Evaluating Asbestos Exposure, Testing, and Decontamination Within. The Orange County Fire Authority. Kirk B. Wells. Orange County Fire Authority

Size: px
Start display at page:

Download "Evaluating Asbestos Exposure, Testing, and Decontamination Within. The Orange County Fire Authority. Kirk B. Wells. Orange County Fire Authority"

Transcription

1 Evaluating Asbestos Exposure 1 Running head: EVALUATING ASBESTOS EXPOSURE Evaluating Asbestos Exposure, Testing, and Decontamination Within The Orange County Fire Authority Kirk B. Wells Orange County Fire Authority Irvine, California

2 Evaluating Asbestos Exposure 2 CERTIFICATION STATEMENT I hereby certify that this paper constitutes my own product, that where the language of others is set forth, quotation marks so indicate, and that appropriate credit is given where I have used the language, ideas, expressions, or writings of another. Assistance in obtaining internal agency documentation and outside vendor information was received by the following individuals: Mr. Jonathan Wilby, Industrial Hygienist; Mr. Joe Ortega, Materials Technician; Mrs. Monica Dorfmeyer, Purchasing Agent; and Mr. Russ Snider, Service Center Manager. All of these individuals are employed by the Orange County Fire Authority. Signed:

3 Evaluating Asbestos Exposure 3 Abstract The problem was that the Orange County Fire Authority has experienced difficulties in obtaining local testing, identification, and remediation of asbestos exposures following emergency incidents. The purpose of the research was to evaluate local methods of asbestos testing and decontamination for OCFA personnel and equipment. By using action research methods, the research reviewed factors of asbestos exposure, current methods of asbestos identification, current methods of testing, and current methods of decontamination and remediation. Utilizing a literature review, internet search, internal document review, collection and analysis of data, implementation of a national survey, and personal interviews, a new standard operating procedure and future recommendations were developed.. The researcher evaluated the following four questions: (a) What methods are other fire departments utilizing; (b) What are the industry standards for testing and decontamination; (c) What methods of local testing and decontamination are available; and (d) What is the feasibility of the OCFA to perform its own testing? The results indicated that firefighters are routinely exposed to asbestos products and other hazardous materials. Yet, even though the hazards are widely known and studied, firefighters continue to operate at emergency scenes without adequate respiratory protection. Additionally, although most fire departments within the United States consider asbestos exposure to be an important issue, few have procedures for adequate testing and remediation. This research has enabled the Orange County Fire Authority to develop new procedures for internal sampling, with local and out-of-state decontamination options identified. Results from this research may be found useful to other fire departments and industries facing similar concerns. Recommended were offered for the implementation of the new procedures and for future work to continue to improve firefighter safety and survival.

4 Evaluating Asbestos Exposure 4 Table of Contents Abstract...3 Table of Contents...4 Introduction...5 Background and Significance...6 Literature Review...9 Procedures...22 Results...26 Discussion...38 Recommendations...41 References...42 Appendices Appendix A: Examples for Fire Contaminants...46 Appendix B: Survey and Results...47 Appendix C: New Standard Operating Procedure...53 Tables Table 1: Summary of National Survey Findings...57 Table 2: Summary of Testing and Cleaning Expenses...59 Table 3: Local Vendor Cost Estimates...60 Table 4: Out of State Vendor Cost Estimates...61 Table 5: Summary of OCFA Costs for Testing and Cleaning...62

5 Evaluating Asbestos Exposure 5 Introduction The Orange County Fire Authority (OCFA) provides service to nearly 1.7 million residents in 23 cities, encompassing an area of approximately 575 square miles, including 175,000 acres of wild lands and wild land urban interface (WUI) regions (Orange County Fire Authority [OCFA], 2012b). Due to the prevalence of asbestos in buildings constructed prior to 1990 (Orange County Clerk Recorder [OCCR], 2003), OCFA s firefighters risk exposure to asbestos products during firefighting and overhaul operations. Exposure to asbestos and other toxic and carcinogenic substances pose a significant threat to the health of OCFA s firefighters (J. Wilby, personal communication, March 20, 2012) The problem is that the OCFA has experienced difficulties in obtaining local testing, identification, and remediation of asbestos exposures following emergency incidents. The purpose of this research is to evaluate local methods of asbestos testing and decontamination for OCFA personnel and equipment. Action research was utilized to study the historical and causal factors of asbestos exposure to firefighters; evaluate the current methods of identifying the presence of asbestos in buildings; evaluate the current methods of testing and exposure; evaluate current efforts of decontamination and remediation; utilize a survey to study the national trends; interview key personnel; develop a new standard operating procedure; and provide recommendations for future work. This research will address the following questions: (a) what methods are other fire departments utilizing; (b) what are the industry standards for testing and decontamination; (c) what local methods of testing and decontamination are available; and (d) what is the feasibility of the OCFA to perform its own testing and decontamination?

6 Evaluating Asbestos Exposure 6 Background and Significance Orange County, California, lies within the southern California coastal region and is bordered by the Pacific Ocean and three adjacent counties: Los Angeles County, San Diego County, and Riverside County. The County of Orange is composed of 34 incorporated cities and spans nearly 800 square miles. The populace of Orange County is considered moderately affluent, both for business and residence. The county contains a population of over 3 million residents. Geography of the county is a blend of urban, suburban, coastal, and natural wilderness areas. The county also has numerous residential developments which are directly adjacent to, and within, the wilderness lands (Orange County Fire Authority, 2012a). The OCFA is an all-risk agency which operates a regional delivery system. Emergency services are delivered from 71 fire stations by 1040 full-time firefighters, 49 chief officers, and 230 volunteer firefighters. The department also possesses a 20 acre headquarters complex, housing nearly 240 professional staff members. In addition to its contract cities, the OCFA provides protection to all county unincorporated areas, state responsibility areas, and federal responsibility areas. The department is governed by a 25 member board of directors, with one representative from each of the twenty three contract cities and two representatives from the County of Orange (OCFA, 2012b). In 2011, the OCFA responded to 87,958 emergency calls with 163,905 unit responses (OCFA, 2012b). The current annual operating budget for is $331 million dollars (Orange County Fire Authority, 2012c). Prior to the 1950s, Orange County was primarily an agricultural region, with crop production and cattle ranches being the most important part of the economy. Much of the county s growth in the first half of the 20 th century was fueled by new transportation: electric railways, highways, major boulevards, and major freeways. During World War II, several

7 Evaluating Asbestos Exposure 7 military installations were established, fueling the need for new housing and commercial construction. By the mid-1950 s, the county s farms and ranches were being replaced by new housing at a rate faster than any other community in the United States. Building continued through the 1960 s, with numerous master-planned communities being built on former farmland in the central and southern portion of the county (OCCR, n.d.). As late as the 1980s, asbestos has been utilized within the United States in building construction in various common materials: plaster, drywall, insulation, roofing, floor tiles, and adhesives. Some of the protective gear that firefighters utilized during this time also contained asbestos: gloves, blankets, and aluminized asbestos suits (Asbestos.net, 2012). Based on building permit data, the majorities of existing residential and commercial structures in Orange County were built prior to 1990, indicating that many forms of asbestos are contained in their building materials (Orange County Clerk Recorder, 2003). For the past several years, the OCFA has attempted to reduce the risk to its firefighters through exposure to asbestos. These efforts have ranged from the firefighters performing their own cleaning of personal protective equipment (PPE) at the emergency scene and the fire station; the agency performing cleaning of PPE, utilizing department laundering facilities; hiring outside laboratories to perform independent testing; and shipping the contaminated PPE out of state for cleaning, decontamination, and testing. The various procedures used by the OCFA have hampered the ability to provide timely information about the presence of asbestos products, both at the emergency scene and by exposure of these products to the firefighters (J. Wilby and R. Snider, personal communication, March 20, 2012). The significance in accurately identifying and mitigating asbestos exposure is the reduction of long-term health risks to the OCFA s firefighters. Minimal and chronic exposures

