International Journal of Emerging Technology & Research

Size: px
Start display at page:

Download "International Journal of Emerging Technology & Research"

Transcription

1 International Journal of Emerging Technology & Research High Performance Clustering on Large Scale Dataset in a Multi Node Environment Based on Map-Reduce and Hadoop Anusha Vasudevan 1, Swetha.M 2 1, 2 Computer Science and Engineering, JCT College of Engineering and Technology, Coimbatore, Tamilnadu, Abstract--The amount of data in our world has been exploding, and analyzing large data sets socalled big data will become a key basis of competition, reinforcement new waves of productivity intensification, innovation, and consumer surplus. Big data refers to the size of a dataset that has grown too large to be manipulated through traditional methods. These methods include capture, storage, and processing of the data in a tolerable amount of time. Apache Hadoop is an open-source software framework for storing and processing large scale dataset. It works with Map Reduce software framework for easily writing applications which process vast amounts of data (multi-terabyte data-sets) inparallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner. Clustering analysis is unsupervised learning tasks that consist on classify objects into group. This paper shows that Map Reduce framework K-means clustering algorithm can obtain a higher performance when handling large scale document automatic classification in a multimode environment. It reduces outlier data and enhances the speed of the system. Key terms: Bigdata, Hadoop, Map-Reduce, K- means Clustering, HDFS. 1. INTRODUCTION Big data is the term for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications[1].every day we create 2.5 quintillion bytes of data- So much than 90% of the data in the world today has been created in last two years. Although the term big data was once applied to the concept of data warehouses, it now refers to large-scale processing architectures that focus on capacity, throughput, and generosity of processing..big data uses Apache Hadoop as a largescale distributed batch processing infrastructure [2]. This includes hadoop Distributed File System and Map Reduce. The present system which uses traditional database management systems, data warehousing and data mining lacks in time commitment, privacy and security issues etc. Hence there is swift need of a system which can handle big data set which can handle zettabytes of data. 2. APACHE HADOOP The Apache Hadoop is a distributed batch processing infrastructure. While it can be used on a single machine, its true supremacy lies in its ability to scale to hundreds or thousands of computers, each with several processor cores. Hadoop is also designed to efficiently process large volumes of information by connecting many commodity computers together to Copyright reserved by IJETR (Impact Factor: 0.997) 733

2 work in parallel. Hadoop framework is written in java and the core components of Hadoop includes: Hadoop Distributed file System: Store large data sets Map-Reduce: Process large data sets. The major difference between traditional RDBMS and Hadoop is that RDMS is used for transactional systems to report and archive the data, whereas Hadoop is an approach to store huge amount of data in the distributed file system and process it. 3. HADOOP DISTRIBUTED FILE SYSTEM HDFS is an Apache Software Foundation project and a subproject of the Apache Hadoop project. Hadoop is ideal for storing large amounts of data, like yotta bytes and geobytes, and uses HDFS as its storage system. We can then access and store the data files as one seamless file system. Access to data files is handled in a streaming manner, meaning that applications or commands are executed directly using the Map-Reduce processing model. HDFS is fault tolerant and provides high-throughput access to large data sets HDFS ARCHITECTURE HDFS is comprised of interconnected clusters of nodes where files and directories reside. An HDFS cluster consists of a single node, known as a Name Node that manages the file system namespace and regulates client access to files. In addition, data nodes (Data Nodes) store data as blocks within files[8]. Fig:1 shows the HDFS architecture 3.2 NAME NODE Name Node is the most vital of the Hadoop daemons, It is the master of HDFS that directs the slave Data Node daemons to perform the low-level I/O tasks. It is the bookkeeper of HDFS, It keeps track of how your files are broken down into file blocks, which nodes store those blocks, and the overall health of the distributed filesystem. The functions are as follows: Memory and I/O intensive. It keeps track of how your files are broken down into file blocks, which nodes store those blocks, and the overall health of the distributed file system. It typically does not store any user data nor perform any computations for a Map-Reduce program to reduce the workload on the machine. 3.3 DATA NODE Data Node is the basically part of slave machine in your cluster. It is one of the daemons to perform the grunt work of the distributed file system, reading and writing HDFS blocks to actual files on the local file system. It can read or write a HDFS file (Actually the file is broken into blocks and the Name Node will tell your client which Data Node each block resides in ).Upon initialization, each of the Data Nodes informs the Name Node of the blocks it is currently storing. After this mapping is complete, the Data Nodes continually poll the Name Node to provide information regarding local changes as well as receive instructions to create, move, or delete blocks from the local disk. Your client communicates directly with the Data Node daemons to process the local files corresponding to the blocks. It may communicate with other Data Nodes to replicate its data blocks for redundancy. The Data Nodes provide backup store of the blocks and constantly report to the Name Node to keep the metadata current. HDFS Client DFS 3.4 SECONDARY NAME NODE Name FSDataOutputstream Data Node Data Node Data Node Fig:1 HDFS Architecture. Backup store of the blocks ensures that if any one Data Node crashes or becomes inaccessible over the network, you will still be able to read the files. The Secondary Name node (SNN) is an assistant daemon for monitoring the state of the cluster HDFS, Like the Name node, Each cluster has one SNN, and it typically resides on its own machine as well. No other Data Node or Task Tracker daemons run on the same server. The functions are as follows [13]. Name node is a single point of failure for a Hadoop cluster, and the SNN snapshots help minimize the downtime Copyright reserved by IJETR (Impact Factor: 0.997) 734

