaining of the spindle pole body ŽSPB, a centriole-counterpart in yeast., it was shown that six telomeres of the three fission yeast chromosomes are closely associated with SPB, and they lead the front edge of this horse-tail movement. In fission yeast, the bouquet arrangement is established by an association between the telomeres and SPB. In this way, the microtubule enucleated from the SPB promotes the dynamic nuclear movement by pulling the telomeres and dragging the chromosomes behind as a mass Žreviewed in Ref. w53 x.. Recently, three additional genetic studies have further indicated the importance of telomeres in the meiotic process. Telomere DNA consists of wellconserved G-rich simple tandem repeats. Telomere DNA-specific binding proteins are known to exist in several species. These include TRF1 and TRF2 in human w54 x, Rap1 in budding yeast w55 x, and taz1p in fission yeast w56 x. Fission yeast mutants defective for taz1 q failed to form the telomere clustering at the horse-tail stage of pre-meiosis, and showed reduced spore viability w57,58 x. Taz1p is presumably involved in the SPB-telomere association w53 x. The rad3 tel1 fission mutant with the three circular chromosomes was examined for spore viability after azygotic meiosis w39 x. In this case, diploid cells derived from two haploid cells harboring circular chromosomes produced no viable spores, a phenotype more profound than that of the taz1 mutant. These studies clearly indicated that telomeres are essential for a productive meiotic process. 6. How telomeres are essential for meiosis Several scenarios can be proposed to explain why functional telomeres are essential for meiosis. Meiosis consists of two successive cell divisions, called meiosis I and meiosis II. Meiosis II is similar to mitotic cell division, but meiosis I is unique. Meiosis is a process that produces four haploid cells from one diploid cell. Meiosis I is responsible for this reduction of ploidy by segregating the two homologous chromosomes to the two daughter cells. To accomplish this reductional segregation, each pair of homologous chromosomes needs to be paired before the onset of meiosis I Žreviewed in Ref. w59 x.. Homologous chromosome pairing has another important role in inducing homologous recombination between the two homologues. This homologous recombination shuffles the two alleles originally derived from different individuals Ž father and mother., and ensures that the haploid cells contain chimeric genetic information. Moreover, the recombination and segregation are interdependent, since the covalent associations formed by the recombinational Holiday junction between the two homologues Ž chiasmata. are thought to be essential for stable homologue pairing, and ensuring proper segregation. Therefore, homologue-pairing is at the heart of the mechanism of meiosis. Circular chromosomes potentially undergo more than one pathway during meiosis, and in all cases, they have very small probabilities of proper segregation Ž Fig. 1.. In normal meiotic prophase, linear chromosomes gather together by telomere-clustering Ž Fig. 1A.. Telomere associations of homologous chromosomes may help the homologue pairing by aligning the two chromosomes that are now tethered at both ends. After successful pairing, homologous recombination occurs between the two homologues,

6 104 F. Ishikawa, T. NaitorMutation Research Ž. Ž. Fig. 1. Meiosis I of linear chromosomes A and possible pathways in meiosis I of circular chromosomes B. For details, see the text.

7 F. Ishikawa, T. NaitorMutation Research and this covalent association further contributes to the stable chromosome pairing. In anaphase I, the Holiday junctions are resolved and the two homologues are segregated to different daughter cells. In contrast, circular chromosomes may undergo several different pathways Ž Fig. 1B.. As circular chromosomes lack functional telomeres, two homologues cannot be positioned in proximity. In this case, no homologue pairing and recombination occur, and the homologues are randomly segregated to daughter cells Ž pathway 1.. Two homologues may be positioned closely by chance, and somehow may pair and undergo recombination Ž pathway 2.. However, if an odd number of crossing-over events occurs between two homologues, this results in the formation of dicentric circular chromosomes Ž pathway 3.. If resolvase fails to resolve this form into monomers, the dicentric circle enters anaphase. When the spindles of different origins attach to each of the two kinetochores, the chromosome will be pulled apart and tear Ž pathway 4.. When a common spindle attaches to both of the two kinetochores, the chromosome is segregated to only one cell, with the other cell receiving no homologue. In either case, daughter cells will lose a significant amount of genetic information. When an even number of crossing-over events occurs Ž pathway 7., or the dicentric circles are resolved into monomeric circles Ž pathway 6., the two homologues may be segregated properly to the two daughter cells. However, even in this case, it is not known if spindles correctly attach to the kinetochores of chromosomes that have not been associated with telomeres during the meiotic prophase. Overall, the chance that one particular circular chromosome is segregated properly in meiosis I is very small. All eukaryotes contain more than one and usually many chromosomes. The chance, that one daughter cell will have all chromosomes properly segregated in circular forms, is the multiple of these small probabilities for each circular chromosome, and should be negligible. In conclusion, there is essentially no chance that all circular chromosomes are properly segregated during meiosis. This essential role of telomeres in accomplishing reductional chromosome segregation in meiosis must be the major reason that linear chromosomes are strikingly conserved in eukaryotes, which are characterized by the presence of sexual reproduction in most cases. 7. Conclusion We have stated that linear chromosomes are essential for productive meiosis. Meiosis Ža mechanism to generate haploid cells. is a prerequisite for shuffling the genetic information between individuals. It has been proposed that the production of genetically diverse offspring is advantageous in an ever-changw60 x. Indeed, the num- ing or saturated environment ber of absolutely asexual eukaryotic organisms is very small Žreviewed in Refs. w61,62 x., and the conservation of the potential of sexual reproduction seems to be as strong as the conservation of linear chromosomes in eukaryotes. Recent studies have indicated that chromosome linearity is important for meiosis, and we would like to propose that the correlation between sex and linear chromosomes is based on a mechanistic reason, and not on a superficial parallelism. Once upon a time, two groups of living creatures emerged from a common ancestor. One group decided to maintain genomes in circular forms, because this form is more economical without the need to maintain telomeres. However, the progeny of this group Ž Bacteria. is not able to exchange genomic information by meiosis and fertilization, and thus, needs to grow faster and keep the genome size as small as possible. The other group decided to maintain the genomes in linear forms. Although this strategy requires extra energy to maintain telomeres, these organisms have enjoyed the dynamic flow of genomic information by sexual reproduction. This process has allowed this group Ž Eukaryota. the chance to produce a variety of offspring. Accordingly, eukaryotes have complicated systems, and grow less rapidly than prokaryotes. Acknowledgements We thank E.A. Kamei Ž Gunma University. and H. Niki Ž Kumamoto University. for critical reading of and comments on the manuscript. The excellent secretarial works of F. Nishizaki, K. Saito and K. Yokoyama are acknowledged. This work was supported by a grant-in-aid from the Organization for Pharmaceutical Safety and Research, Japan.