8 Evaluating Asbestos Exposure 8 have been shown to cause deleterious health effects such as asbestosis, mesothelioma, and various cancers. Due to the long-term nature of these illnesses, most often the effects and symptoms of these exposures are not known for ten to twenty years (American Lung Association [ALA], 2012). This research will evaluate the incidence of asbestos presence in constructed buildings; identify the short-term and long-term health effects of asbestos exposure; review historical and current procedures for identification, mitigation, and decontamination of firefighters and their PPE; and draft new procedures to be utilized within the OCFA. Results from this study could be used to better identify the need for timely and effective asbestos testing and decontamination to reduce the risks to firefighters and minimize long term effects of exposures. The results of this study may also be found useful to other municipalities, fire departments, construction industries, military personnel, mining operations, and individuals and industries facing similar issues. The research presented within this report is directly related to the goals and objectives of the United States Fire Administration (USFA) course, Executive Analysis of Fire Service Operations in Emergency Management. This course is delivered during the third year of the Executive Fire Officer Program at the National Fire Academy, in Emmitsburg, Maryland. The course curriculum is designed to prepare senior fire officers for the administrative skills necessary to manage fire and rescue operations. Specifically related to this research is the course focus on risk assessment, documentation, damage assessments, standards, legal mandates, and emergency operations. (United States Fire Administration [USFA], 2008). The USFA has identified five operational objectives to provide targets of achievement for America s fire service. This research may to help improve the capabilities of fire departments through two of the five objectives: Objective c: Reduce the loss of life from fire of firefighters,

9 Evaluating Asbestos Exposure 9 and Objective e: To respond appropriately in a timely manner to emerging issues (USFA, 2008, p. II-2). Literature Review The literature review for this research was focused on obtaining information pertaining to asbestos materials, building construction, health effects of asbestos exposure, and processes of identifying and mitigating asbestos exposure for firefighters and other workers. Reviewed literature included public and private research studies, journals, periodicals, web sites, and other documentation located via internet search engines. The author noted a significant amount of other literature and data regarding other industries, such as mining and shipbuilding. Selected bodies of work in these other industries were reviewed, however, it was noted that many contained similar or duplicate data as the works pertaining to the fire service with regards to asbestos exposure, identification, and health effects. Most of these other works were not included so as not to present redundant review. The literature from these other industries which contained data and information unique from the fire service, were reviewed and included for their relevancy to this research. According to the American Cancer Society ([ACS], 2010), asbestos is a naturally occurring mineral, found in soil and rocks, which are configured as bundles of fibers. Within the classification of asbestos, there are two types of fibers which are most common: serpentine and amphibole. Serpentine fibers are curly, are most commonly used in industrial applications, and are known as chrysotile, or white asbestos. Amphibole fibers are straight and needle-like, and are commonly known as amosite, crocidolite, tremolite, and anthophyllite. It is the amphibole fibers which are considered more likely to cause cancer. Asbestos fibers are strong, resistant to heat and chemicals, and do not conduct electricity.

10 Evaluating Asbestos Exposure 10 Until approximately 1990, asbestos continued to be utilized in building materials in the United States. These asbestos containing materials (ACM) included plaster, drywall, insulation, flooring tiles, roofing, and adhesives (Asbestos.net, 2012). During the second half of the 20 th century, better recognition of asbestos related cancers resulted in new measures to reduce the risks of exposure, including the establishment of exposure standards. Since the 1960 s, a dramatic decrease in the importation and use of asbestos fibers and the use of alternative materials has caused a dramatic drop in the incidence of asbestos exposure. However, a considerable risk of exposure continues to be problematic, due to its presence in older constructed buildings (ACS, 2010). Modern exposure typically occurs during renovations and deconstruction of these building materials, releasing asbestos fibers. However, minimal to no exposure occurs unless the ACM are disturbed and the fibers released into the air. Ingestion can also cause by the consumption of foods and liquids which are contaminated with fibers and dust. Exposure by Ingestion also been caused by the inhalation of asbestos fibers, coughing the asbestos into the mouth and throat, and swallowing the fiber-laden saliva into the digestive tract. (ACS, 2010). Exposure to asbestos causes two primary health effects, asbestosis and mesothelioma. According to the American Lung Association, (2012), asbestosis is caused by a scarring of the lung tissue. This is affected by the inhalation of asbestos fibers, which are lodged deep into the lungs, where scar tissue is built up by the lungs to protect the body against the foreign object. This causes the lung tissue and chest wall lining to thicken and harden, which results in difficulty breathing and a corresponding decrease in oxygen absorption at the alveolar and cellular level. Symptoms are typically not detected for over 20 years following exposure. Between 1994 and 2004, there were 3211 documented deaths in the United States due to asbestosis (ALA, 2012).

11 Evaluating Asbestos Exposure 11 Mesothelioma is a disease that affects the cells lining the lungs, and other thoracic and abdominal organs. Mesothelioma is identified as a form of cancer and is manifested by malignant tumors growing in the chest cavity. (ALA, 2012). Cancer Monthly (2012) offers that asbestos exposure is the major risk factor in the diagnosis of mesothelioma. Many theories exist as to how the asbestos fiber causes the disease. Some of these are the thought that the asbestos fiber can cause mutations to DNA at the cellular level and that the fibers may cause inflammatory issues which precludes the development of cancer. In the United States, mesothelioma is relatively uncommon, affecting 2000 to 3000 individuals annually. Common symptoms include shortness of breath, persistent cough, pain in the rib cage, weigh loss, abdominal pain, fever, anemia, and blood clotting problems. Symptoms of the disease are slow to appear, usually between 35 to 50 years following exposure. The disease primarily affects males over 65 years and is most common in the white race. Often, the disease is in its advanced stage by the times symptoms appear, with average survival following diagnosis of less than one year (ALA, 2012). The American Cancer Society (2010) states, Unfortunately, the risk of mesothelioma does not drop with time after exposure to asbestos; [rather], the risk appears to be lifelong. Asbestos exposure has also been shown to cause mesothelioma in individuals contaminated through secondary exposures. These exposures are noted to have been caused by having contact with other individuals who are contaminated with asbestos fibers on their clothing or in their hair. Cases have been identified of women who have been diagnosed with mesothelioma due to handling their husband s work clothing; and children who have hugged their fathers while they were wearing contaminated work clothing, causing the release and inhalation of fibers (Cancer Monthly, 2012).

12 Evaluating Asbestos Exposure 12 Various studies have also linked other types of cancers to workplace exposure to asbestos. Correlations have been drawn to cancers of the larynx, ovaries, esophagus, stomach, colon, and kidney. It is thought that swallowing asbestos fibers may be a contributing factor (ACS, 2010). As a naturally occurring mineral, asbestos can be found in outdoor air and drinking water. Naturally occurring asbestos exists in natural geologic deposits. In 50 of 58 counties within California, and in 19 other states, natural shallow deposits exist in close proximity to populated areas (Raloff, 2006). Due to the prevalence of asbestos contained within existing constructed buildings, firefighters are exposed to the product as well as other harmful substances at the fire scene (LeMasters et al., 2006). It has been long recognized that firefighters risk respiratory health issues as a result of their exposures during firefighting operations (Fabian et al., 2010). Fabian notes that firefighters face exposure to many products during firefighting: asphyxiants, irritants, allergens, and other carcinogenic materials. A table of fire contaminant examples and their toxicological effects developed by Barker (2005) can be reviewed in Appendix A. In 2000, the study, Characterization of firefighter exposures during fire overhaul, was conducted in Phoenix, Arizona at the Phoenix Fire Department. This study was commissioned to analyze personal and area samples of surface and air contamination (Bolstad-Johnson, et al., 2000) and was conducted by members of the Phoenix Fire Department (PFD), the University of Arizona, Arizona State University, and the City of Phoenix Personnel Department. This research was undertaken due to minimal available information pertaining to firefighter exposures during the overhaul phase of fire operations, when firefighters search for hidden fire inside walls, ceilings, and attics. Oftentimes, firefighters are performing these