3 and loss of data. Nevertheless, a Name node failure requires human intervention to reconfigure the cluster to use the SNN as the primary Name node. 3.5 JOB TRACKER The Job Tracker daemon is the liaison between your application and Hadoop. Once you submit your code to your cluster, the Job Tracker determines the execution plan by determining which files to process, assigns nodes to different tasks, and monitors all tasks as they are running. If a task fail, the Job Tracker will automatically relaunch the task, possibly on a different node, up to a predefined limit of retries. There is only one Job Tracker daemon per Hadoop cluster. It is typically run on a server as a master node of the cluster. 3.6 TASK TRACKER The Job Tracker is the master overseeing the overall execution of a Map Reduce job [6] and the Task Trackers manage the execution of individual tasks on each slave node. Each Task Tracker is responsible for executing the individual tasks that the Job Tracker assigns. One responsibility of the Task Tracker is to constantly communicate with the Job Tracker. If the Job Tracker fails to receive a heartbeat from a Task Tracker within a specified amount of time, it will assume the Task Tracker has crashed and will resubmit the corresponding tasks to other nodes in the cluster. 4. MAHOUT Mahout is a project of apache software foundation which is mainly used in the areas of clustering. It provides common math operations and primitive java collections. Here we are using the subversion maven It helps in the easy clustering of data. Here for clustering first the data is copied into the HDFS and then it is converted into sequential file and then it undergoes the stage of syntax analysis and then the k-means clustering is applied. The clustering produces several map-reduce iterations and then clustered output is produced. program and distribute it across a cluster. In Map- Reduce, records are processed in isolation by tasks called Mappers. The output from the Mappers is then brought together into a second set of tasks called Reducers, where results from different mappers can be merged together[7]. Fig:2 shows the Map- Reduce Operation Inp ut data part -1 part -N 5.1 MAP FUNCTION Fig:2 Map-Reduce operation The Map function takes a series of key/value pairs, processes each, and generates zero or more output key/value pairs. The input and output types of the map can be (and often are) different from each other. If the application is doing a word count, the map function would break the line into words and output a key/value pair for each word. Each output pair would contain the word as the key and the number of instances of that word in the line as the value. 5.2 REDUCE FUNCTION MAP-REDUCE MapInst ance 1 MapInst ance 2 Redu ce Out put data 5. MAP-REDUCE Hadoop limits the amount of communication which can be performed by the processes, as each individual record is processed by a task in isolation from one another. Hadoop will not run just any The Frame work calls the application s reduce function once for each unique key in the sorted order. The Reduce can iterate through the values that are associated with that key and produce zero or more outputs. In the word count example, the Reduce function takes the input values, sums Copyright reserved by IJETR (Impact Factor: 0.997) 735