8 106 F. Ishikawa, T. NaitorMutation Research References wx 1 T. de Lange, Telomere dynamics and genome instability in human cancer, in: E.H. Blackburn, C.W. Greider Ž Eds.., Telomeres, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1995, pp wx 2 E.H. Blackburn, Structure and function of telomeres, Nature 350 Ž wx 3 J.D. Watson, Origin of concatemeric T7 DNA, Nature of New Biology 239 Ž wx 4 E.H. Blackburn, Telomerase, Annu. Rev. Biochem. 61 Ž wx 5 C.B. Harley, B. Villeponteau, Telomeres and telomerase in aging and cancer, Curr. Opin. Genet. Dev. 5 Ž wx 6 S. Hatakeyama, K. Fujita, M. Omine, F. Ishikawa, The jumping translocation at 1q21 involves shortened telomeres, Blood 91 Ž wx 7 F. Ishikawa, Telomere crisis, the driving force in cancer cell evolution, Biochem. Biophys. Res. Commun. 230 Ž wx 8 C.B. Harley, A.B. Futcher, C.W. Greider, Telomeres shorten during ageing of human fibroblasts, Nature 345 Ž wx 9 S. Krawiec, M. Riley, Organization of the bacterial chromosome, Microbiol. Rev. 54 Ž w10x S. Casjens, The diverse and dynamic structure of bacterial genomes, Annu. Rev. Genet. 32 Ž w11x M.S. Ferdows, A.G. Barbour, Megabase-sized linear DNA in the bacterium, Borrelia burgdorferi, the Lyme disease agent, Proc. Natl. Acad. Sci. USA 86 Ž w12x B.E. Davidson, J. MacDougall, I. Saint Girons, Physical map of the linear chromosome of the bacterium, Borrelia burgdorferi 212, a causative agent of Lyme disease, and localization of rrna genes, J. Bacteriol. 174 Ž w13x C.M. Fraser, S. Casjens, W.M. Huang, G.G. Sutton, R. Clayton, R. Lathigra, O. White, K.A. Ketchum, R. Dodson, E.K. Hickey, M. Gwinn, B. Dougherty, J.F. Tomb, R.D. Fleischmann, D. Richardson, J. Peterson, A.R. Kerlavage, J. Quackenbush, S. Salzberg, M. Hanson, R. van Vugt, N. Palmer, M.D. Adams, J. Gocayne, J.C. Venter, Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi, Nature 390 Ž w14x S. Casjens, M. Delange, H.L.r. Ley, P. Rosa, W.M. Huang, Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order, J. Bacteriol. 177 Ž w15x R.L. Zuerner, Physical map of chromosomal and plasmid DNA comprising the genome of Leptospira interrogans, Nucleic Acids Res. 19 Ž w16x E.M. Walker, J.K. Howell, Y. You, A.R. Hoffmaster, H. JD, G.M. Weinstock, S.J. Norris, Physical map of the genome of Treponema pallidum subsp. pallidum Ž Nichols., J. Bacteriol. 177 Ž w17x J. MacDougall, I. Saint Girons, Physical map of the Treponema denticola circular chromosome, J. Bacteriol. 177 Ž w18x Y.S. Lin, H.M. Kieser, D.A. Hopwood, C.W. Chen, The chromosomal DNA of Streptomyces liõidans 66 is linear, Mol. Microbiol. 10 Ž w19x K. Eiglmeier, N. Honore, S.A. Woods, B. Caudron, S.T. Cole, Use of an ordered cosmid library to deduce the genomic organization of Mycobacterium leprae, Mol. Microbiol. 7 Ž w20x A. Allardet-Servent, S. Michaux-Charachon, E. Jumas-Bilak, L. Karayan, M. Ramuz, Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome, J. Bacteriol. 175 Ž w21x M.D. Challberg, S.V. Desiderio, T.J.J. Kelly, Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands, Proc. Natl. Acad. Sci. USA 77 Ž w22x B.M. Baroudy, S. Venkatesan, B. Moss, Incompletely basepaired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain, Cell 28 Ž w23x A. Lezhava, T. Mizukami, T. Kajitani, D. Kameoka, M. Redenbach, H. Shinkawa, O. Nimi, H. Kinashi, Physical map of the linear chromosome of Streptomyces griseus, J. Bacteriol. 177 Ž w24x C.W. Chen, Complications and implications of linear bacterial chromosomes, Trends Genet. 12 Ž w25x S. Casjens, M. Murphy, M. DeLange, L. Sampson, R. van Vugt, W.M. Huang, Telomeres of the linear chromosomes of Lyme disease spirochetes: nucleotide sequence and possible exchange with linear plasmid telomeres, Mol. Microbiol. 26 Ž w26x J.E. Haber, P.C. Thorburn, D. Rogers, Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cere- Õisiae, Genetics 106 Ž w27x S.A. Greenfeder, C.S. Newlon, A replication map of a 61-kb circular derivative of Saccharomyces cereõisiae chromosome III, Mol. Biol. Cell 3 Ž w28x O. Niwa, T. Toda, M. Yanagida, Triploid meiosis and aneuploidy in Schizosaccharomyces pombe: an unstable disomic for chromosome III, Curr. Genet. 9 Ž w29x J.B. Fan, M. Rochet, C. Gaillardin, C.L. Smith, Detection and characterization of a ring chromosome in the fission yeast Schizosaccharomyces pombe, Nucleic Acids Res. 20 Ž w30x J. Jenderny, A. Caliebe, C. Beyer, W. Grote, Transmission of a ring chromosome 18 from a mother with 46,XXr47,XX,q rž 18. mosaicism to her daughter, resulting in a 46,XX,rŽ 18. karyotype, J. Med. Genet. 30 Ž w31x D. Shore, Telomeres unsticky ends, Science 281 Ž w32x A.J. Lustig, T.D. Petes, Identification of yeast mutants with altered telomere structure, Proc. Natl. Acad. Sci. USA 83 Ž w33x D.M. Morrow, D.A. Tagle, Y. Shiloh, F.S. Collins, P. Hieter, TEL1, an S. cereõisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1, Cell 82 Ž w34x K. Savitsky, A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L.