13 Evaluating Asbestos Exposure 13 activities without respiratory protection. The authors note that although there are many studies which have discussed the need and value for the use of Self Contained Breathing Apparatus (SCBA) during firefighting activities, few [studies] suggest the need for respiratory protection during overhaul. The authors offer the following definition of overhaul: Fire overhaul is defined as the stage in firefighting where fire suppression is complete and firefighters are searching the structure for hidden fire or hot embers which may be found above ceilings, in between walls, or in other obscure areas. The overhaul phase of a fire lasts an average of 30 minutes. It is during this phase of a fire, when there is little or no smoke in the environment, that a firefighter is most likely to remove his/her respirator face piece and work in this environment without respiratory protection. (p. 5) Additionally, prior to the study, PFD utilized the presence of carbon monoxide (CO), as the primary measurement tool to determine whether respiratory protection was needed during overhaul operations. The measurement of CO by itself does not provide information on other hazardous substances, gases, and airborne particulates. During PFD study, samples were collected and tested for presence of asbestos, metals (Cd, Cr, Pb), and total dust. PFD hazardous materials firefighters were trained as industrial hygiene assistants and provided sampling supplies to use when responding to the structure fires. The firefighters were trained in sampling techniques and chain-of-custody techniques to ensure that purity of sampling was achieved. The sampling was conducted during the overhaul phase of 25 structure fires. Personal samples were collected for organic compounds, acids, dust, and cyanides. Gas analyzers were used to continuously monitor CO, hydrogen cyanide, nitrogen dioxide, and sulfur dioxide. Two sampling pumps were utilized in two areas at each fire scene: area of origin and an

14 Evaluating Asbestos Exposure 14 area adjacent to the origin where overhaul activities were occurring. Within each area, one pump was dedicated to the collection of airborne asbestos fibers and the other pump dedicated to collection of total dust and metals. All samples were submitted to an American Industrial Hygiene Association (AIHA) accredited laboratory for analysis. Following analysis, concentrations of most substances found exceeded the published ceiling values by accepted standards (NIOSH, ACGIH). Measurements of CO did not indicate other products of combustion during initial 10 minute averages. The results of the PFD study indicate that firefighters should use respiratory protection during overhaul and that measurements of CO should not be utilized as an indicator for other contaminants present. In 2006, a report was published in the Journal of Emergency Medicine: Cancer risk among firefighters: A review and meta-analysis of 32 studies. This meta-analysis was conducted by the University of Cincinnati College of Medicine. The objective of the researchers (LeMasters, et al., 2006) was to review 32 studies on firefighters using a meta-analysis to determine cancer risk. The authors offer in their preface that firefighters face many different exposures to gases, particulates, fumes, and other pyrolized materials. They note, These exposures can be volatile organic compounds, metals, minerals such as asbestos, and gases with toxic and acute effects (p. 1189). Unnecessary exposures can occur when respiratory protection is needed, yet not used. The attacks on the World Trade Center (WTC) in 1991 have heightened concerns regarding the falling debris and its effects from particulate exposure. Known products at the WTC include asbestos, pulverized glass, cement, soot, and other products.

15 Evaluating Asbestos Exposure 15 The results of the study indicate that there is a probable cancer risk for firefighters to contract multiple myeloma, non-hodgkin lymphoma, prostate, and testicular cancers. Eight other cancers are noted as probable for being associated with activities of firefighters. The authors conclude that their findings are consistent with previous studies that there is an elevated risk for multiple myeloma among firefighters, with a probable association with non-hodgkin lymphoma, prostate, and testicular cancers. Underwriters Laboratories (UL) developed a research study in 2010 by authors Fabian, et al. The focus of this research was to look at gaps identified in previous studies pertaining to exposures during firefighting operations from products of combustion. Part of the study was conducted within the Chicago Fire Department (CFD), by members performing personal gas monitoring during firefighting and overhaul operations. Following the fires, items which were easily replaceable (flash hoods and gloves) were obtained from the firefighters and analyzed to determine the chemical composition of the smoke residue. Additionally, the UL conducted nine full-scale tests at its laboratory, where full size props were constructed, incinerated, measured, and analyzed. A summary of the key findings from the research by Fabian, et al., (2010), indicates that when measuring products of combustion, that the results varied between different fires, depending on the size, chemical properties, and ventilation conditions of the materials being burned. A summary of specific findings which are related to this research are as noted: Synthetic materials produced more smoke than natural materials. Average particle sizes ranged from 0.04 to 0.15 microns with wood and insulation generating the smallest particles.

16 Evaluating Asbestos Exposure 16 For a given particle size, synthetic materials will generate approximately 12.5X more particles per mass of consumed material than wood based materials. Combustion of the materials generated asphyxiants, irritants, and airborne carcinogenic species that could be potentially debilitating. Ventilation was found to have an inverse relationship with smoke and gas production such that considerably higher levels of smoke particulates and gases were observed in contained fires than uncontained fires, and the smoke and gas levels were greater inside of contained structures than outside. Recommended exposure levels (IDLH, STEL, TWA) were exceeded during fire growth and overhaul stages for various agents (carbon monoxide, benzene, formaldehyde, hydrogen cyanide) and arsenic. 99+ % of smoke particles collected during overhaul were less than 1 micron in diameter. Of these 97+ % were too small to be visible by the naked eye suggesting that clean air was not really that clean. Carbon monoxide concentrations most often exceeded recommended exposure limits; however instances were observed where other gases other than carbon monoxide exceeded recommended exposure limits yet carbon monoxide did not. Collected smoke particulates contained multiple heavy metals including arsenic, cobalt, chromium, lead, and phosphorous. Carbon monoxide monitoring may provide a first line of gas exposure defense strategy but does not provide warning for fires in which carbon monoxide does not exceed recommended limits but other gases and chemicals do.

17 Evaluating Asbestos Exposure 17 The implications to health noted during this study are that during fire suppression and overhaul, multiple asphyxiants, allergens, and carcinogenic chemicals were found in the smoke. Additionally, some of the chemical compounds were noted to have the possibility for a dermal affect, where exposure through skin absorption would provide a path into the body. Many of the samples gathered during the fire incidents and at the UL laboratories contained the presence of chemicals and substances which exceeded exposure limits established by OSHA, NIOSH, and ACGIH. High levels of ultrafine particles, invisible to the naked eye and undetected through gas sampling, were noted during fire suppression and overhaul. The accumulated affects of chronic exposure to these particles have been shown to contribute to respiratory disease, and more recently, have been linked to cardiovascular diseases. The authors note the following pertaining to the inhalation of ultrafine particulates: The high efficiency of ultrafine particle deposition deep into the lung tissue can result in release of inflammatory mediators into the circulation, causing toxic effects on internal tissues such as the heart. Airborne toxics, such as metals and polycyclic aromatic hydrocarbons, can also be carried by the particles to the pulmonary interstitium, vasculature, and potentially subsequently to other body tissues, including the cardiovascular and nervous systems and liver. (p. v). It is further noted that it is possible that interactions between the individual elements during exposure could produce a synergistic effect between the agents, with future unknown deleterious effects possible. These effects could be increased respiratory complications, cardiovascular disorders, and cancers.