4 them and generates a single output of the word and the final sum 6. CLUSTERING A cluster is a group of same or similar elements gathered or occurring closely together[16]. Clustering is one of the most popular tools for data exploration and data organization that has been widely used in almost every scientific discipline that collects data. Given the exponential growth in data generation (estimated to be over 35 trillion gigabytes by the year 2020), clustering is receiving renewed interest and use in applications such as social networks, image retrieval, web search and gene expression analysis.a good clustering method will produce high quality clusters with high intra-class similarity. low inter-class similarity. 6.1 K-MEANS CLUSTERING k-means clustering is a method of vector quantization. k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean[10], serving as a prototype of the cluster. Start Number of cluster Centroid Distance objects to centroids Grouping based on minimum distance No objec t Move Fig: 3 Flow Chart: K-means algorithm En d 6.2 K-MEANS ALGORITHM The k-means algorithm is an evolutionary algorithm that gains its name from its method of operation. The algorithm clusters annotations into k groups, where k is provided as an input constraint. It then assigns each surveillance to clusters based upon the observation s proximity to the mean of the cluster [4]. The cluster s mean is then recomputed and the process begins again. Fig: 3 shows the flow of K-means algorithm: 7. INSTALLATION OF MULTINODE HADOOP CLUSTER AND WORKING OF K-MEANS CLUSTERING ALGORITHM Step 1: As a prerequisites of creating multi-node Hadoop cluster two local single node Hadoop cluster has to be configured. This is done in ubuntu OS with the help of Oracle Virtual Box.They are executed using shell commands. During the initial stages of configuration all the necessary software s such as python, java are installed users and groups are created accordingly [9]. The Hadoop HDFS performs the Map-Reduce task which generates a key value pair internally[16]. Figure shows the execution of Map-Reduce operation. Copyright reserved by IJETR (Impact Factor: 0.997) 736

5 International Journal of Emerging Technology & Research Volume 1, Issue 4, May-June, 2014 (www.ijetr.org) ISSN (E): ISSN (P): Fig 4: Map-Reduce Operation Step 2: After performing Map Reduced task it is copied to HDFS and then local data storage is performed. Step 3: Once the individual system is configured then it is combined together to form a multi node hadoop cluster. The IP addresses for both the systems are configured in such a way that one node become a dedicated master and other become the slave[14]. The command for configuring master and slave is as follows. #sudo gedit /etc/hosts The identification of master and slave is shown in Fig 5 and Fig 6 respectively. The shell command to recognize the java processes in master and slave is $ jps Fig 6: Slave JPS Step 4: Once we ensure that the map-reduce operation is working properly we go for the installation of mahout.here we are using the subversion maven Step 5: For the purpose of clustering first the document has to be copied from the local file sytsem to HDFS and then text documents to be clsuterd are to converted to the sequrntial file. The fig 7 shows the converssion from text to sequential file. Fig 7: Conversion to sequential file Fig 5: Master JPS Copyright reserved by IJETR (Impact Factor: 0.997) 737

