Internet of Things, data management for healthcare applications. Ontology and automatic classifications

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Internet of Things, data management for healthcare applications. Ontology and automatic classifications"

Transcription

1 Internet of Things, data management for healthcare applications. Ontology and automatic classifications SAS Institute Norway

2 Different challenges same opportunities! Data capture in value chain Information available across value chains Share same understanding of data and content Globalization and universal access to information Empower analytics for right time decision making

3 Do we find the IoT in the strategic plans for Norwegian Healthcare?

4 Main objectives in the strategic plans for Norwegian Healthcare! Improve quality and interactions joint goals in healthcare and care sector Overall System of concepts to support continuity of care Improve healthcare and care sector through information technology

5 Improvement areas in the strategic plans for Norwegian Healthcare! Diffuse management model The organization is not adapt for interaction Large variation on productivity Private healthcare is more effective Weak quality measures Increasing proportion of unstructured data SOURCE:

6 How can IoT potentially fit into the strategic plans? Value / Cost efficiency RFID areas Logistics for patients and staff Logistics for equipment and supplies Security systems Tracing and tracing objects Tracing and tracing patients Maintenance and implementation Improve quality and interactions joint goals in healthcare and care sector Overall System of concepts to support continuity of care Improve healthcare and care sector through information technology Diffuse management model The organization is not adapt for interaction Large variation on productivity Private healthcare is more effective Weak quality measures Increasing proportion of unstructured data Today 2013

7 Some challenges and possible data management minefields Value / Cost efficiency Right to privacy Diffuse management model The organization is not adapt for interaction Large variation on productivity Private healthcare is more effective Weak quality measures Increasing proportion of unstructured data RFID areas Logistics for patients and staff Logistics for equipment and supplies Security systems Tracing and tracing objects Tracing and tracing patients Maintenance and implementation RFID tag prize pr. unit Improve quality and interactions joint goals in healthcare and care sector Overall System of concepts to support continuity of care Improve healthcare and care sector through information technology Lack of standardization Today 2013

8 Deviation from plan The data management challenge - interoperability Transactions + Org. unit A Org. unit B Org. unit C Org. unit D Org. unit E Electronic Health Record systems Theoretical progress - Staff data Patient data Equipment Maintenance Same format Mutual understanding of content Supply Activities

9 Interoperability Operational data Knowledge and Quality Data Key dimensions of interoperability Knowledge and skills Business processes and value chain ICT, data, applications and communication Semantic, definitions and insight Value creation through interoperability Semantics Business processes ICT Knowledge SERES, The register of semantic for electronic collaboration SEMICOLON, ICT-based methods, tools and metrics for semantic and organizational interoperability

10 The interoperability challenge related to data management Operational data Knowledge and Quality Data Data integrations Data feeds

11 The interoperability challenge related to applications Data feeds Enterprise End-user Application Automated or semiautomatic data feeds Decision processes Anaesthesia system Surgery planning Diagnostic Pain therapy Manually data entry Automatic data capure Work processes Surgery Transportation Medical treatment Births Databases did not bring data into structure 80% of data in healthcare is unstructured Unstructured data is increasing 60 % per. year

12 Text Analytics Information Organization and Access Predictive Modeling, Discover Trends and Patterns Content Categorization Ontology Management Text Mining Sentiment Analysis

13 Categorization Determine topics / subject area(s) of a particular document Example Relevance Why accessing a previous patioent in the Electronic Health Record systems? Associate rules to a category Example Reversing treatment D-vitamin is indicator for wrong medical treatment for diagnosis group Statistical or Rule based definition of topics Example Professional area Only above P20 is relevant for knowledge building Rule based types: Linguistic or Boolean Example Category matches if the sum of weights of terms exceeds certain threshold

14 Content Categorization, Entities Extraction, Fact and Event Extraction Automatic Categorization Map documents to one or more topics according to a taxonomy Taxonomy Management Design, test and development of a set of topics (taxonomy) Design automatic categorization rules Collaboration allowing several knowledge experts to work together Entities Extraction Find entities in text: people, location, companies, Fact and Event Extraction Extraction of relations between entities

15 Categorization Testing Multiple document formats supported (TXT, PDF, XML, HTML, RTF, etc.) Test documents are used to verify the performance of a rule Well performing rule will match all of the relevant test documents (recall) while not matching irrelevant documents (precision) Results are PASS/FAIL Fail: Document is NOT part of this group Documents Categorizer Pass: Document is part of this group

16 Analysis of Unstructured Data Integration of Text Mining and Content Categorization Enterprise Content SAS Text Miner Automated Discovery of Text Structure Content with Metadata SAS Enterprise Content Categorization Expert-based Refinement of Metadata Content with optimized Metadata SAS Enterprise Content Categorization SAS Text Miner Enterprise Content Expert-based Definition of Metadata Content with Metadata Automated Discovery of Text Structure with additional Metadata Content with optimized Metadata