9 F. Ishikawa, T. NaitorMutation Research Vanagaite, D.A. Tagle, S. Smith, T. Uziel, S. Sfez, M. Ashkenazi, I. Pecker, M. Frydman, R. Harnik, S.R. Patanjali, A. Simmons, G.A. Clines, A. Sartiel, R.A. Gatti, L. Chessa, O. Sanal, M.F. Lavin, A single ataxia telangiectasia gene with a product similar to PI-3 kinase, Science 268 Ž w35x J.A. Metcalfe, J. Parkhill, L. Campbell, M. Stacey, P. Biggs, P.J. Byrd, A.M. Taylor, Accelerated telomere shortening in ataxia telangiectasia, Nat. Genet. 13 Ž w36x S.J. Xia, M.A. Shammas, R.J. Shmookler Reis, Reduced telomere length in ataxia telangiectasia fibroblasts, Mutat. Res. 364 Ž w37x V.A. Zakian, ATM-related genes: what do they tell us about functions of the human gene?, Cell 82 Ž w38x N.J. Bentley, D.A. Holtzman, G. Flaggs, K.S. Keegan, A. DeMaggio, J.C. Ford, M. Hoekstra, A.M. Carr, The Schizosaccharomyces pombe rad3 checkpoint gene, EMBO J. 15 Ž w39x T. Naito, A. Matsuura, F. Ishikawa, Circular chromosome formation in a fission yeast mutant defective in two ATM homologues, Nat. Genet. 20 Ž w40x M. Dahlen, T. Olsson, G. Kanter-Smoler, A. Ramne, P. Sunnerhagen, Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe, Mol. Biol. Cell 9 Ž w41x S.A. Endow, D.J. Komma, K.C. Atwood, Ring chromosomes and rdna magnification in Drosophila, Genetics 108 Ž w42x S. Sutou, Reversal of DNA polarity as revealed by sister chromatid exchanges in ring chromosomes, Mutat. Res. 394 Ž w43x A. Lobner-Olesen, P.L. Kuempel, Chromosome partitioning in Escherichia coli, J. Bacteriol. 174 Ž w44x L.I. Rothfield, Bacterial chromosome segregation, Cell 77 Ž w45x E. Sonoda, M.S. Sasaki, J.M. Buerstedde, O. Bezzubova, A. Shinohara, H. Ogawa, M. Takata, Y. Yamaguchi-Iwai, S. Takeda, Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death, EMBO J. 17 Ž w46x T. de Lange, Ending up with the right partner, Nature 392 Ž w47x A.F. Dernburg, J.W. Sedat, W.Z. Cande, H.W. Bass, Cytology of telomeres, in: E.H. Blackburn, C.W. Greider Ž Eds.., Telomeres, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1995, pp w48x C. Rabl, Uber zelltheilung, Morphol. Jahrb. 10 Ž w49x G. Eisen, The spermatogenesis of Batrachoseps, J. Morphol. 17 Ž w50x D. Zickler, N. Kleckner, The leptotene zygotene transition of meiosis, Annu. Rev. Genet. 32 Ž w51x C. Robinow, The number of chromosomes in Schizosaccharomyces pombe: light microscopy of stained preparations, Genetics 87 Ž w52x Y. Chikashige, D.Q. Ding, H. Funabiki, T. Haraguchi, S. Mashiko, M. Yanagida, Y. Hiraoka, Telomere-led premeiotic chromosome movement in fission yeast, Science 264 Ž w53x Y. Hiraoka, Meiotic telomeres: a matchmaker for homologous chromosomes, Genes Cells 3 Ž w54x D. Broccoli, A. Smogorzewska, L. Chong, T. de Lange, Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2, Nat. Genet. 17 Ž w55x A.J. Lustig, S. Kurtz, D. Shore, Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length, Science 250 Ž w56x J.P. Cooper, E.R. Nimmo, R.C. Allshire, T.R. Cech, Regulation of telomere length and function by a Myb-domain protein in fission yeast, Nature 385 Ž w57x E.R. Nimmo, A.L. Pidoux, P.E. Perry, R.C. Allshire, Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe, Nature 392 Ž w58x J.P. Cooper, Y. Watanabe, P. Nurse, Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination, Nature 392 Ž w59x G.S. Roeder, Meiotic chromosomes: it takes two to tango, Genes Dev. 11 Ž w60x G.C. Williams, Sex and Evolution, Princeton University Press, Princeton, w61x G. Bell, The Masterpiece of Nature, University of California Press, Berkeley, w62x O.P. Judson, B.B. Normark, Ancient asexual scandals, TREE 11 Ž