6 Step 6: Once it is converted into sequential file it is then clustered using k-means clustering algorithm. $mahout kmeans I /user/sample/tfidf vectors/ -o /user/hduser/sam_out c /user/hduser/sam_m dm org.apache.mahout.common.distance.cosine.meas ure x 10 k 20 ow clustering cl Fig : 8 shows the clustering of files Fig 8: Clustering of the input files 8. CONCLUSION Big Data is used in the singular and refers to a collection of data sets so large and complex, it s impossible to process them with the usual databases. Companies pursue Big Data because it can be revelatory in spotting business trends, improving research quality, and gaining insights in a variety of fields, from IT to medicine to law enforcement and everything in between and beyond. And hence there is a need for highly scalable parallel data processing platforms such as Hadoop where Map-Reduce is a framework for programming commodity computer clusters which perform large-scale data processing which are consequently stored in HDFS with the help of parallel processing algorithm, the K-Means. In this paper we take the benefit of the parallelism of Map- Reduce to design a parallel K-Means clustering Algorithm in a multimode environment based on Map-Reduce. This algorithm can automatically cluster the massive data, making full use of the multiple Hadoop cluster performance and makes the big data analysis part a easier task. 9. REFERNCES [1]https://hadoop.apache.org/docs/r1.2.1/mapred_tuto rial.html [2] [3].http://searchbusinessanalytics.techtarget.com/defi nition/hadoop-cluster [4] Haixun Wang Wei Wang Jiong Yang Philip S. Yu Clustering by Pattern Similarity in Large Data Sets [5].http://www.cs.rutgers.edu/~mlittman/courses/ml0 3/iCML03/papers/ramos.pdf [6] Vishal S Patil1, Pravin D. Soni2 HADOOP SKELETON & FAULT TOLERANCE IN HADOOP CLUSTERS [7] Hyeokju Lee, Joon Her, Sung-Ryul Kim Implementation of a Large-scalable Social Data Analysis System based on Map-Reduce. [8] [9]http://bradhedlund.com/?s=Understanding+Hadoo p+clusters+and+the+network [10] Anil K. Jain, Data clustering: 50 years beyond K-means,Pattern Recognition Letters 31 (2010) [11] Dan pelleg, Andrew moore,x-means: Extending K-means with Efficient Estimation of the Number of Clusters [12]http://www.ibm.com/developerworks/library/waintrohdfs/ [13]http://developer.yahoo.com/hadoop/tutorial/mod ule1.html [14]http://www.guruzon.com/6/hadoopcluster/architecture/what-is-Namenode-hadoopcluster-limitation-use-functions [15] [16] [17] Clustering_Korea_Sept12.pdf Copyright reserved by IJETR (Impact Factor: 0.997) 738

Chapter 7. Using Hadoop Cluster and MapReduce

Chapter 7. Using Hadoop Cluster and MapReduce Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in

More information

CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)

CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model

More information

Apache Hadoop new way for the company to store and analyze big data

Apache Hadoop new way for the company to store and analyze big data Apache Hadoop new way for the company to store and analyze big data Reyna Ulaque Software Engineer Agenda What is Big Data? What is Hadoop? Who uses Hadoop? Hadoop Architecture Hadoop Distributed File

More information

Hadoop and Map-Reduce. Swati Gore

Hadoop and Map-Reduce. Swati Gore Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data

More information

Data-Intensive Computing with Map-Reduce and Hadoop

Data-Intensive Computing with Map-Reduce and Hadoop Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan humbetov@gmail.com Abstract Every day, we create 2.5 quintillion

More information

A Brief Outline on Bigdata Hadoop

A Brief Outline on Bigdata Hadoop A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is

More information

CSE-E5430 Scalable Cloud Computing Lecture 2

CSE-E5430 Scalable Cloud Computing Lecture 2 CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 14.9-2015 1/36 Google MapReduce A scalable batch processing

More information

Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data

Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give

More information

Hadoop IST 734 SS CHUNG

Hadoop IST 734 SS CHUNG Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to

More information

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop

More information

Hadoop Architecture. Part 1

Hadoop Architecture. Part 1 Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,

More information

Fault Tolerance in Hadoop for Work Migration

Fault Tolerance in Hadoop for Work Migration 1 Fault Tolerance in Hadoop for Work Migration Shivaraman Janakiraman Indiana University Bloomington ABSTRACT Hadoop is a framework that runs applications on large clusters which are built on numerous

More information

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, sborkar95@gmail.com Assistant Professor, Information

More information

Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA

Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data

More information

Detection of Distributed Denial of Service Attack with Hadoop on Live Network

Detection of Distributed Denial of Service Attack with Hadoop on Live Network Detection of Distributed Denial of Service Attack with Hadoop on Live Network Suchita Korad 1, Shubhada Kadam 2, Prajakta Deore 3, Madhuri Jadhav 4, Prof.Rahul Patil 5 Students, Dept. of Computer, PCCOE,