17 SAS Ontology Management Build semantic repositories to manage companywide thesauri, vocabularies, and build relationships between them Create structure for integration with structured data and Contextual Analysis Maintain metadata across repositories and databases and to automatically tag documents according to the defined taxonomies Simplify the task of obtaining and returning knowledge from input documents

18 SAS Ontology Management Enables collaborative ontology development and maintenance Integrates existing document repository assets Identifies relationships between document repositories Build subject-matter expertise into search-and-retrieval activities Consistently applies subject-matter expertise across document repositories in real time Centralizes administration for collaborative ontology development

19 Examples Classification of Electronic Health Record data Rescue team and alert planning Detecting unauthorized access to patient data

20 Bringing information together Search and Summarization Electronic Health Record systems (EPJ)

21 Example Taxonomy

22 A study of Location of Rescue Teams, RT optimization

23 i I Open i LocationsOpen A Real time study on location data and demands Problem Formulation and Solving Objective Function: Minimize the maximum distance between stations and areas subject to: Max Distance Definition: define the largest distance (1) MaxDist Distance ij X ij Staffed Constraint: total stations with ambulances must equal the number available to open (2) Σ i Open i = Number of Ambulances Service Constraint: Stations that cover an area must have an ambulance assigned to them (3) X i j Open i for all i, j Cover Constraint: sum of coverage must meet demand (4) Σ i X ij = Demand j Supply Constraint: sum of coverage must not exceed supply (5) Σ j X ij Supply i Open i

24 Pattern recognition Detect unauthorized access to data in Electronic Health Record systems (EPJ), Association analysis Clustering MBR (K-nearest neighbors) Link analyses Dynamic building rules based on classification, profiling and white lists Access logs and EHR are analyzed through scenarios and scoring process Data intergartion Investigation Transformation and algoritmes Detection and scoring Desicion making Analyses White lists and scenarios

25 Test on Wk0001

26 Solving data management IoT enables a potential for value creation! Ability to define a hierarchical taxonomy where related topics are grouped together (Identify enterprise and structure according to ISO/CEN) Implement automatically classifies of documents using customizable rules for precise categorization new material to existing text sources (increase with 60%/year) Establish knowledge services (SOA) that extract, discover and predict knowledge from multiple text documents (i.e. including epicrisises contents can be added to structured data) Automated or semiautomatic data feeds Cluster documents, i.e. Electronic Health Record systems (EPJ), into related groups for descriptive or predictive modeling for operational risk analysis or performance monitoring of HF s and transparency between RHF s Ability for maintain ontology in enterprise content repositories and databases. The ontology can become the key element to integrate the Clinical Decision Support system with the new National health registries Manually data entry Automatic data capture Enable new services for semantic terms that are used to organize previously disassociated and isolated text repositories i.e. data from other specialized systems (e.g. at Ullevål there are more then 200 small special systems) Establish an enterprise semantic model for Norwegian healthcare that creates and maintains consistent and centralized metadata across all structured and non-strucured data collections (ref. Samspill 2.0 and Gode helseregistre bedre helse? )

27 Copyright 2006, 2007, SAS Institute Inc. All rights reserved.

Why are Organizations Interested?

Why are Organizations Interested? SAS Text Analytics Mary-Elizabeth ( M-E ) Eddlestone SAS Customer Loyalty M-E.Eddlestone@sas.com +1 (607) 256-7929 Why are Organizations Interested? Text Analytics 2009: User Perspectives on Solutions

More information

Populating a Data Quality Scorecard with Relevant Metrics WHITE PAPER

Populating a Data Quality Scorecard with Relevant Metrics WHITE PAPER Populating a Data Quality Scorecard with Relevant Metrics WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Useful vs. So-What Metrics... 2 The So-What Metric.... 2 Defining Relevant Metrics...

More information

Building a Data Quality Scorecard for Operational Data Governance

Building a Data Quality Scorecard for Operational Data Governance Building a Data Quality Scorecard for Operational Data Governance A White Paper by David Loshin WHITE PAPER Table of Contents Introduction.... 1 Establishing Business Objectives.... 1 Business Drivers...

More information

STAR WARS AND THE ART OF DATA SCIENCE

STAR WARS AND THE ART OF DATA SCIENCE STAR WARS AND THE ART OF DATA SCIENCE MELODIE RUSH, SENIOR ANALYTICAL ENGINEER CUSTOMER LOYALTY Original Presentation Created And Presented By Mary Osborne, Business Visualization Manager At 2014 SAS Global

More information

Delivering Smart Answers!

Delivering Smart Answers! Companion for SharePoint Topic Analyst Companion for SharePoint All Your Information Enterprise-ready Enrich SharePoint, your central place for document and workflow management, not only with an improved

More information

SAS Text Analytics. SHRUG Feb.24, 2012. Fiona McNeill - @textanalyticsfr. Copyright 2011, SAS Institute Inc. All rights reserved.