Name Date. Meiosis Worksheet

Name Date. Meiosis Worksheet Name Date Meiosis Worksheet Identifying Processes On the lines provided, order the different stages of meiosis I THROUGH meiosis II, including interphase in the proper sequence. 1. homologous chromosome

More information

Lecture 7 Mitosis & Meiosis

Lecture 7 Mitosis & Meiosis Lecture 7 Mitosis & Meiosis Cell Division Essential for body growth and tissue repair Interphase G 1 phase Primary cell growth phase S phase DNA replication G 2 phase Microtubule synthesis Mitosis Nuclear

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

WHAT CELL REPRODUCTION ACCOMPLISHES. Reproduction

WHAT CELL REPRODUCTION ACCOMPLISHES. Reproduction WHAT CELL REPRODUCTION ACCOMPLISHES Reproduction may result in the birth of new organisms but more commonly involves the production of new cells. When a cell undergoes reproduction, or cell division, two

More information

Chapter 8: The Cellular Basis of Reproduction and Inheritance

Chapter 8: The Cellular Basis of Reproduction and Inheritance Chapter 8: The Cellular Basis of Reproduction and Inheritance Introduction Stages of an Organism s Life Cycle: Development: All changes that occur from a fertilized egg or an initial cell to an adult organism.

More information

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation.

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation. Meiosis 1. P. J. van Beneden proposed that an egg and a sperm, each containing half the complement of chromosomes found in somatic cells, fuse to produce a single cell called a. 2. is a process of nuclear

More information

Chapter 12. Sexual Life Cycle and Meiosis

Chapter 12. Sexual Life Cycle and Meiosis Chapter 12 Sexual Life Cycle and Meiosis Overview: Variations on a Theme Living organisms are distinguished by their ability to reproduce their own kind Genetics is the scientific study of heredity and

More information

Behavior of Cell Cycle

Behavior of Cell Cycle CH 13 Meiosis Inheritance of genes Genes are the units of heredity, and are made up of segments of DNA. Genes are passed to the next generation via reproductive cells called gametes (sperm and eggs). Each

More information

Overview: Variations on a Theme Genetics Heredity Variation Concept 13.1: Offspring acquire genes from parents by inheriting chromosomes

Overview: Variations on a Theme Genetics Heredity Variation Concept 13.1: Offspring acquire genes from parents by inheriting chromosomes Overview: Variations on a Theme Living organisms are distinguished by their ability to reproduce their own kind Genetics is the scientific study of heredity and variation Heredity is the transmission of

More information

BIOL100 Laboratory Assignment 4: Mitosis and Meiosis. Name:

BIOL100 Laboratory Assignment 4: Mitosis and Meiosis. Name: BIOL100 Laboratory Assignment 4: Mitosis and Meiosis Name: Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe the activities of chromosomes and microtubules in the

More information

List, describe, diagram, and identify the stages of meiosis.

List, describe, diagram, and identify the stages of meiosis. Meiosis and Sexual Life Cycles In this topic we will examine a second type of cell division used by eukaryotic cells: meiosis. In addition, we will see how the 2 types of eukaryotic cell division, mitosis

More information

How does a single cell become a human being? Cell division. Cell division growth. Cell division plays a role in: Cell division gametes

How does a single cell become a human being? Cell division. Cell division growth. Cell division plays a role in: Cell division gametes Cell division How does a single cell become a human being? Every time a cell divides, a copy is made of all the DNA in every chromosome Fertilized egg Blastula Many things happen Number of cells increase

More information

Meiosis and Life Cycles - 1

Meiosis and Life Cycles - 1 Meiosis and Life Cycles - 1 We have just finished looking at the process of mitosis, a process that produces cells genetically identical to the original cell. Mitosis ensures that each cell of an organism

More information

Problem Set 4 BILD10 / Winter 2014

Problem Set 4 BILD10 / Winter 2014 1) The DNA in linear eukaryotic chromosomes is wrapped around proteins called, which keep the DNA from getting tangled and enable an orderly, tight, and efficient packing of the DNA inside the cell. A)

More information

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Name Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Introduction During your lifetime you have grown from a single celled zygote into an organism made up of trillions of cells. The vast

More information

CHAPTER 8 CELLULAR REPRODUCTION: CELLS FROM CELLS

CHAPTER 8 CELLULAR REPRODUCTION: CELLS FROM CELLS State Standards Standard 2: CHAPTER 8 CELLULAR REPRODUCTION: CELLS FROM CELLS Standard 5a: Standard 5b: Standard 2a: Standard 2b: The life cycle of a multicellular organism includes This sea star embryo

More information

ANS: Sugars combine to form carbohydrates; amino acids combine to form proteins. FEEDBACK: 2.1 DIFFICULTY: medium

ANS: Sugars combine to form carbohydrates; amino acids combine to form proteins. FEEDBACK: 2.1 DIFFICULTY: medium Solutions to Problems in Chapter 2 My comments/additions/corrections are in BOLDFACE. 2.1 Carbohydrates and proteins are linear polymers. What types of molecules combine to form these polymers? ANS: Sugars

More information

Introduction to Sexual Reproduction and Meiosis (Sex and the Single Gene) Part III

Introduction to Sexual Reproduction and Meiosis (Sex and the Single Gene) Part III Introduction to Sexual Reproduction and Meiosis (Sex and the Single Gene) Part III December 4th Bellwork: What are Gametes? How do Gametes differ from other Cells? Vocabulary 1. Heredity 2. Genetics 3.