18 Evaluating Asbestos Exposure 18 As previously noted, the terrorist events occurring at the World Trade Center on September 11, 2001, caused a significant level of environmental and occupational exposure to the firefighters, emergency workers, and civilians who were present for the event, and who were present during the clean-up efforts. It is estimated that 12,500 firefighters employed by the Fire Department of New York (FDNY) were exposed to the dust and contaminants from the collapsed towers. Ten years after the event, a research study was released (Zeig-Owens et al., 2011), which examined the incidence of cancer to firefighters of the FDNY. This study focused on obtaining medical records and background information on FDNY members who were employed as of January 1, 1996 and in 2008, seven years after the 9/11 event. The researchers assessed 9853 men who had been employed as FDNY firefighters in 1996 and classified 8927 of them as WTC-exposed, and 926 non-wtc exposed. Cancer records through state tumor registries were obtained, with cancer cases confirmed by match. The researchers estimated the WTC-exposed rates and non-wtc exposed rates, adjusted for race, age, gender, and secular trends. The findings of the research indicated that the WTC-exposed firefighters had an approximately 10% higher incidence of cancer than of a similar demographic ratio of the general male population. When compared to non-wtc exposed firefighters, the incidence of cancer was approximately 32% higher. Additionally, a higher incidence of other disorders has been noted following 9/11: asthma, bronchitis, sinusitis, and acid reflux. The authors note that while firefighting has been associated with higher rates of cancer incidence, that previous studies have not identified clear cancer risks. This study identifies a modest excess of cancer cases to exposed firefighters, when compared to the non-wtc exposed firefighter group. Limitations to the research are noted, pertaining to ability of obtaining samples

19 Evaluating Asbestos Exposure 19 and records, differing rates of exposure at the WTC site due to length of work assignments, differing rates of exposure due to presence of light smoke versus heavy smoke, and other unintended biases. The authors discuss that they are cautious in their interpretations of their findings and conclusions, due to the short time interval following 9/11 and the expected long term nature of chronic exposures to these materials. At the time of the report, the correlation between chronic inflammation as a mediator and cancer remains speculative. Pilkington s (2009) research supports the interpretation of Zeig-Owens et al. (2011) that the recent increased numbers of firefighters and emergency workers who worked at the WTC site has begun to heighten fears that it may indicate the start of a delayed epidemic of cancer-related illness. (. 1) He notes that at the time of his article, that five firefighters and police officers had died of cancer within te past three months, the oldest at 44 years. Further, he notes that workers at the site were subjected to 90,000 liters of jet fuel, 1.8 million tons of debris, approximately 1000 tons of asbestos, as well as other pulverized building materials, office products, and chemicals. Other studies were reviewed for this research which focused on asbestos exposure, testing, and decontamination to PPE and other clothing. Of interest to this research is the review of materials used for protection utilized by workers other than firefighters. A research study conducted in Sheffield, England (Revell, 2002), investigated the towels and coveralls used by workers performing asbestos removal and remediation work. This study focused on the following three objectives: 1. Investigate the contamination of towels and coveralls used in asbestos removal hygiene units.

20 Evaluating Asbestos Exposure Investigate the effectiveness of the laundering process when decontaminating these towels and coveralls. 3. Investigate the laundries used to launder asbestos contaminated towels, particularly with regards to the safe handling of asbestos contaminated materials. (Summary section, n.p.) The research performed was based in England and focused on decontamination work for towels and asbestos worker coveralls. Safety standards at these laundries ranged from no precautions taken, to full laundry facilities installed with air locks, negative pressurization, filtering, and the use of extractors. The researchers sampled towels and coveralls from several facilities where these products were used by asbestos workers. Amosite fibers were found on the towels prior to laundering in densities of 154 f/mm 2 (fibers per square millimeter). To determine the release of fibers when agitated, the towels were placed in a rotating drum dustiness tester, producing released fiber samples of only 0.01 f/ml (fibers per milliliter). This finding was not noted as significant to the researchers, in which they note that the findings suggest that the fibers remained imbedded in the towel fabric, even after agitating in a rotating drum. The authors note that when taking into account normal workplace conditions, that the likelihood of the fibers being released from the fabric during normal use is low, reducing the exposure to workers from airborne asbestos release. Worker coveralls which were contaminated with asbestos fibers were laundered and tested in a similar manner. Laundering of the coveralls was found to be effective in removing the asbestos fibers from the fabric, with minimal fibers noted. This was an important finding and indicated to the authors that most likely the fibers were able to be removed from the coveralls

Characteristics/Applications

Characteristics/Applications Facilities Operations and Development Environmental Health & Safety 1314 Kinnear Rd. Columbus, Ohio 43212 Phone (614) 292-1284 Fax (614) 292-6404 http://fod.osu.edu The Ohio State University Asbestos Management

More information

ASBESTOS AWARENESS TRAINING

ASBESTOS AWARENESS TRAINING ALBERT EINSTEIN COLLEGE of MEDICINE of YESHIVA UNIVRESITY Substance: Asbestos CAS Registry Number: 1332-21-4 ASBESTOS AWARENESS TRAINING Synonyms: chrysotile, amosite (cummingtonite-grunerite), actinolite,

More information

ASBESTOS AWARENESS. For workers and building occupants

ASBESTOS AWARENESS. For workers and building occupants ASBESTOS AWARENESS For workers and building occupants Asbestos Awareness Asbestos is a serious health hazard commonly found in our environment today. This module is designed to provide an overview of asbestos

More information

BLR s Safety Training Presentations

BLR s Safety Training Presentations BLR s Safety Training Presentations Asbestos Safety 29 CFR 1910.1001 I. Background for the Trainer: The OSHA Asbestos Standard for general industry, found in 29 CFR 1910.1001, requires information and

More information

The Management of Asbestos at the University of Manitoba

The Management of Asbestos at the University of Manitoba The Management of Asbestos at the University of Manitoba WHAT IS ASBESTOS? Asbestos is a name given to a group of minerals which occur naturally as masses of long silky fibres. Asbestos is known for its

More information

ASBESTOS AWARENESS TRAINING. For workers and building occupants

ASBESTOS AWARENESS TRAINING. For workers and building occupants University of Nevada, Reno ASBESTOS AWARENESS TRAINING PROGRAM For workers and building occupants John A Braun, CSP Asbestos Awareness OSHA Standards for Asbestos are: 29 CFR 1910.1001 applies to all occupational

More information

IWU PHYSICAL PLANT SAFETY PROGRAM. Toxic and Hazardous Substances, Title 29 Code of Federal Regulations (CFR) Part 1910.1001, Subpart Z Asbestos

IWU PHYSICAL PLANT SAFETY PROGRAM. Toxic and Hazardous Substances, Title 29 Code of Federal Regulations (CFR) Part 1910.1001, Subpart Z Asbestos STANDARDS Toxic and Hazardous Substances, Title 29 Code of Federal Regulations (CFR) Part 1910.1001, Subpart Z Asbestos 1. INTRODUCTION IWU has a responsibility to provide a safe environment for students,

More information

1. IDENTIFICATION OF SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING.

1. IDENTIFICATION OF SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING. P a g e 1 1. IDENTIFICATION OF SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING. 2925 MFG Place Ashtabula, OH 44005 Emergency Telephone Number 1-800-424-9300 Regulatory Information Number 1-440-994-5207

More information

Transcript for Asbestos Information for the Community

Transcript for Asbestos Information for the Community Welcome to the lecture on asbestos and its health effects for the community. My name is Dr. Vik Kapil and I come to you from the Centers for Disease Control and Prevention, Agency for Toxic Substances

More information

Primary reason asbestos is used, is its special resistance to heat. Asbestos fibers are also virtually indestructible.

Primary reason asbestos is used, is its special resistance to heat. Asbestos fibers are also virtually indestructible. ASBESTOS AWARENESS Asbestos Awareness Asbestos is a serious health hazard commonly found in our environment today. This module is designed to provide initial education of asbestos and its associated hazards.

More information

Exposure and Control of Ten High Priority MSHA Contaminants in Metal Mines. Presented by: Shannon E. Newton, MPH, CIH

Exposure and Control of Ten High Priority MSHA Contaminants in Metal Mines. Presented by: Shannon E. Newton, MPH, CIH Exposure and Control of Ten High Priority MSHA Contaminants in Metal Mines Presented by: Shannon E. Newton, MPH, CIH Topics What are these hazards? How can they harm you? Why do we care? How do we tell

More information

Asbestos in the Home MISAWA AB, JAPAN

Asbestos in the Home MISAWA AB, JAPAN Asbestos in the Home MISAWA AB, JAPAN Asbestos Awareness OCCUPANT ACKNOWLEDGEMENT OF INFORMATION SIGNATURE UNIT NUMBER DATE Prepared by: 35 CES/CEV If you have further question about location of asbestos

More information

British Columbia Institute of Technology. BCIT Safety Manual ASBESTOS MANAGEMENT

British Columbia Institute of Technology. BCIT Safety Manual ASBESTOS MANAGEMENT BCIT Safety Manual Contents 1. Purpose... 3 2. Definitions... 3 2.1 Asbestos... 3 2.2 Asbestos Containing Material (ACM)... 3 2.3 Friable Material... 3 2.4 Low Risk Work Activity... 3 2.5 Moderate Risk

More information

Asbestos Awareness. What is Asbestos?