SAS Text Analytics. SHRUG Feb.24, 2012. Fiona McNeill - @textanalyticsfr. Copyright 2011, SAS Institute Inc. All rights reserved. SAS Text Analytics SHRUG Feb.24, 2012 Fiona McNeill - @textanalyticsfr EXTERNAL VIEWPOINT ORGANIZATION S USE OF DATA We put nearly all of the data that is of real value to good use 22% We probably leverage

More information

Direct-to-Company Feedback Implementations

Direct-to-Company Feedback Implementations SEM Experience Analytics Direct-to-Company Feedback Implementations SEM Experience Analytics Listening System for Direct-to-Company Feedback Implementations SEM Experience Analytics delivers real sentiment,

More information

Hexaware E-book on Predictive Analytics

Hexaware E-book on Predictive Analytics Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,

More information

A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks

A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired

More information

Search and Information Retrieval

Search and Information Retrieval Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search

More information

Measure Your Data and Achieve Information Governance Excellence

Measure Your Data and Achieve Information Governance Excellence SAP Brief SAP s for Enterprise Information Management SAP Information Steward Objectives Measure Your Data and Achieve Information Governance Excellence A single solution for managing enterprise data quality

More information

Auto-Classification for Document Archiving and Records Declaration

Auto-Classification for Document Archiving and Records Declaration Auto-Classification for Document Archiving and Records Declaration Josemina Magdalen, Architect, IBM November 15, 2013 Agenda IBM / ECM/ Content Classification for Document Archiving and Records Management

More information

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy Much higher Volumes. Processed with more Velocity. With much more Variety. Is Big Data so big? Big Data Smart Data Project HAVEn: Adaptive Intelligence

More information

Big Data Text Mining and Visualization. Anton Heijs

Big Data Text Mining and Visualization. Anton Heijs Copyright 2007 by Treparel Information Solutions BV. This report nor any part of it may be copied, circulated, quoted without prior written approval from Treparel7 Treparel Information Solutions BV Delftechpark

More information

Text Analytics Evaluation Case Study - Amdocs

Text Analytics Evaluation Case Study - Amdocs Text Analytics Evaluation Case Study - Amdocs Tom Reamy Chief Knowledge Architect KAPS Group http://www.kapsgroup.com Text Analytics World October 20 New York Agenda Introduction Text Analytics Basics

More information

Text Analytics Software Choosing the Right Fit

Text Analytics Software Choosing the Right Fit Text Analytics Software Choosing the Right Fit Tom Reamy Chief Knowledge Architect KAPS Group http://www.kapsgroup.com Text Analytics World San Francisco, 2013 Agenda Introduction Text Analytics Basics

More information

Data Mining with SAS. Mathias Lanner mathias.lanner@swe.sas.com. Copyright 2010 SAS Institute Inc. All rights reserved.

Data Mining with SAS. Mathias Lanner mathias.lanner@swe.sas.com. Copyright 2010 SAS Institute Inc. All rights reserved. Data Mining with SAS Mathias Lanner mathias.lanner@swe.sas.com Copyright 2010 SAS Institute Inc. All rights reserved. Agenda Data mining Introduction Data mining applications Data mining techniques SEMMA

More information

EMC DOCUMENTUM CONTENT ENABLED EMR Enhance the value of your EMR investment by accessing the complete patient record.

EMC DOCUMENTUM CONTENT ENABLED EMR Enhance the value of your EMR investment by accessing the complete patient record. EMC DOCUMENTUM CONTENT ENABLED EMR Enhance the value of your EMR investment by accessing the complete patient record. ESSENTIALS Provide access to records ingested from other systems Capture all content

More information

Social Media Implementations

Social Media Implementations SEM Experience Analytics Social Media Implementations SEM Experience Analytics delivers real sentiment, meaning and trends within social media for many of the world s leading consumer brand companies.

More information

conceptsearching Prepared by: Concept Searching 8300 Greensboro Drive, Suite 800 McLean, VA 22102 USA +1 703 531 8567

conceptsearching Prepared by: Concept Searching 8300 Greensboro Drive, Suite 800 McLean, VA 22102 USA +1 703 531 8567 conceptsearching Empowering Knowledge in Professional Services White Paper Prepared by: Concept Searching 8300 Greensboro Drive, Suite 800 McLean, VA 22102 USA +1 703 531 8567 9 Shephall Lane Stevenage

More information

Find the signal in the noise

Find the signal in the noise Find the signal in the noise Electronic Health Records: The challenge The adoption of Electronic Health Records (EHRs) in the USA is rapidly increasing, due to the Health Information Technology and Clinical

More information

Big Data and Semantic Web in Manufacturing. Nitesh Khilwani, PhD Chief Engineer, Samsung Research Institute Noida, India

Big Data and Semantic Web in Manufacturing. Nitesh Khilwani, PhD Chief Engineer, Samsung Research Institute Noida, India Big Data and Semantic Web in Manufacturing Nitesh Khilwani, PhD Chief Engineer, Samsung Research Institute Noida, India Outline Big data in Manufacturing Big data Analytics Semantic web technologies Case

More information

Analytics for Customer Support Centres. Gathering Insights about Support Activities, Bottlenecks and Remedies