More information

2. Discrete units of hereditary information consisting of duplicated DNA are called.

2. Discrete units of hereditary information consisting of duplicated DNA are called. LAB TOPIC 7 BSC 2010L (Principles of Biology 1 Laboratory, Professor Chiappone) MITOSIS AND MEIOSIS (Investigating Biology, 7 th edition) PRACTICE QUIZ QUESTIONS 1. DNA is found in structures called. (a)

More information

CELL CYCLE AND CELL DIVISION

CELL CYCLE AND CELL DIVISION 1 CH 10 CELL CYCLE & CELL DIVISION CELL CYCLE AND CELL DIVISION Growth and reproduction are characteristics of living cells and organisms. Cell Cycle The sequence of events by which a cell duplicates its

More information

Mitosis & Meiosis. Bio 103 Lecture Dr. Largen

Mitosis & Meiosis. Bio 103 Lecture Dr. Largen 1 Mitosis & Meiosis Bio 103 Lecture Dr. Largen 2 Cells arise only from preexisting cells all cells come from cells perpetuation of life based on reproduction of cells referred to as cell division 3 Cells

More information

Cell Growth and Reproduction Module B, Anchor 1

Cell Growth and Reproduction Module B, Anchor 1 Cell Growth and Reproduction Module B, Anchor 1 Key Concepts: - The larger a cell becomes, the more demands the cell places on its DNA. In addition, a larger cell is less efficient in moving nutrients

More information

LAB EXERCISE: Mitosis and Meiosis

LAB EXERCISE: Mitosis and Meiosis LAB EXERCISE: Mitosis and Meiosis Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe the activities of chromosomes and microtubules in the cell cycle, including all

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Meiosis and Sexual Life Cycles Chapter 13 1 Ojectives Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid. List the phases of meiosis I and

More information

Meiosis Worksheet. Do you have ALL your parents' chromosomes? Introduction to Meiosis. Haploid vs. Diploid. Overview of Meiosis NAME - PERIOD

Meiosis Worksheet. Do you have ALL your parents' chromosomes? Introduction to Meiosis. Haploid vs. Diploid. Overview of Meiosis NAME - PERIOD Meiosis Worksheet NAME - PERIOD Do you have ALL your parents' chromosomes? No, you only received half of your mother's chromosomes and half of your father's chromosomes. If you inherited them all, you

More information

Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes

Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section BCOR 011, Exam 3 Name KEY Section Multiple Choice: Select the best possible answer. 1. A parent cell divides to form two genetically identical daughter cells in the nuclear process of mitosis. For mitosis

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact structures called chromosomes. These are rod-shaped structures made

More information

Chapter 10 Outline and Terms

Chapter 10 Outline and Terms Chapter 10 Outline and Terms 10.1. Halving the Chromosome Number (p. 160) A. Sexual reproduction 1. Requires gamete formation and then fusion of gametes to form a zygote. 2. If gametes contained same number

More information

The cell cycle, mitosis and meiosis

The cell cycle, mitosis and meiosis The cell cycle, mitosis and meiosis Learning objective This learning material is about the life cycle of a cell and the series of stages by which genetic materials are duplicated and partitioned to produce

More information

Abnormalities of Chromosome Structure

Abnormalities of Chromosome Structure Abnormalities of Chromosome Structure Structural rearrangements result from chromosome breakage, followed by reconstitution in an abnormal combination. Whereas rearrangements can take place in many ways,

More information

Mitosis and Meiosis Interphase: Cell growth and chromosome duplication

Mitosis and Meiosis Interphase: Cell growth and chromosome duplication and Meiosis 1. Students should be able to state why cells divide. 2. Students will draw and identify each phase of mitosis and meiosis and describe the main characteristics of each. 3. Students should

More information

New cells are produced from existing cells. In this chapter we examine the

New cells are produced from existing cells. In this chapter we examine the 51 Unit 2A Chapter 5 New cells Unit content Cellular structures provide for cell division mitosis and meiosis. Mitosis: stages of mitosis resulting in two genetically identical cells for growth and repair

More information

The Continuity of Life How Cells Reproduce

The Continuity of Life How Cells Reproduce The Continuity of Life How Cells Reproduce Cell division is at the heart of the reproduction of cells and organisms Organisms can reproduce sexually or asexually. Some organisms make exact copies of themselves,

More information

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells Cell Growth and Reproduction 1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells A. is half of that of the parent cell. B. remains the same as in the

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Los Angeles Mission College Biology 3 Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial

More information

Multiple Choice Review Mitosis & Meiosis

Multiple Choice Review Mitosis & Meiosis Multiple Choice Review Mitosis & Meiosis 1. Which of the following accurately describes the one of the major divisions of mitosis? a. During the mitotic phase, cells are performing their primary function

More information

Mitosis vs. Meiosis. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis.