Asbestos Awareness. What is Asbestos? Asbestos Awareness Asbestos is a serious health hazard commonly found in our environment today. This module is designed to provide an overview of asbestos and its associated hazards. It is important for

More information

ASBESTOS MANAGEMENT PROGRAM

ASBESTOS MANAGEMENT PROGRAM ASBESTOS MANAGEMENT PROGRAM Prepared By: Triumvirate Environmental Program Approval Developed: August 2011 Updated: June 2015 Associate Vice President of Public Safety & Administrative Services Date Associate

More information

ASBESTOS AWARENESS. Slide #1

ASBESTOS AWARENESS. Slide #1 ASBESTOS AWARENESS Slide #1 OBJECTIVES Participants will be able to: Describe what asbestos is. Identify in what components asbestos is typically found. Describe the health effects of exposure to asbestos.

More information

Syracuse University s Guidelines for Work Involving Materials Containing Trace Asbestos (Asbestos at a Concentration Less than 1%)

Syracuse University s Guidelines for Work Involving Materials Containing Trace Asbestos (Asbestos at a Concentration Less than 1%) Syracuse University s Guidelines for Work Involving Materials Containing Trace Asbestos (Asbestos at a Concentration Less than 1%) I. Asbestos Survey Requirements Prior to performing any construction,

More information

TAMPA ELECTRIC COMPANY ENERGY SUPPLY ASBESTOS AWARENESS PROGRAM

TAMPA ELECTRIC COMPANY ENERGY SUPPLY ASBESTOS AWARENESS PROGRAM ASBESTOS AWARENESS PROGRAM TABLE OF CONTENTS TITLE PAGE # PURPOSE / INTRODUCTION 1 RESPONSIBILITY 2 EMPLOYEE TRAINING AND DOCUMENTATION 2-4 MEDICAL SURVEILLANCE 4 UNPLANNED DISTRUBANCE OF ASBESTOS CONTAINING

More information

Lead Management. Presented by: Gary Chinn (815) 254 9554 President, Best Technology Systems

Lead Management. Presented by: Gary Chinn (815) 254 9554 President, Best Technology Systems Lead Management Presented by: Gary Chinn (815) 254 9554 President, Best Technology Systems Gary Chinn, President Introduction I started in the Asbestos and lead remediation business in 1987 as a worker

More information

ASBESTOS MANAGEMENT PROGRAM

ASBESTOS MANAGEMENT PROGRAM ASBESTOS MANAGEMENT PROGRAM September 2015 Asbestos Management Program Table of Contents I. Purpose II. III. IV. Definitions Identification of Asbestos Asbestos Sampling V. Notification and Labeling VI.

More information

Fact Sheet on Asbestos

Fact Sheet on Asbestos Fact Sheet on Asbestos WHAT IS ASBESTOS? Asbestos is a naturally occurring mineral found in certain rock formations, mined from open pit mines. Most of the asbestos used in the United States today comes

More information

All About Asbestos. Read this booklet to learn more about:

All About Asbestos. Read this booklet to learn more about: All About Asbestos Read this booklet to learn more about: identifying asbestos-containing material in you home the health risks of asbestos what you can do about asbestos. What Is Asbestos? Asbestos is

More information

Sandblasting & Silica Exposure Control Plan

Sandblasting & Silica Exposure Control Plan Safety & Health Program 10627 Midwest Industrial Boulevard, St. Louis, MO Phone: 314-785-6425 Fax: 314-785-6426 Sandblasting & Silica Exposure Control Plan The purpose of this program is to inform interested

More information

Mount Sinai Pediatric Environmental Health Specialty Unit WTC Asbestos Fact Sheet

Mount Sinai Pediatric Environmental Health Specialty Unit WTC Asbestos Fact Sheet This fact sheet answers frequently asked health questions (FAQs) about asbestos. It is part of a series of fact sheets describing potential health risks to children from exposures related to the World

More information

Today s topic is Asbestos Safety. This training is a part of OSHA s Asbestos Standard (29 CFR 1910.1001).

Today s topic is Asbestos Safety. This training is a part of OSHA s Asbestos Standard (29 CFR 1910.1001). Today s topic is Asbestos Safety. This training is a part of OSHA s Asbestos Standard (29 CFR 1910.1001). You will learn the: About the dangers of asbestos. How to identify asbestos. How to protect yourself

More information

Environment, Health & Safety Services Policy

Environment, Health & Safety Services Policy 1.0 Purpose: The purpose of this document is to outline the management of lead containing materials at UB. The information presented in this document represents minimum safety requirements. 2.0 Scope:

More information

University of Michigan Dearborn The Department of Environmental Health and Safety & Emergency Management Asbestos Management Program General

University of Michigan Dearborn The Department of Environmental Health and Safety & Emergency Management Asbestos Management Program General University of Michigan Dearborn The Department of Environmental Health and Safety & Emergency Management Asbestos Management Program General What is Asbestos? Asbestos is the name applied to six naturally

More information

ASBESTOS AWARENESS. Environmental Health And Safety. www.uoguelph.ca/ehs MAINTENANCE CONTRACTORS

ASBESTOS AWARENESS. Environmental Health And Safety. www.uoguelph.ca/ehs MAINTENANCE CONTRACTORS ASBESTOS AWARENESS MAINTENANCE CONTRACTORS Environmental Health And Safety www.uoguelph.ca/ehs March 2007 ASBESTOS AWARENESS AT THE UNIVERSITY OF GUELPH What is Asbestos? The term asbestos refers to a

More information

ASBESTOS AWARENESS. With details specific to The University of Alabama campus

ASBESTOS AWARENESS. With details specific to The University of Alabama campus ASBESTOS AWARENESS With details specific to The University of Alabama campus What is Asbestos It is the name given to 6 naturally occurring minerals mined from the earth. Crystalline structure forms long

More information

ASBESTOS CONTAINING MATERIALS OPERATIONS & MAINTENANCE PLAN 2015

ASBESTOS CONTAINING MATERIALS OPERATIONS & MAINTENANCE PLAN 2015 ASBESTOS CONTAINING MATERIALS OPERATIONS & MAINTENANCE PLAN 2015 Prepared For: (School Name) PREPARED BY: DIOCESE OF JOLIET ENVIRONMENTAL OFFICE FOR ANY ENVIRONMENTAL RELATED EMERGENCY CONTACT: RICHARD

More information

Asbestos Awareness at the University of Toronto

Asbestos Awareness at the University of Toronto Asbestos Awareness at the University of Toronto What is Asbestos? Asbestos is a general term given to a group of naturally occurring mineral silicates that are made up of long thin fibres. These fibrous

More information

What is Asbestos? Asbestos was also used in household items, such as: oven gloves ironing board pads simmer mats for stoves fire blankets.