Analytics for Customer Support Centres. Gathering Insights about Support Activities, Bottlenecks and Remedies Email Analytics for Customer Support Centres Gathering Insights about Support Activities, Bottlenecks and Remedies Why Emails? Enterprise Emails are exchanged for transacting business Emails are rich repositories

More information

White Paper. How Streaming Data Analytics Enables Real-Time Decisions

White Paper. How Streaming Data Analytics Enables Real-Time Decisions White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream

More information

SPATIAL DATA CLASSIFICATION AND DATA MINING

SPATIAL DATA CLASSIFICATION AND DATA MINING , pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal

More information

BUSINESS VALUE OF SEMANTIC TECHNOLOGY

BUSINESS VALUE OF SEMANTIC TECHNOLOGY BUSINESS VALUE OF SEMANTIC TECHNOLOGY Preliminary Findings Industry Advisory Council Emerging Technology (ET) SIG Information Sharing & Collaboration Committee July 15, 2005 Mills Davis Managing Director

More information

IDC MaturityScape Benchmark: Big Data and Analytics in Government. Adelaide O Brien Research Director IDC Government Insights June 20, 2014

IDC MaturityScape Benchmark: Big Data and Analytics in Government. Adelaide O Brien Research Director IDC Government Insights June 20, 2014 IDC MaturityScape Benchmark: Big Data and Analytics in Government Adelaide O Brien Research Director IDC Government Insights June 20, 2014 IDC MaturityScape Benchmark: Big Data and Analytics in Government

More information

Taxonomies for Auto-Tagging Unstructured Content. Heather Hedden Hedden Information Management Text Analytics World, Boston, MA October 1, 2013

Taxonomies for Auto-Tagging Unstructured Content. Heather Hedden Hedden Information Management Text Analytics World, Boston, MA October 1, 2013 Taxonomies for Auto-Tagging Unstructured Content Heather Hedden Hedden Information Management Text Analytics World, Boston, MA October 1, 2013 About Heather Hedden Independent taxonomy consultant, Hedden

More information

ECOR. Terminology and Ontology in Semantic Interoperability of Electronic Health Records. Dr. W. Ceusters. Saarland University

ECOR. Terminology and Ontology in Semantic Interoperability of Electronic Health Records. Dr. W. Ceusters. Saarland University Terminology and Ontology in Semantic Interoperability of Electronic Health Records Dr. W. Ceusters Saarland University Semantic Interoperability Working definition: Two information systems are semantically

More information

Auto-Classification in SharePoint. How BA Insight AutoClassifier Integrates with the SharePoint Managed Metadata Service

Auto-Classification in SharePoint. How BA Insight AutoClassifier Integrates with the SharePoint Managed Metadata Service How BA Insight AutoClassifier Integrates with the SharePoint Managed Metadata Service BA Insight 2015 Table of Contents Abstract... 3 Findability and the Value of Metadata... 3 Finding Information is Hard...

More information

HiTech. White Paper. A Next Generation Search System for Today's Digital Enterprises

HiTech. White Paper. A Next Generation Search System for Today's Digital Enterprises HiTech White Paper A Next Generation Search System for Today's Digital Enterprises About the Author Ajay Parashar Ajay Parashar is a Solution Architect with the HiTech business unit at Tata Consultancy

More information

Data Sheet: Archiving Symantec Enterprise Vault Discovery Accelerator Accelerate e-discovery and simplify review

Data Sheet: Archiving Symantec Enterprise Vault Discovery Accelerator Accelerate e-discovery and simplify review Accelerate e-discovery and simplify review Overview provides IT/Legal liaisons, investigators, lawyers, paralegals and HR professionals the ability to search, preserve and review information across the

More information

Get More Value from Your Reference Data Make it Meaningful with TopBraid RDM

Get More Value from Your Reference Data Make it Meaningful with TopBraid RDM Get More Value from Your Reference Data Make it Meaningful with TopBraid RDM Bob DuCharme Data Governance and Information Quality Conference June 9 TopQuadrant Company Focus: TopQuadrant was founded in

More information

Guideline for Implementing the Universal Data Element Framework (UDEF)

Guideline for Implementing the Universal Data Element Framework (UDEF) Guideline for Implementing the Universal Data Element Framework (UDEF) Version 1.0 November 14, 2007 Developed By: Electronic Enterprise Integration Committee Aerospace Industries Association, Inc. Important

More information

Semantic Data Management. Xavier Lopez, Ph.D., Director, Spatial & Semantic Technologies

Semantic Data Management. Xavier Lopez, Ph.D., Director, Spatial & Semantic Technologies Semantic Data Management Xavier Lopez, Ph.D., Director, Spatial & Semantic Technologies 1 Enterprise Information Challenge Source: Oracle customer 2 Vision of Semantically Linked Data The Network of Collaborative

More information

Master of Science in Health Information Technology Degree Curriculum

Master of Science in Health Information Technology Degree Curriculum Master of Science in Health Information Technology Degree Curriculum Core courses: 8 courses Total Credit from Core Courses = 24 Core Courses Course Name HRS Pre-Req Choose MIS 525 or CIS 564: 1 MIS 525