Mitosis vs. Meiosis. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and

More information

The correct answer is b DNA and protein B. Answer b is correct. When DNA binds with histone proteins it forms chromatin.

The correct answer is b DNA and protein B. Answer b is correct. When DNA binds with histone proteins it forms chromatin. 1. Which of the following is NOT involved in binary fission in prokaryotes? a. Replication of DNA b. Elongation of the cell c. Separation of daughter cells by septum formation d. Assembly of the nuclear

More information

Lecture 3 Cell division: mitosis and meiosis

Lecture 3 Cell division: mitosis and meiosis Lecture 3 Cell division: mitosis and meiosis CAMPBELL BIOLOGY Chapter 8 1 The Cell Division Cycle Almost 90% of the cycle is taken up with Interphase during which DNA in the nucleus is replicated Mitosis

More information

C12. One of the parents may carry a balanced translocation between chromosomes 5 and 7. The phenotypically abnormal offspring has inherited an

C12. One of the parents may carry a balanced translocation between chromosomes 5 and 7. The phenotypically abnormal offspring has inherited an C1. Duplications and deficiencies involve a change in the total amount of genetic material. Duplication: a repeat of some genetic material Deficiency: a shortage of some genetic material Inversion: a segment

More information

CIBI Midterm Examination III November 2005

CIBI Midterm Examination III November 2005 Name: CIBI3031-070 Midterm Examination III November 2005 Multiple Choice In each blank, identify the letter of the choice that best completes the statement or answers the question. 1. If a parent cell

More information

Name Period. 9. How can the two daughter cells be identical if the cells split into two cells?

Name Period. 9. How can the two daughter cells be identical if the cells split into two cells? HONORS BIOLOGY CHAPTER 8 STUDY GUIDE Name Period READ pp. 126-7 Cell Division On the blanks write AR for asexual reproduction and SR for sexual reproduction: 1. requires two parents 2. the offspring are

More information

1 Chapter 11 - Chromosome Mutations

1 Chapter 11 - Chromosome Mutations 1 Chapter 11 - Chromosome Mutations Questions to be considered: 1) how are changes in chromosome number (different from haploid or diploid) defined? 2) how do changes in chromosome number occur? 3) what

More information

Chapter 10 Active Reading Guide Meiosis and Sexual Life Cycles

Chapter 10 Active Reading Guide Meiosis and Sexual Life Cycles Name: AP Biology Mr. Croft Chapter 10 Active Reading Guide Meiosis and Sexual Life Cycles Section 1 1. Let s begin with a review of several terms that you may already know. Define: gene: locus: gamete:

More information

TWO major types of cell division take place in flowering

TWO major types of cell division take place in flowering Cell Division TWO major types of cell division take place in flowering plants. They are mitosis and meiosis. Mitosis, along with cytokinesis, involves the division of cells for growth and development.

More information

2015 Pearson Education, Inc. MEIOSIS AND CROSSING OVER

2015 Pearson Education, Inc. MEIOSIS AND CROSSING OVER MEIOSIS AND CROSSING OVER 8.11 Chromosomes are matched in homologous pairs In humans, somatic cells have chromosomes forming 23 pairs of homologous chromosomes. Somatic cells are cells all cells of the

More information

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States:

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 4.1 Cell Division and Genetic Material pg. 160 The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 1. All living things are composed of one or more cells.

More information

EXPERIMENT #8 CELL DIVISION: MITOSIS & MEIOSIS

EXPERIMENT #8 CELL DIVISION: MITOSIS & MEIOSIS Introduction Cells, the basic unit of life, undergo reproductive acts to maintain the flow of genetic information from parent to offspring. The processes of mitosis and meiosis are cellular events in which

More information

A. Homologous chromosomes divide in Meiosis l and sister. B. Homologous chromosomes divide in Meiosis ll and sister

A. Homologous chromosomes divide in Meiosis l and sister. B. Homologous chromosomes divide in Meiosis ll and sister SC.912.L.16.17 1) Somatic cells undergo mitosis whereas gamete cells undergo meiosis. Mitosis takes place throughout the lifetime of an organism. What is the biggest difference between these processes?

More information

Exercise 1: Q: B.1. Answer Cell A: 2 Q: B.3. Answer (a) Somatic (body). CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME. Cell B: 4 Q: B.

Exercise 1: Q: B.1. Answer Cell A: 2 Q: B.3. Answer (a) Somatic (body). CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME. Cell B: 4 Q: B. CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME Exercise 1: Q: B.1 Cell A: 2 Cell B: 4 Q: B.2 (a) - Metaphase. (b) - Telophase. (c) - Prophase. (d) - Anaphase. Q: B.3 (a) Somatic (body). (b) Four.

More information

Workshop: Cellular Reproduction via Mitosis & Meiosis

Workshop: Cellular Reproduction via Mitosis & Meiosis Workshop: Cellular Reproduction via Mitosis & Meiosis Introduction In this workshop you will examine how cells divide, including how they partition their genetic material (DNA) between the two resulting

More information

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs.