What is Asbestos? Asbestos was also used in household items, such as: oven gloves ironing board pads simmer mats for stoves fire blankets. All About Asbestos Read this booklet to learn more about: identifying asbestos-containing material in your home the health risks of asbestos what you can do about asbestos. What is Asbestos? Asbestos is

More information

ASBESTOS CONTROL PLAN

ASBESTOS CONTROL PLAN ASBESTOS CONTROL PLAN POLICY It is the long term plan of Emily Carr University to have an asbestos free workplace. In the interim, The University plans to manage asbestos hazards based on prioritization

More information

HEALTH EFFECTS. Inhalation

HEALTH EFFECTS. Inhalation Health Effects HEALTH EFFECTS Asbestos can kill you. You must take extra precautions when you work with asbestos. Just because you do not notice any problems while you are working with asbestos, it still

More information

ASBESTOS. Presented by: Samar Khalil Environmental & Chemical Safety Officer

ASBESTOS. Presented by: Samar Khalil Environmental & Chemical Safety Officer ASBESTOS Presented by: Samar Khalil Environmental & Chemical Safety Officer Outline What is Asbestos? Properties of Asbestos Where is Asbestos found? When is Asbestos dangerous? Health effects of Asbestos

More information

LEGAL REVIEW & UPDATE

LEGAL REVIEW & UPDATE LEGAL REVIEW & UPDATE There are lots of laws and regulations designed to protect workers, the general public, and the environment. However, not everyone follows the laws. Many people deliberately break

More information

COMPOSITION / INFORMATION ON INGREDIENTS

COMPOSITION / INFORMATION ON INGREDIENTS MATERIAL SAFETY DATA SHEET DAMTITE WATERPROOFER- WHITE 01071, 01211, 01451 DAMTITE POWDER FOUNDATION WATERPROOFER GRAY 02451 SECTION I. COMPANY & PRODUCT INFORMATION Product Identification Manufacturer

More information

ASBESTOS. Know what it is and how you can protect yourself. environmental affairs Department: Environmental Affairs REPUBLIC OF SOUTH AFRICA

ASBESTOS. Know what it is and how you can protect yourself. environmental affairs Department: Environmental Affairs REPUBLIC OF SOUTH AFRICA ASBESTOS Know what it is and how you can protect yourself environmental affairs Department: Environmental Affairs REPUBLIC OF SOUTH AFRICA 1 What is asbestos? The term asbestos designates a group of naturally

More information

EXPOSURE OF FIRE INVESTIGATORS TO THE PRODUCTS OF COMBUSTION

EXPOSURE OF FIRE INVESTIGATORS TO THE PRODUCTS OF COMBUSTION 1 EXPOSURE OF FIRE INVESTIGATORS TO THE PRODUCTS OF COMBUSTION Chris Szpara Eastern Michigan University School of Fire Staff and Command August 22, 2003 2 ABSTRACT The purpose of this research paper was

More information

ASBESTOS AWARENESS TRAINING. Title 8, GISO Section 5208

ASBESTOS AWARENESS TRAINING. Title 8, GISO Section 5208 ASBESTOS AWARENESS TRAINING Title 8, GISO Section 5208 What is Asbestos? Generic term for group of minerals known for their strength, flame/heat resistance, & indestructible qualities. Miracle mineral

More information

Table of Contents. I. Executive Summary... 1. A. Summary of our Findings... 1. II. Background... 2. III. Methodology... 4. IV. Key Data Sources...

Table of Contents. I. Executive Summary... 1. A. Summary of our Findings... 1. II. Background... 2. III. Methodology... 4. IV. Key Data Sources... Table of Contents I. Executive Summary... 1 A. Summary of our Findings... 1 II. Background... 2 III. Methodology... 4 IV. Key Data Sources... 6 A. WCIS Data... 6 B. SEER Data... 8 V. Discussion of NIOSH

More information

Date: 22 June 2005 Version: 2 Revision: 1. 1. Identification of the substance/preparation and company/undertaking

Date: 22 June 2005 Version: 2 Revision: 1. 1. Identification of the substance/preparation and company/undertaking Page 1 of 5 1. Identification of the substance/preparation and company/undertaking Product identifier Use Details of supplier of the safety data sheet Engine oil Telephone number +44-20-7186-0400 FAX number

More information

Asbestos WHAT TO DO? Studies of people who were exposed to high levels of asbestos in factories and shipyards, are at increased risk of:

Asbestos WHAT TO DO? Studies of people who were exposed to high levels of asbestos in factories and shipyards, are at increased risk of: Asbestos WHAT TO DO? What Is Asbestos? Asbestos is mineral fiber. It can be positively identified only with a special type of microscope. There are several types of asbestos fibers. In the past, asbestos

More information

Version 1. Print Date 12/01/2009 Revision Date 11/30/2009 MSDS Number 350000004298 SITE_FORM Number 30000000000000003622.001

Version 1. Print Date 12/01/2009 Revision Date 11/30/2009 MSDS Number 350000004298 SITE_FORM Number 30000000000000003622.001 1. PRODUCT AND COMPANY IDENTIFICATION Product information Trade name : Use of the : Drain Cleaner Substance/Mixture Company : S.C. Johnson & Son, Inc. 1525 Howe Street Racine WI 53403-2236 Emergency telephone

More information

Loss Control TIPS Technical Information Paper Series

Loss Control TIPS Technical Information Paper Series Loss Control TIPS Technical Information Paper Series Innovative Safety and Health Solutions SM An Overview of OSHA s Laboratory Standard: 29 CFR 1910.1450 Introduction The Occupational Safety and Health

More information

PRODUCT SAFETY DATA SHEET Product name: SOFT LEAD PRODUCTS

PRODUCT SAFETY DATA SHEET Product name: SOFT LEAD PRODUCTS Revision date: 3/29/2016 Page 1 of 5 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY Lead Security Seals Plain Lead Security Seals Lead and Wire Security Seals Lead Stampings Lead Washers

More information

June 20, 2002. 2002.06.20: Wagner Testimony on Workplace Exposure to Asbestos. This is an archive page. The links are no longer being updated.

June 20, 2002. 2002.06.20: Wagner Testimony on Workplace Exposure to Asbestos. This is an archive page. The links are no longer being updated. Page 1 of 6 skip navigational links This is an archive page. The links are no longer being updated. Statement by Gregory R. Wagner, M.D. Director, Division of Respiratory Disease Studies National Institute

More information

PROTECTION OF WORKERS FROM THE RISKS RELATED TO EXPOSURE TO ASBESTOS AT WORK REGULATIONS

PROTECTION OF WORKERS FROM THE RISKS RELATED TO EXPOSURE TO ASBESTOS AT WORK REGULATIONS RELATED TO EXPOSURE TO ASBESTOS AT WORK [S.L.424.23 1 SUBSIDIARY LEGISLATION 424.23 RELATED TO EXPOSURE TO ASBESTOS AT WORK REGULATIONS LEGAL NOTICE 323 of 2006. 15th December, 2006 1. (1) The title of

More information

Material Safety Data Sheet

Material Safety Data Sheet Material Safety Data Sheet Section 1 General Information Manufacturer: Rust-Oleum Corporation 11 Hawthorn Parkway Vernon Hills, IL 60061 24 Hour Assistance: 1-847-367-7700 www.rustoleum.com Date: April

More information

Asbestos. General information

Asbestos. General information Asbestos General information Key Points Fire Non flammable and non combustible under normal conditions Chemically inert under normal conditions. Resistant to most solvents, acids and alkalis In the event

More information

ASBESTOS AWARENESS at THE UNIVERSITY AT ALBANY. University at Albany Office of Environmental Health and Safety 2010

ASBESTOS AWARENESS at THE UNIVERSITY AT ALBANY. University at Albany Office of Environmental Health and Safety 2010 ASBESTOS AWARENESS at THE UNIVERSITY AT ALBANY University at Albany Office of Environmental Health and Safety 2010 Introduction - ASBESTOS WHAT IS IT? ASBESTOS is a fibrous material that occurs naturally

More information

Asbestos Hazards and Controls

Asbestos Hazards and Controls Asbestos Hazards and Controls Environmental and Occupational Health Public Health Ontario Photo provided with the kind permission of Infrastructure Health & Safety Association 5110 Creekbank Road, Mississauga,

More information

/pdf/1124141232 Mon Nov 24 12:32:22 2014 1 HFHR38T1 MATERIAL SAFETY DATA SHEET

/pdf/1124141232 Mon Nov 24 12:32:22 2014 1 HFHR38T1 MATERIAL SAFETY DATA SHEET /pdf/1124141232 Mon Nov 24 12:32:22 2014 1 Product date: NOV 21 2014 Print date: 11/24/14 Page 1 Section 1 - Product and Company Identification Product Name: AR300 RAL 7035 TX HAA Company Identification:

More information

OCCUPATIONAL HEALTH AND SAFETY AUTHORITY ACT (CAP. 424) Protection of Workers from the Risks related to Exposure to Asbestos at Work Regulations, 2006

OCCUPATIONAL HEALTH AND SAFETY AUTHORITY ACT (CAP. 424) Protection of Workers from the Risks related to Exposure to Asbestos at Work Regulations, 2006 L.N. 323 of 2006 B 4649 OCCUPATIONAL HEALTH AND SAFETY AUTHORITY ACT (CAP. 424) Protection of Workers from the Risks related to Exposure to Asbestos at Work Regulations, 2006 IN EXERCISE of the powers

More information

The following is a six-step approach for complying with the standard. Although there are only six main steps, each involves many smaller steps.