More information

UTILIZING COMPOUND TERM PROCESSING TO ADDRESS RECORDS MANAGEMENT CHALLENGES

UTILIZING COMPOUND TERM PROCESSING TO ADDRESS RECORDS MANAGEMENT CHALLENGES UTILIZING COMPOUND TERM PROCESSING TO ADDRESS RECORDS MANAGEMENT CHALLENGES CONCEPT SEARCHING This document discusses some of the inherent challenges in implementing and maintaining a sound records management

More information

Text Mining and Analysis

Text Mining and Analysis Text Mining and Analysis Practical Methods, Examples, and Case Studies Using SAS Goutam Chakraborty, Murali Pagolu, Satish Garla From Text Mining and Analysis. Full book available for purchase here. Contents

More information

Promises and Pitfalls of Big-Data-Predictive Analytics: Best Practices and Trends

Promises and Pitfalls of Big-Data-Predictive Analytics: Best Practices and Trends Promises and Pitfalls of Big-Data-Predictive Analytics: Best Practices and Trends Spring 2015 Thomas Hill, Ph.D. VP Analytic Solutions Dell Statistica Overview and Agenda Dell Software overview Dell in

More information

Healthcare Measurement Analysis Using Data mining Techniques

Healthcare Measurement Analysis Using Data mining Techniques www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik

More information

Getting Started with Data Governance

Getting Started with Data Governance Getting Started with Data Governance Gregory S. Nelson, MMCI, CPHIMS ThotWave Technologies, LLC. 1 2 1 3 Maturation Data Quality Data Access Data Integra6on Governance + MDM Data Management 4 2 Data Governance

More information

Extend your analytic capabilities with SAP Predictive Analysis

Extend your analytic capabilities with SAP Predictive Analysis September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics

More information

STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and

STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and Clustering Techniques and STATISTICA Case Study: Defining Clusters of Shopping Center Patrons STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table

More information

How Smart Is Your Content? Using Semantic Enrichment to Improve Your User Experience and Your Bottom Line

How Smart Is Your Content? Using Semantic Enrichment to Improve Your User Experience and Your Bottom Line How Smart Is Your Content? Using Semantic Enrichment to Improve Your User Experience and Your Bottom Line Michael Clarke and Pam Harley Scholarly publishers especially those in the scientific, technical,

More information

Information Access Platforms: The Evolution of Search Technologies

Information Access Platforms: The Evolution of Search Technologies Information Access Platforms: The Evolution of Search Technologies Managing Information in the Public Sphere: Shaping the New Information Space April 26, 2010 Purpose To provide an overview of current

More information

Enabling Business Experts to Discover Web Services for Business Process Automation. Emerging Web Service Technologies

Enabling Business Experts to Discover Web Services for Business Process Automation. Emerging Web Service Technologies Enabling Business Experts to Discover Web Services for Business Process Automation Emerging Web Service Technologies Jan-Felix Schwarz 3 December 2009 Agenda 2 Problem & Background Approach Evaluation

More information

IBM Content Analytics with Enterprise Search, Version 3.0

IBM Content Analytics with Enterprise Search, Version 3.0 IBM Content Analytics with Enterprise Search, Version 3.0 Highlights Enables greater accuracy and control over information with sophisticated natural language processing capabilities to deliver the right

More information

Mastering Big Data. Steve Hoskin, VP and Chief Architect INFORMATICA MDM. October 2015

Mastering Big Data. Steve Hoskin, VP and Chief Architect INFORMATICA MDM. October 2015 Mastering Big Data Steve Hoskin, VP and Chief Architect INFORMATICA MDM October 2015 Agenda About Big Data MDM and Big Data The Importance of Relationships Big Data Use Cases About Big Data Big Data is

More information

Maintaining a Competitive Edge with Interaction Analysis

Maintaining a Competitive Edge with Interaction Analysis Explore Maintaining a Competitive Edge with Interaction Analysis Winner of the Frost & Sullivan 2007 Product Innovation Award Autonomy etalk White Paper Maintaining a Competitive Edge with Interaction

More information

ENTERPRISE DOCUMENTS & RECORD MANAGEMENT

ENTERPRISE DOCUMENTS & RECORD MANAGEMENT ENTERPRISE DOCUMENTS & RECORD MANAGEMENT DOCWAY PLATFORM ENTERPRISE DOCUMENTS & RECORD MANAGEMENT 1 DAL SITO WEB OLD XML DOCWAY DETAIL DOCWAY Platform, based on ExtraWay Technology Native XML Database,

More information

IDC MaturityScape Benchmark: Big Data and Analytics in Government

IDC MaturityScape Benchmark: Big Data and Analytics in Government IDC MaturityScape Benchmark: Big Data and Analytics in Government Adelaide O Brien Research Director, IDC aobrien@idc.com Presentation to ACT-IAC Emerging Technology SIG July, 2014 IDC MaturityScape Benchmark:

More information

2011 Cyber Security and the Advanced Persistent Threat A Holistic View

2011 Cyber Security and the Advanced Persistent Threat A Holistic View 2011 Cyber and the Advanced Persistent Threat A Holistic View Thomas Varney Cybersecurity & Privacy BM Global Business Services 1 31/10/11 Agenda The Threat We Face A View to Addressing the Four Big Problem

More information

EHR Standards and Semantic Interoperability

EHR Standards and Semantic Interoperability EHR Standards and Semantic Interoperability Setting the Frame of Reference Dr. Marco Eichelberg OFFIS - Institute for Information Technology E-Mail: eichelberg@offis.de Page 1 Introduction Semantic Interoperability:

More information

Enterprise Data Quality Dashboards and Alerts: Holistic Data Quality

Enterprise Data Quality Dashboards and Alerts: Holistic Data Quality Enterprise Data Quality Dashboards and Alerts: Holistic Data Quality Jay Zaidi Bonnie O Neil (Fannie Mae) Data Governance Winter Conference Ft. Lauderdale, Florida November 16-18, 2011 Agenda 1 Introduction

More information

Data Mining Analytics for Business Intelligence and Decision Support

Data Mining Analytics for Business Intelligence and Decision Support Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing

More information

FTA Technology 2009 IT Modernization and Business Rules Extraction

FTA Technology 2009 IT Modernization and Business Rules Extraction FTA Technology 2009 IT Modernization and Business Rules Extraction August 5th, 2009 _experience the commitment TM Agenda IT Modernization Business Rules Extraction Automation Tools for BRE BRE Cost and

More information

CONCEPTCLASSIFIER FOR SHAREPOINT

CONCEPTCLASSIFIER FOR SHAREPOINT CONCEPTCLASSIFIER FOR SHAREPOINT PRODUCT OVERVIEW The only SharePoint 2007 and 2010 solution that delivers automatic conceptual metadata generation, auto-classification and powerful taxonomy tools running

More information

CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING

CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING Mary-Elizabeth ( M-E ) Eddlestone Principal Systems Engineer, Analytics SAS Customer Loyalty, SAS Institute, Inc. Is there valuable

More information

Three Fundamental Techniques To Maximize the Value of Your Enterprise Data

Three Fundamental Techniques To Maximize the Value of Your Enterprise Data Three Fundamental Techniques To Maximize the Value of Your Enterprise Data Prepared for Talend by: David Loshin Knowledge Integrity, Inc. October, 2010 2010 Knowledge Integrity, Inc. 1 Introduction Organizations

More information

GOVERNANCE DEFINED. Governance is the practice of making enterprise-wide decisions regarding an organization s informational assets and artifacts

GOVERNANCE DEFINED. Governance is the practice of making enterprise-wide decisions regarding an organization s informational assets and artifacts GOVERNANCE DEFINED Governance is the practice of making enterprise-wide decisions regarding an organization s informational assets and artifacts Governance over the use of technology assets can be seen

More information

Nagarjuna College Of

Nagarjuna College Of Nagarjuna College Of Information Technology (Bachelor in Information Management) TRIBHUVAN UNIVERSITY Project Report on World s successful data mining and data warehousing projects Submitted By: Submitted

More information

Business Performance & Data Quality Metrics. David Loshin Knowledge Integrity, Inc. loshin@knowledge-integrity.com (301) 754-6350

Business Performance & Data Quality Metrics. David Loshin Knowledge Integrity, Inc. loshin@knowledge-integrity.com (301) 754-6350 Business Performance & Data Quality Metrics David Loshin Knowledge Integrity, Inc. loshin@knowledge-integrity.com (301) 754-6350 1 Does Data Integrity Imply Business Value? Assumption: improved data quality,

More information

Selecting a Taxonomy Management Tool. Wendi Pohs InfoClear Consulting #SLATaxo

Selecting a Taxonomy Management Tool. Wendi Pohs InfoClear Consulting #SLATaxo Selecting a Taxonomy Management Tool Wendi Pohs InfoClear Consulting #SLATaxo InfoClear Consulting What do we do? Content Analytics Strategy and Implementation, including: Taxonomy/Ontology development

More information

Certified Information Professional 2016 Update Outline

Certified Information Professional 2016 Update Outline Certified Information Professional 2016 Update Outline Introduction The 2016 revision to the Certified Information Professional certification helps IT and information professionals demonstrate their ability

More information

The Foundations of Successful Reference Data Management

The Foundations of Successful Reference Data Management TopQuadrant Webcast with Malcolm Chisholm March 18, 2015 The Foundations of Successful Reference Data Management Introduction of Agenda and Speakers Today s Program I. Foundations of Successful Ref. Data

More information

The University of Jordan

The University of Jordan The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S

More information

Governance in Digital Asset Management

Governance in Digital Asset Management Governance in Digital Asset Management When was the last time you spent longer than it should have taken trying to find a specific file? Did you have to ask someone to help you? Or, has someone asked you

More information

EHR Interoperability Framework Overview

EHR Interoperability Framework Overview Hospital Health Information System EU HIS Contract No. IPA/2012/283-805 Final version July 2015 Visibility: Public Target Audience: EHR Developers EHR Administrators EPR Systems Developers This document

More information

Industry Models and Information Server

Industry Models and Information Server 1 September 2013 Industry Models and Information Server Data Models, Metadata Management and Data Governance Gary Thompson (gary.n.thompson@ie.ibm.com ) Information Management Disclaimer. All rights reserved.