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs. 1. The Law of Segregation: Genes exist in pairs and alleles segregate from each other during gamete formation, into equal numbers of gametes. Progeny obtain one determinant from each parent. 2. The Law

More information

Lab 10 Mitosis. Background. Mitosis. Prokaryotic fission. Prophase During prophase, the chromatin. Eukaryotic cell division

Lab 10 Mitosis. Background. Mitosis. Prokaryotic fission. Prophase During prophase, the chromatin. Eukaryotic cell division Lab 10 Mitosis Background Reproduction means producing a new organism from an existing organism. The new offspring must receive hereditary information and enough cytoplasmic material to maintain its own

More information

growth and tissue repair in multicellular organisms (mitosis)

growth and tissue repair in multicellular organisms (mitosis) Cell division: mitosis and meiosis I. Cell division -- introduction - roles for cell division: reproduction -- unicellular organisms (mitosis) growth and tissue repair in multicellular organisms (mitosis)

More information

Sexual Reproduction and Meiosis

Sexual Reproduction and Meiosis 12 Sexual Reproduction and Meiosis Concept Outline 12.1 Meiosis produces haploid cells from diploid cells. Discovery of Reduction Division. Sexual reproduction does not increase chromosome number because

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Asexual Reproduction in Eukaryotes: Mitosis

Asexual Reproduction in Eukaryotes: Mitosis Asexual Reproduction in Eukaryotes: Mitosis The Argentine band The real thing going on inside their cells Nuclear Genomes and Chromosomes Genome size in bp (or kbp or Mbp or Gbp) = C value S. cerevisiae

More information

Meiosis. Ch 13 BIOL 221. Chromosome number. Overview of Meiosis. Human cells - Diploid. 46 total chromosomes per cell Diploid number

Meiosis. Ch 13 BIOL 221. Chromosome number. Overview of Meiosis. Human cells - Diploid. 46 total chromosomes per cell Diploid number Ch 13 BIOL 221 Chromosome number Human cells - Diploid 46 total chromosomes per cell 46 - Diploid number Humans cells - 23 pairs of homologous chromosomes 23 - Haploid number The number of different kinds

More information

MEIOSIS AND CROSSING OVER (The story of how we make more) Copyright 2009 Pearson Education, Inc.

MEIOSIS AND CROSSING OVER (The story of how we make more) Copyright 2009 Pearson Education, Inc. MEIOSIS AND CROSSING OVER (The story of how we make more) You have 46 Chromosomes or 23 homologous pairs 23 chromosomes come from each parent for a total of 46 One pair of chromosomes are sex chromosomes

More information

Introduction Chapter 8. Introduction. 8.1 Cell division plays many important roles in the lives of organisms. Cancer cells

Introduction Chapter 8. Introduction. 8.1 Cell division plays many important roles in the lives of organisms. Cancer cells Introduction Chapter 8 Cancer cells start as normal body cells, get genetic mutations, Divide uncontrollably, and run amok, causing disease. Introduction In a healthy body, cell division allows for growth,

More information

Cell Cycle and Cell Division

Cell Cycle and Cell Division Very Short Answer Type Questions Cell Cycle and Cell Division 1. Between a prokaryote and a eukaryote, which cell has a shorter cell division time? A: Prokaryotes have shorter cell division time. 2. Among

More information

Go to the following web address:

Go to the following web address: Meiosis web quest. Usually, a cell or an organism has two sets of chromosomes - one set from the mother and another set from the father. In a diploid state the haploid number is doubled, thus, this condition

More information

Chapter 8 Cell division. Review

Chapter 8 Cell division. Review Chapter 8 Cell division Mitosis/Meiosis Review This spot that holds the 2 chromatid copies together is called a centromere The phase of the cell cycle in which cells stop dividing all together. G 0 Cell

More information

Milestones of bacterial genetic research:

Milestones of bacterial genetic research: Milestones of bacterial genetic research: 1944 Avery's pneumococcal transformation experiment shows that DNA is the hereditary material 1946 Lederberg & Tatum describes bacterial conjugation using biochemical

More information

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes.

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology has had-and will havemany important

More information

Lecture 2: Mitosis and meiosis

Lecture 2: Mitosis and meiosis Lecture 2: Mitosis and meiosis 1. Chromosomes 2. Diploid life cycle 3. Cell cycle 4. Mitosis 5. Meiosis 6. Parallel behavior of genes and chromosomes Basic morphology of chromosomes telomere short arm

More information

Some word roots useful for Lab exercise 2 and 3:

Some word roots useful for Lab exercise 2 and 3: Some word roots useful for Lab exercise 2 and 3: a- = not or without (asexual: type of reproduction not involving fertilization) ana- = up, throughout, again (anaphase: the mitotic stage in which the chromatids

More information

GENETICS OF BACTERIA AND VIRUSES

GENETICS OF BACTERIA AND VIRUSES GENETICS OF BACTERIA AND VIRUSES 1 Genes of bacteria are found in bacterial chromosomes Usually a single type of chromosome May have more than one copy of that chromosome Number of copies depends on the

More information

www.njctl.org PSI Biology Mitosis & Meiosis

www.njctl.org PSI Biology Mitosis & Meiosis Mitosis and Meiosis Mitosis Classwork 1. Identify two differences between meiosis and mitosis. 2. Provide an example of a type of cell in the human body that would undergo mitosis. 3. Does cell division

More information

Meiosis. The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n)

Meiosis. The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n) MEIOSIS Meiosis The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n) Meiosis is sexual reproduction. Two divisions (meiosis I and meiosis

More information

Proses apa yang menyebabkan terjadinya Variasi dan diversitas?