The following is a six-step approach for complying with the standard. Although there are only six main steps, each involves many smaller steps. Hazard Communication The Occupational Safety and Health Administration (OSHA) hazard communication standard (HCS), also known as the employee right-to-know standard, is found at 29 CFR 1910.1200 of the

More information

NISG Asbestos. Caroline Kirton

NISG Asbestos. Caroline Kirton NISG Asbestos Caroline Kirton 1 The Control of Asbestos Regulations 2012, Regulation 10 requires every employer to ensure that adequate information, instruction and training is given to their employees

More information

What are the causes of air Pollution

What are the causes of air Pollution What are the causes of air Pollution Pollutant Particulate Matter (PM-PM 10 and PM 2.5 ) Description and main UK sources Particulate Matter is generally categorised on the basis of the size of the particles

More information

The purpose of this document is to provide guidance on the safe removal and disposal of asbestos and asbestos-containing materials.

The purpose of this document is to provide guidance on the safe removal and disposal of asbestos and asbestos-containing materials. The Administration of Norfolk Island SAFE DISPOSAL OF ASBESTOS AT THE WASTE MANAGEMENT CENTRE The purpose of this document is to provide guidance on the safe removal and disposal of asbestos and asbestos-containing

More information

Material Safety Data Sheet

Material Safety Data Sheet Material Safety Data Sheet 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Product Name: Ceramic Fiber Textile (Cloth, Tape, Twisted Rope, Round Braid, Square Braid, Sleeving, Yarn) Chemical Name: Aluminosilicate

More information

Material Safety Data Sheet

Material Safety Data Sheet Material Safety Data Sheet OASIS PRO 10 HEAVY DUTY ALL PURPOSE 1. Product and company identification Trade name of product Product use Product dilution information : OASIS PRO 10 HEAVY DUTY ALL PURPOSE

More information

Workers around the world who encounter hazardous substances are aware of the measures needed

Workers around the world who encounter hazardous substances are aware of the measures needed Introduction Workers around the world who encounter hazardous substances are aware of the measures needed to protect themselves from acute exposures to these chemicals. However, workers are often less

More information

Asbestos Control Programs

Asbestos Control Programs Asbestos Control Programs Effective: September 2000 Vice-President, Finance and Administration Applicable Legislation: Occupational Health and Safety (OHSA), R.S.O. 1990 O.Reg 837, R.R.O. 1990, Designated

More information

EMERGENCY PHONE: 1-800-364-3577 or (651) 737-6501 (24 hours)

EMERGENCY PHONE: 1-800-364-3577 or (651) 737-6501 (24 hours) Material Safety Data Sheet Copyright, 2006, 3M Company. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1)

More information

Asbestos in the Workplace: A Guide to Removal of Friable Asbestos Containing Material

Asbestos in the Workplace: A Guide to Removal of Friable Asbestos Containing Material Asbestos in the Workplace: A Guide to Removal of Friable Asbestos Containing Material Revised November 21, 2013 Application Code of Practice Where asbestos is present or believed to be present in a workplace

More information

Asbestos Awareness Training; Protecting Both Adjusters and Insureds

Asbestos Awareness Training; Protecting Both Adjusters and Insureds Asbestos Awareness Training; Protecting Both Adjusters and Insureds By Everette Lee Herndon Jr. Is a lack of training in asbestos awareness resulting in the insured and others being unnecessarily exposed

More information

Approved Talking Points and Questions and Answers on. Asbestos Exposure, Vermiculite. and. ATSDR s Role in the

Approved Talking Points and Questions and Answers on. Asbestos Exposure, Vermiculite. and. ATSDR s Role in the Approved Talking Points and Questions and Answers on Asbestos Exposure, Vermiculite and ATSDR s Role in the Libby (MT) Community Environmental Health Project Desk Copy Updated 4/14/00; Changes in Blue

More information

Asbestos is a naturally occurring mineral, with many physical forms, of which the three most important are:

Asbestos is a naturally occurring mineral, with many physical forms, of which the three most important are: Asbestos Awareness 1. Introduction This presentation contains: The properties of asbestos Its effects on health Its interaction with smoking The types of product and materials likely to contain asbestos

More information

Washington University Asbestos Operations and Maintenance Plan

Washington University Asbestos Operations and Maintenance Plan 1. Purpose Washington University Asbestos Operations and Maintenance Plan 1.1. The purpose of this Asbestos Operations and Maintenance (O&M) Plan is to minimize the potential for exposure to airborne asbestos

More information

Miami University s Asbestos Operations & Maintenance Program Administered by

Miami University s Asbestos Operations & Maintenance Program Administered by Miami University s Asbestos Operations & Maintenance Program Administered by ENVIRONMENTAL SAFETY & RISK MANAGEMENT 529-2829 Table of Contents Purpose 2 Personnel Covered Under the Asbestos Mangement Plan

More information

Technical Data Sheet

Technical Data Sheet Februar, 2014 Technical Data Sheet PLA Polylactide Cas No. 9051-89-2 PLA is a thermoplastic resin derived from annually renewable resources Product Characteristics Typical Properties Value Unit Physical

More information

ASBESTOS MANAGEMENT PLAN

ASBESTOS MANAGEMENT PLAN ASBESTOS MANAGEMENT PLAN SAN JOSE STATE UNIVERSITY Environmental Health & Occupational Safety Asbestos Management Plan 1.0 Introduction 2.0 Policy 3.0 Responsibilities 4.0 Contract Administration 5.0 In-House

More information

Graphene Water Dispersion

Graphene Water Dispersion Graphene Water Dispersion US Research Nanomaterials, Inc. Material Safety Data Sheet acc. to OSHA and ANSI 1 - Identification of substance: Chemical Name: Graphene Water Dispersion Synonyms: natural graphite

More information

Material Safety Data Sheet

Material Safety Data Sheet Product Name Supplier Synonym MSDS# Date of Preparation/Revision In case of emergency Material Safety Data Sheet Carbon Dioxide (Dry Ice) Section 1. Chemical product and company identification Physical

More information

Material Safety Data Sheet

Material Safety Data Sheet Material Safety Data Sheet Section 1 General Information Manufacturer: Zinsser Company, Inc. 173 Belmont Drive Somerset, NJ 08875 (732) 469-8100 Emergency Telephone: Chemtrec (800) 424-9300 Date: December

More information

Insulating Cement. Version 1.1 Revision Date 01/16/2015 Print Date 08/02/2015

Insulating Cement. Version 1.1 Revision Date 01/16/2015 Print Date 08/02/2015 SECTION 1. PRODUCT AND COMPANY IDENTIFICATION Trade name : CalCoat-127 Manufacturer or supplier's details Company : Johns Manville Address : P.O. Box 5108 Denver, CO USA 80127 Telephone : 303-978-2000

More information

ASBESTOS WHAT LIES BENEATH. Your logo here

ASBESTOS WHAT LIES BENEATH. Your logo here ASBESTOS WHAT LIES BENEATH WHAT IS ASBESTOS Natural fibrous hydrated silicates Serpentine: long, soft, curly Amphiboles: straight, hard, needle-like Six common varieties: chrysotile, amosite (fibrous grunerite),

More information

Hazardous Substance Fact Sheet

Hazardous Substance Fact Sheet Right to Know Hazardous Substance Fact Sheet Common Name: ASBESTOS Synonyms: See Below Chemical Name: Asbestos Date: January 2001 Revision: December 2009 Description and Use Asbestos is the general term

More information

Asbestos in the Home and Workplace June 2012

Asbestos in the Home and Workplace June 2012 June 2012 This fact sheet provides information to people who are trying to determine whether there is asbestos-containing material in their home or workplace, and what they might do if there is asbestos.