More information

The Business Value of Predictive Analytics

The Business Value of Predictive Analytics The Business Value of Predictive Analytics Alys Woodward Program Manager, European Business Analytics, Collaboration and Social Solutions, IDC London, UK 15 November 2011 Copyright IDC. Reproduction is

More information

KPMG Unlocks Hidden Value in Client Information with Smartlogic Semaphore

KPMG Unlocks Hidden Value in Client Information with Smartlogic Semaphore CASE STUDY KPMG Unlocks Hidden Value in Client Information with Smartlogic Semaphore Sponsored by: IDC David Schubmehl July 2014 IDC OPINION Dan Vesset Big data in all its forms and associated technologies,

More information

Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps

Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps White provides GRASP-powered big data predictive analytics that increases marketing effectiveness and customer satisfaction with API-driven adaptive apps that anticipate, learn, and adapt to deliver contextual,

More information

Big Data Is Not Yet Another IT Project. Krish Krishnan President, Sixth Sense Advisors Inc Bridge to Big Data Oct 23 rd 2012

Big Data Is Not Yet Another IT Project. Krish Krishnan President, Sixth Sense Advisors Inc Bridge to Big Data Oct 23 rd 2012 Big Data Is Not Yet Another IT Project Krish Krishnan President, Sixth Sense Advisors Inc Bridge to Big Data Oct 23 rd 2012 Background Applications, OLTP Systems, Traditional Data Warehouse and Business

More information

Data Governance. David Loshin Knowledge Integrity, inc. www.knowledge-integrity.com (301) 754-6350

Data Governance. David Loshin Knowledge Integrity, inc. www.knowledge-integrity.com (301) 754-6350 Data Governance David Loshin Knowledge Integrity, inc. www.knowledge-integrity.com (301) 754-6350 Risk and Governance Objectives of Governance: Identify explicit and hidden risks associated with data expectations

More information

Mastering Data Management. Mark Cheaney Regional Sales Manager, DataFlux

Mastering Data Management. Mark Cheaney Regional Sales Manager, DataFlux Mastering Data Management Mark Cheaney Regional Sales Manager, DataFlux Today, the amount of technical information doubles every two years every two years It is forecast to double every three days There

More information

Developing Microsoft SharePoint Server 2013 Advanced Solutions

Developing Microsoft SharePoint Server 2013 Advanced Solutions Course 20489B: Developing Microsoft SharePoint Server 2013 Advanced Solutions Page 1 of 9 Developing Microsoft SharePoint Server 2013 Advanced Solutions Course 20489B: 4 days; Instructor-Led Introduction

More information

Developing Microsoft SharePoint Server 2013 Advanced Solutions MOC 20489

Developing Microsoft SharePoint Server 2013 Advanced Solutions MOC 20489 Developing Microsoft SharePoint Server 2013 Advanced Solutions MOC 20489 Course Outline Module 1: Creating Robust and Efficient Apps for SharePoint In this module, you will review key aspects of the apps

More information

User Needs and Requirements Analysis for Big Data Healthcare Applications

User Needs and Requirements Analysis for Big Data Healthcare Applications User Needs and Requirements Analysis for Big Data Healthcare Applications Sonja Zillner, Siemens AG In collaboration with: Nelia Lasierra, Werner Faix, and Sabrina Neururer MIE 2014 in Istanbul: 01-09-2014

More information

Overview. Background. Data Mining Analytics for Business Intelligence and Decision Support

Overview. Background. Data Mining Analytics for Business Intelligence and Decision Support Mining Analytics for Business Intelligence and Decision Support Chid Apte, PhD Manager, Abstraction Research Group IBM TJ Watson Research Center apte@us.ibm.com http://www.research.ibm.com/dar Overview

More information

Questionnaire on the European Data-Driven Economy

Questionnaire on the European Data-Driven Economy Questionnaire on the European Data-Driven Economy Questionnaire Following the Commission Communication COM2014(442) 'Towards a thriving data-driven economy', the Commission launched in January 2015 a targeted

More information

Business Intelligence for The Internet of Things

Business Intelligence for The Internet of Things Business Intelligence for The Internet of Things Ø mario.guarracino@cnr.it Ø http://www.na.icar.cnr.it/~mariog Ø Office FI@KTU 204a Logistic information Lectures Ø On Modays, following usual schedule Office

More information

Databases in Organizations

Databases in Organizations The following is an excerpt from a draft chapter of a new enterprise architecture text book that is currently under development entitled Enterprise Architecture: Principles and Practice by Brian Cameron

More information

IBM SPSS Modeler Premium

IBM SPSS Modeler Premium IBM SPSS Modeler Premium Improve model accuracy with structured and unstructured data, entity analytics and social network analysis Highlights Solve business problems faster with analytical techniques

More information

CORPORATE OVERVIEW. Big Data. Shared. Simply. Securely.