More information

Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics

Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics Dharmendra Agawane 1, Rohit Pawar 2, Pavankumar Purohit 3, Gangadhar Agre 4 Guide: Prof. P B Jawade 2

More information

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop

More information

Parallel Processing of cluster by Map Reduce

Parallel Processing of cluster by Map Reduce Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai vamadhavi04@yahoo.co.in MapReduce is a parallel programming model

More information

Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop

Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social

More information

Hadoop vs Apache Spark

Hadoop vs Apache Spark Innovate, Integrate, Transform Hadoop vs Apache Spark www.altencalsoftlabs.com Introduction Any sufficiently advanced technology is indistinguishable from magic. said Arthur C. Clark. Big data technologies

More information

Processing of Hadoop using Highly Available NameNode

Processing of Hadoop using Highly Available NameNode Processing of Hadoop using Highly Available NameNode 1 Akash Deshpande, 2 Shrikant Badwaik, 3 Sailee Nalawade, 4 Anjali Bote, 5 Prof. S. P. Kosbatwar Department of computer Engineering Smt. Kashibai Navale

More information

Apache Hadoop. Alexandru Costan

Apache Hadoop. Alexandru Costan 1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open

More information

Suresh Lakavath csir urdip Pune, India lsureshit@gmail.com.

Suresh Lakavath csir urdip Pune, India lsureshit@gmail.com. A Big Data Hadoop Architecture for Online Analysis. Suresh Lakavath csir urdip Pune, India lsureshit@gmail.com. Ramlal Naik L Acme Tele Power LTD Haryana, India ramlalnaik@gmail.com. Abstract Big Data

More information

NoSQL and Hadoop Technologies On Oracle Cloud

NoSQL and Hadoop Technologies On Oracle Cloud NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath

More information

Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science

Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science A Seminar report On Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org

More information

A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS

A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763

International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763 International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing

More information

HadoopRDF : A Scalable RDF Data Analysis System

HadoopRDF : A Scalable RDF Data Analysis System HadoopRDF : A Scalable RDF Data Analysis System Yuan Tian 1, Jinhang DU 1, Haofen Wang 1, Yuan Ni 2, and Yong Yu 1 1 Shanghai Jiao Tong University, Shanghai, China {tian,dujh,whfcarter}@apex.sjtu.edu.cn

More information

Journal of science STUDY ON REPLICA MANAGEMENT AND HIGH AVAILABILITY IN HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

Journal of science STUDY ON REPLICA MANAGEMENT AND HIGH AVAILABILITY IN HADOOP DISTRIBUTED FILE SYSTEM (HDFS) Journal of science e ISSN 2277-3290 Print ISSN 2277-3282 Information Technology www.journalofscience.net STUDY ON REPLICA MANAGEMENT AND HIGH AVAILABILITY IN HADOOP DISTRIBUTED FILE SYSTEM (HDFS) S. Chandra

More information

International Journal of Advance Research in Computer Science and Management Studies

International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 8, August 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc hairong@yahoo-inc.com

Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc hairong@yahoo-inc.com Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc hairong@yahoo-inc.com What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data

More information

Big Data With Hadoop

Big Data With Hadoop With Saurabh Singh singh.903@osu.edu The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials

More information

International Journal of Innovative Research in Computer and Communication Engineering

International Journal of Innovative Research in Computer and Communication Engineering FP Tree Algorithm and Approaches in Big Data T.Rathika 1, J.Senthil Murugan 2 Assistant Professor, Department of CSE, SRM University, Ramapuram Campus, Chennai, Tamil Nadu,India 1 Assistant Professor,

More information

Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics

Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)

More information

CS2510 Computer Operating Systems

CS2510 Computer Operating Systems CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction

More information

CS2510 Computer Operating Systems

CS2510 Computer Operating Systems CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction

More information

Parallel Data Mining and Assurance Service Model Using Hadoop in Cloud

Parallel Data Mining and Assurance Service Model Using Hadoop in Cloud Parallel Data Mining and Assurance Service Model Using Hadoop in Cloud Aditya Jadhav, Mahesh Kukreja E-mail: aditya.jadhav27@gmail.com & mr_mahesh_in@yahoo.co.in Abstract : In the information industry,

More information

Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015

Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib

More information

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing

More information

Log Mining Based on Hadoop s Map and Reduce Technique

Log Mining Based on Hadoop s Map and Reduce Technique Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, anujapandit25@gmail.com Amruta Deshpande Department of Computer Science, amrutadeshpande1991@gmail.com

More information

Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework

Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework Vidya Dhondiba Jadhav, Harshada Jayant Nazirkar, Sneha Manik Idekar Dept. of Information Technology, JSPM s BSIOTR (W),

More information

Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay

Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A COMPREHENSIVE VIEW OF HADOOP ER. AMRINDER KAUR Assistant Professor, Department

More information

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com Hadoop, Why? Need to process huge datasets on large clusters of computers

More information

HADOOP MOCK TEST HADOOP MOCK TEST II

HADOOP MOCK TEST HADOOP MOCK TEST II http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at

More information

Hadoop implementation of MapReduce computational model. Ján Vaňo

Hadoop implementation of MapReduce computational model. Ján Vaňo Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed

More information

Introduction to Hadoop and MapReduce

Introduction to Hadoop and MapReduce Introduction to Hadoop and MapReduce THE CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION Large-scale Computation Traditional solutions for computing large quantities of data

More information

White Paper. Big Data and Hadoop. Abhishek S, Java COE. Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP

White Paper. Big Data and Hadoop. Abhishek S, Java COE. Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP White Paper Big Data and Hadoop Abhishek S, Java COE www.marlabs.com Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP Table of contents Abstract.. 1 Introduction. 2 What is Big

More information

Prepared By : Manoj Kumar Joshi & Vikas Sawhney

Prepared By : Manoj Kumar Joshi & Vikas Sawhney Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks

More information

Distributed Filesystems

Distributed Filesystems Distributed Filesystems Amir H. Payberah Swedish Institute of Computer Science amir@sics.se April 8, 2014 Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 1 / 32 What is Filesystem? Controls

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON HIGH PERFORMANCE DATA STORAGE ARCHITECTURE OF BIGDATA USING HDFS MS.

More information

Big Data Analytics(Hadoop) Prepared By : Manoj Kumar Joshi & Vikas Sawhney

Big Data Analytics(Hadoop) Prepared By : Manoj Kumar Joshi & Vikas Sawhney Big Data Analytics(Hadoop) Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Understanding Big Data and Big Data Analytics Getting familiar with Hadoop Technology Hadoop release and upgrades

More information

Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging

Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging

More information

Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo

Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network

More information

Big Application Execution on Cloud using Hadoop Distributed File System

Big Application Execution on Cloud using Hadoop Distributed File System Big Application Execution on Cloud using Hadoop Distributed File System Ashkan Vates*, Upendra, Muwafaq Rahi Ali RPIIT Campus, Bastara Karnal, Haryana, India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.

Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware. Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software

More information

Firebird meets NoSQL (Apache HBase) Case Study

Firebird meets NoSQL (Apache HBase) Case Study Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 thomas.steinmaurer@scch.at www.scch.at Michael Zwick DI

More information

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org June 3 rd, 2008

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org June 3 rd, 2008 Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed

More information

IMPLEMENTATION OF P-PIC ALGORITHM IN MAP REDUCE TO HANDLE BIG DATA

IMPLEMENTATION OF P-PIC ALGORITHM IN MAP REDUCE TO HANDLE BIG DATA IMPLEMENTATION OF P-PIC ALGORITHM IN MAP REDUCE TO HANDLE BIG DATA Jayalatchumy D 1, Thambidurai. P 2 Abstract Clustering is a process of grouping objects that are similar among themselves but dissimilar

More information

Manifest for Big Data Pig, Hive & Jaql

Manifest for Big Data Pig, Hive & Jaql Manifest for Big Data Pig, Hive & Jaql Ajay Chotrani, Priyanka Punjabi, Prachi Ratnani, Rupali Hande Final Year Student, Dept. of Computer Engineering, V.E.S.I.T, Mumbai, India Faculty, Computer Engineering,

More information

Hadoop Ecosystem B Y R A H I M A.