More information

PAGE 1 Ingraham Environmental Inc. P.O. Box 545 606 South Utah Avenue Butte MT 59703 0545 1+ (877) 723 7885 info@ingrahamenvironmental.

PAGE 1 Ingraham Environmental Inc. P.O. Box 545 606 South Utah Avenue Butte MT 59703 0545 1+ (877) 723 7885 info@ingrahamenvironmental. Ingraham Environmental Inc. is committed to working with you to ensure that the environments where you live, work, and play are safe. We strive to provide you with the knowledge, experience and facts you

More information

Francine Lortie-Monette, MD, MSc, CSPQ, MBA Department of Epidemiology and Biostatistics University of Western Ontario 2003

Francine Lortie-Monette, MD, MSc, CSPQ, MBA Department of Epidemiology and Biostatistics University of Western Ontario 2003 ASBESTOS Francine Lortie-Monette, MD, MSc, CSPQ, MBA Department of Epidemiology and Biostatistics University of Western Ontario 2003 Asbestosis Asbestosis is a model for other dust diseases as well as

More information

The MSDS format adheres to the standards and regulatory requirements of the United States and may not meet regulatory requirements in other countries.

The MSDS format adheres to the standards and regulatory requirements of the United States and may not meet regulatory requirements in other countries. The MSDS format adheres to the standards and regulatory requirements of the United States and may not meet regulatory requirements in other countries. DuPont Page 1 "CORIAN" SOLID SURFACE MATERIAL COR001

More information

TRICHLOROACETIC ACID SOLUTION Department of Pharmacy Duke University Medical Center Box 3089 Durham, NC 27710 919-684-5125

TRICHLOROACETIC ACID SOLUTION Department of Pharmacy Duke University Medical Center Box 3089 Durham, NC 27710 919-684-5125 Page 1 of 5 1. IDENTIFICATION OF SUBSTANCE Name: Manufacturer: TRICHLOROACETIC ACID SOLUTION Department of Pharmacy Duke University Medical Center Box 3089 Durham, NC 27710 919-684-5125 Information Department:

More information

NFPA Hazard Class: * Physical Form: Solid. Health: 0 (Least) * Appearance: Yellow Flammability: 1 (Slight)

NFPA Hazard Class: * Physical Form: Solid. Health: 0 (Least) * Appearance: Yellow Flammability: 1 (Slight) Safety Data Sheet Microcrystalline Wax 1. Chemical Product Identification Generic Name: Microcrystalline Wax INCI Name: Microcrystalline Wax Chemical Family: Mineral Emergency Telephone Numbers: Page 1

More information

PERSONAL PROTECTIVE EQUIPMENT FOR CALIFORNIA STATE UNIVERSITY, LOS ANGELES

PERSONAL PROTECTIVE EQUIPMENT FOR CALIFORNIA STATE UNIVERSITY, LOS ANGELES PERSONAL PROTECTIVE EQUIPMENT FOR CALIFORNIA STATE UNIVERSITY, LOS ANGELES OCTOBER 2007 PROGRAM APPROVAL AND AUTHORIZATION James M. Rosser, President Date TABLE OF CONTENTS TITLE Section PURPOSE...1.0

More information

University of Pittsburgh Safety Manual. EH&S Guideline Number: 01-007 ASBESTOS

University of Pittsburgh Safety Manual. EH&S Guideline Number: 01-007 ASBESTOS Page 1 of 5 The inhalation of asbestos fibers in excess amounts can lead to chronic lung disease. Our knowledge of these health effects comes from studies of workers exposed routinely to high concentrations

More information

Asbestos Related Diseases

Asbestos Related Diseases Asbestos Related Diseases Asbestosis Mesothelioma Lung Cancer Pleural Disease Asbestosis and Mesothelioma (LUNG CANCER) Support Group 1800 017 758 www.amsg.com.au ii Helping you and your family through

More information

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS 3.1. Substances Not applicable 3.2. Mixture

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS 3.1. Substances Not applicable 3.2. Mixture Revision Date: 05/19/2015 Date of issue: 05/19/2015 Version: 1.0 SECTION 1: IDENTIFICATION 1.1. Product Identifier Product Form: Mixture Product Name: 10X Spheroid Formation ECM Product Code: 3500-096-01

More information

Naturally-Occurring Asbestos General Information

Naturally-Occurring Asbestos General Information Naturally-Occurring Asbestos Information Asbestos is a term used for several types of naturally-occurring fibrous minerals found in many parts of California. The most common type of asbestos is chrysotile,

More information

INGREDIENTS CAS No. CONTENTS(%) OSHA ACGIH

INGREDIENTS CAS No. CONTENTS(%) OSHA ACGIH M A T E R I A L S A F E T Y D A T A S H E E T page 1/ 4 S - 2 0 0 E * Updated : October 28, 2010 MSDS No. : MS- 00163201-03 SECTION 1 IDENTIFICATION MANUFACTURER TAIYO INK MFG. CO., LTD. TEL 81-493- 61-2832

More information

ASBESTOS AWARENESS IN THE WORKPLACE. This easy-to-use Leader s Guide is provided to assist in conducting a successful presentation.

ASBESTOS AWARENESS IN THE WORKPLACE. This easy-to-use Leader s Guide is provided to assist in conducting a successful presentation. ASBESTOS AWARENESS IN THE WORKPLACE This easy-to-use Leader s Guide is provided to assist in conducting a successful presentation. Featured are: INTRODUCTION: A brief description of the program and the

More information

Why was asbestos used?

Why was asbestos used? Asbestos Awareness What is Asbestos? Why was asbestos used? Asbestos appealed to manufacturers and builders for a variety of reasons. It is strong yet flexible, and it will not burn. It conducts electricity

More information

Snohomish County Fire Chiefs Association

Snohomish County Fire Chiefs Association Purpose: A. To establish procedures for reducing firefighter's exposure to hazardous substances during training, suppression and overhaul activities, and to ensure that clothing, tools and equipment are

More information

Lead Monitoring / Removal

Lead Monitoring / Removal Lead Monitoring / Removal 1.0. INTRODUCTION The Occupational Safety and Health Administration (OSHA) adopted standards which regulate occupational exposures to lead in general industries. Since that time,

More information

Page 1 ASBESTOS AWARENESS TRAINING 2012 TOPICS COVERED. PROPERTIES OF ASBESTOS Naturally occurring fibrous minerals

Page 1 ASBESTOS AWARENESS TRAINING 2012 TOPICS COVERED. PROPERTIES OF ASBESTOS Naturally occurring fibrous minerals ASBESTOS AWARENESS TRAINING 2012 University of Florida Environmental Health and Safety TOPICS COVERED What is asbestos? Uses of asbestos Why is asbestos hazardous to your health? Asbestos rules general,

More information

Material Safety Data Sheet

Material Safety Data Sheet Material Safety Data Sheet OASIS 259 GLASS FORCE 1. Product and company identification Trade name of product Product use Product dilution information : OASIS 259 GLASS FORCE : Glass Cleaner : Up to 12.5

More information

MATERIAL SAFETY DATA SHEET E Z House Wash 56oz. 1. Product and Company Identification. 2. Composition/Information on Ingredients

MATERIAL SAFETY DATA SHEET E Z House Wash 56oz. 1. Product and Company Identification. 2. Composition/Information on Ingredients Page: 1 Product Code: Product Name: Reference #: Manufacturer Information Company Name: Phone Number: Emergency Contact: Information: Web site address: Preparer Name: sodium HEALTH FLAMMABILITY PHYSICAL

More information

Section 4. Toxicology

Section 4. Toxicology Section 4 Toxicology Occupational Health Any chemical you use incorrectly can result in over-exposure leading to adverse health effects immediately or in the future. All hazardous materials can be handled

More information

Frequently Asked Questions

Frequently Asked Questions This fact sheet was written by the Agency for Toxic Substances and Disease Registry (ATSDR), a federal public health agency. ATSDR s mission is to serve the public by using the best science, taking responsive

More information