CORPORATE OVERVIEW. Big Data. Shared. Simply. Securely. CORPORATE OVERVIEW Big Data. Shared. Simply. Securely. INTRODUCING PHEMI SYSTEMS PHEMI unlocks the power of your data with out-of-the-box privacy, sharing, and governance PHEMI Systems brings advanced

More information

Search Engine Architecture I

Search Engine Architecture I Search Engine Architecture I Software Architecture The high level structure of a software system Software components The interfaces provided by those components The relationships between those components

More information

IMPROVEMENT THE PRACTITIONER'S GUIDE TO DATA QUALITY DAVID LOSHIN

IMPROVEMENT THE PRACTITIONER'S GUIDE TO DATA QUALITY DAVID LOSHIN i I I I THE PRACTITIONER'S GUIDE TO DATA QUALITY IMPROVEMENT DAVID LOSHIN ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Morgan Kaufmann

More information

Leveraging the power of UNSPSC for Business Intelligence

Leveraging the power of UNSPSC for Business Intelligence Paper No. Satyam/DW&BI/00 6 A Satyam White Paper Leveraging the power of UNSPSC for Business Intelligence Author: Anantha Ramakrishnan Ananth_Ark@onsite.satyam.com Introduction The Universal Standard Products

More information

Mercy Health System. St. Louis, MO. Process Mining of Clinical Workflows for Quality and Process Improvement

Mercy Health System. St. Louis, MO. Process Mining of Clinical Workflows for Quality and Process Improvement Mercy Health System St. Louis, MO Process Mining of Clinical Workflows for Quality and Process Improvement Paul Helmering, Executive Director, Enterprise Architecture Pete Harrison, Data Analyst, Mercy

More information

Data Mining Techniques and Opportunities for Taxation Agencies

Data Mining Techniques and Opportunities for Taxation Agencies Data Mining Techniques and Opportunities for Taxation Agencies Florida Consultant In This Session... You will learn the data mining techniques below and their application for Tax Agencies ABC Analysis

More information

Transformation of Free-text Electronic Health Records for Efficient Information Retrieval and Support of Knowledge Discovery

Transformation of Free-text Electronic Health Records for Efficient Information Retrieval and Support of Knowledge Discovery Transformation of Free-text Electronic Health Records for Efficient Information Retrieval and Support of Knowledge Discovery Jan Paralic, Peter Smatana Technical University of Kosice, Slovakia Center for

More information

ICD-10 Advantages Require Advanced Analytics

ICD-10 Advantages Require Advanced Analytics Cognizant 20-20 Insights ICD-10 Advantages Require Advanced Analytics Compliance alone will not deliver on ICD-10 s potential to improve quality of care, reduce costs and elevate efficiency. Organizations

More information

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information

More information

TEXT ANALYTICS INTEGRATION

TEXT ANALYTICS INTEGRATION TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment

More information

Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP

Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP ABSTRACT In data mining modelling, data preparation

More information

The Way to SOA Concept, Architectural Components and Organization

The Way to SOA Concept, Architectural Components and Organization The Way to SOA Concept, Architectural Components and Organization Eric Scholz Director Product Management Software AG Seite 1 Goals of business and IT Business Goals Increase business agility Support new

More information

INFORMATION GOVERNANCE FOR HEALTH PRIVACY MANAGEMENT

INFORMATION GOVERNANCE FOR HEALTH PRIVACY MANAGEMENT Banff Health Privacy Summit October 19, 2012 Rick Klumpenhouwer, MA, MAS, CIAPP-M Partner, Cenera INFORMATION GOVERNANCE FOR HEALTH PRIVACY MANAGEMENT The challenge Health providers and health institutions

More information

In this presentation, you will be introduced to data mining and the relationship with meaningful use.

In this presentation, you will be introduced to data mining and the relationship with meaningful use. In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine

More information

ECM Governance Policies

ECM Governance Policies ECM Governance Policies Metadata and Information Architecture Policy Document summary Effective date 13 June 2012 Last updated 17 November 2011 Policy owner Library Services, ICTS Approved by Council Reviewed

More information

Voice. listen, understand and respond. enherent. wish, choice, or opinion. openly or formally expressed. May 2010. - Merriam Webster. www.enherent.

Voice. listen, understand and respond. enherent. wish, choice, or opinion. openly or formally expressed. May 2010. - Merriam Webster. www.enherent. Voice wish, choice, or opinion openly or formally expressed - Merriam Webster listen, understand and respond May 2010 2010 Corp. All rights reserved. www..com Overwhelming Dialog Consumers are leading

More information

Collaboration. Michael McCabe Information Architect mmccabe@gig-werks.com. black and white solutions for a grey world

Collaboration. Michael McCabe Information Architect mmccabe@gig-werks.com. black and white solutions for a grey world Collaboration Michael McCabe Information Architect mmccabe@gig-werks.com black and white solutions for a grey world Slide Deck & Webcast Recording links Questions and Answers We will answer questions at

More information