Proses apa yang menyebabkan terjadinya Variasi dan diversitas? Proses apa yang menyebabkan terjadinya Variasi dan diversitas? MEIOSIS, THE BASIS OF SEXUAL REPRODUCTION Why do kids look different from the parents? How are they similar to their parents? Why aren t brothers

More information

Genetics. Chapter 9. Chromosome. Genes Three categories. Flow of Genetics/Information The Central Dogma. DNA RNA Protein

Genetics. Chapter 9. Chromosome. Genes Three categories. Flow of Genetics/Information The Central Dogma. DNA RNA Protein Chapter 9 Topics - Genetics - Flow of Genetics/Information - Regulation - Mutation - Recombination gene transfer Genetics Genome - the sum total of genetic information in a organism Genotype - the A's,

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Example 2. What is meant by the cell cycle? Concept 12.1

More information

Cell Division & Its Regulation: (Mitosis & Meiosis) (Outline) Why do cells divide? New Terms: gamete, zygote, somatic cells, germ cells, haploid, and

Cell Division & Its Regulation: (Mitosis & Meiosis) (Outline) Why do cells divide? New Terms: gamete, zygote, somatic cells, germ cells, haploid, and Cell Division & Its Regulation: (Mitosis & Meiosis) (Outline) Why do cells divide? New Terms: gamete, zygote, somatic cells, germ cells, haploid, and diploid. Types of eukaryotic cell division- Mitosis

More information

Lab 6. Cellular Reproduction: Mitosis and Meiosis

Lab 6. Cellular Reproduction: Mitosis and Meiosis Lab 6. Cellular Reproduction: Mitosis and Meiosis Cell Division - Mitosis Sexually-reproducing, multicellular organisms begin life as a single cell, the fertilized egg. This cell, the zygote, through the

More information

CELL DIVISION: MITOSIS AND MEIOSIS

CELL DIVISION: MITOSIS AND MEIOSIS CELL DIVISION: MITOSIS AND MEIOSIS How do eukaryotic cells divide to produce genetically identical cells or to produce gametes with half the normal DNA? BACKGROUND One of the characteristics of living

More information

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. II - Mitosis, Cytokinesis, Meiosis and Apoptosis - Michelle Gehringer

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. II - Mitosis, Cytokinesis, Meiosis and Apoptosis - Michelle Gehringer MITOSIS, CYTOKINESIS, MEIOSIS AND APOPTOSIS Michelle Gehringer Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa Keywords: Cell cycle, checkpoints, growth factors,

More information

Cell Cycle Control Systems

Cell Cycle Control Systems Cell Cycle Phases Dividing cells are always in one of two phases: the mitotic phase or interphase. The mitotic phase (M phase) consists of mitosis and cytokinesis. Interphase consists of G 1, S and G 2

More information

MEIOSIS. Pages

MEIOSIS. Pages MEIOSIS Pages 470 483 Meiosis is the division of sex cells called gametes eggs and sperm. It involves the halving of genetic material. This means that an egg or sperm would have a monoploid number of chromosomes.

More information

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3. Chapter 3 Cell Division Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.3: Mock Meiosis Goals Following this exercise students should be able to Recognize

More information

MITOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

MITOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU MITOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU Mitosis is the process by which a cell duplicates In mitosis, chromosomes in the cell nucleus are separated into two identical sets of chromosomes, each

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Reproduction Growth and development Tissue removal Example

More information

DNA, genes and chromosomes

DNA, genes and chromosomes DNA, genes and chromosomes Learning objectives By the end of this learning material you would have learnt about the components of a DNA and the process of DNA replication, gene types and sequencing and

More information

Cell Division Mitosis and Meiosis

Cell Division Mitosis and Meiosis Cell Division Mitosis and Meiosis students will describe the processes of mitosis and meiosis o define and explain the significance of chromosome number in somatic and sex cells o explain the events of

More information

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis 4.2 Meiosis Assessment statements State that meiosis is a reduction division of a diploid nucleus to form haploid nuclei. Define homologous chromosomes. Outline the process of meiosis, including pairing

More information

Target Practice. Cellular Divisions, Molecular Basis of Inheritance, Gene to Protein, and Regulation of Gene Expression. Critical Vocabulary

Target Practice. Cellular Divisions, Molecular Basis of Inheritance, Gene to Protein, and Regulation of Gene Expression. Critical Vocabulary Target Practice Cellular Divisions, Molecular Basis of Inheritance, Gene to Protein, and Regulation of Gene Expression Critical Vocabulary Chapter 12: Cell cycle, genome, chromosomes, somatic cells, gametes,

More information

Lab 8 Mitosis and Meiosis

Lab 8 Mitosis and Meiosis Lab 8 Mitosis and Meiosis Introduction: All new cells come from previously existing cells. New cells are formed by karyokinesis (the process in cell division that involves replication of the cell s nucleus)

More information

General Biology 1004 Chapter 8 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 8 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C.

More information

Chapter 8. The Cellular Basis of Reproduction and Inheritance

Chapter 8. The Cellular Basis of Reproduction and Inheritance Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education,

More information

The Process of Cell Division. Lesson Overview. Lesson Overview. Cell Growth and Development

The Process of Cell Division. Lesson Overview. Lesson Overview. Cell Growth and Development Lesson Overview Cell Growth and Development Chromosomes The genetic information that is passed on from one generation of cells to the next is carried by chromosomes. Every cell must copy its genetic information

More information

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as 1. True or false? The chi square statistical test is used to determine how well the observed genetic data agree with the expectations derived from a hypothesis. True 2. True or false? Chromosomes in prokaryotic

More information

Mitosis and Cytokinesis

Mitosis and Cytokinesis B-2.6 Summarize the characteristics of the cell cycle: interphase (called G1, S, G2); the phases of mitosis (called prophase, metaphase, anaphase, and telophase); and plant and animal cytokinesis. The

More information

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites.

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites. 1. A recombinant DNA molecules is one that is a. produced through the process of crossing over that occurs in meiosis b. constructed from DNA from different sources c. constructed from novel combinations

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information