Hadoop Ecosystem B Y R A H I M A. Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open

More information

Big Data. White Paper. Big Data Executive Overview WP-BD-10312014-01. Jafar Shunnar & Dan Raver. Page 1 Last Updated 11-10-2014

Big Data. White Paper. Big Data Executive Overview WP-BD-10312014-01. Jafar Shunnar & Dan Raver. Page 1 Last Updated 11-10-2014 White Paper Big Data Executive Overview WP-BD-10312014-01 By Jafar Shunnar & Dan Raver Page 1 Last Updated 11-10-2014 Table of Contents Section 01 Big Data Facts Page 3-4 Section 02 What is Big Data? Page

More information

Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel

Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:

More information

DATA MINING WITH HADOOP AND HIVE Introduction to Architecture

DATA MINING WITH HADOOP AND HIVE Introduction to Architecture DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of

More information

Large-Scale Data Sets Clustering Based on MapReduce and Hadoop

Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Journal of Computational Information Systems 7: 16 (2011) 5956-5963 Available at http://www.jofcis.com Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Ping ZHOU, Jingsheng LEI, Wenjun YE

More information

Hadoop & its Usage at Facebook

Hadoop & its Usage at Facebook Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System dhruba@apache.org Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction

More information

Distributed Framework for Data Mining As a Service on Private Cloud

Distributed Framework for Data Mining As a Service on Private Cloud RESEARCH ARTICLE OPEN ACCESS Distributed Framework for Data Mining As a Service on Private Cloud Shraddha Masih *, Sanjay Tanwani** *Research Scholar & Associate Professor, School of Computer Science &

More information

Big Fast Data Hadoop acceleration with Flash. June 2013

Big Fast Data Hadoop acceleration with Flash. June 2013 Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional

More information

MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012

MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012 MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte

More information

Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment

Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment Analysing Large Files in a Hadoop Distributed Cluster Environment S Saravanan, B Uma Maheswari Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,

More information

MapReduce. Tushar B. Kute, http://tusharkute.com

MapReduce. Tushar B. Kute, http://tusharkute.com MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity

More information

Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela

Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Hadoop Distributed File System T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Agenda Introduction Flesh and bones of HDFS Architecture Accessing data Data replication strategy Fault tolerance

More information

HDFS. Hadoop Distributed File System

HDFS. Hadoop Distributed File System HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files

More information

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets

More information

Hadoop Operations Management for Big Data Clusters in Telecommunication Industry

Hadoop Operations Management for Big Data Clusters in Telecommunication Industry Hadoop Operations Management for Big Data Clusters in Telecommunication Industry N. Kamalraj Asst. Prof., Department of Computer Technology Dr. SNS Rajalakshmi College of Arts and Science Coimbatore-49

More information

MapReduce and Hadoop Distributed File System V I J A Y R A O

MapReduce and Hadoop Distributed File System V I J A Y R A O MapReduce and Hadoop Distributed File System 1 V I J A Y R A O The Context: Big-data Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009) Google collects 270PB data in a month (2007), 20000PB

More information

Hadoop Cluster Applications

Hadoop Cluster Applications Hadoop Overview Data analytics has become a key element of the business decision process over the last decade. Classic reporting on a dataset stored in a database was sufficient until recently, but yesterday

More information

Survey on Scheduling Algorithm in MapReduce Framework

Survey on Scheduling Algorithm in MapReduce Framework Survey on Scheduling Algorithm in MapReduce Framework Pravin P. Nimbalkar 1, Devendra P.Gadekar 2 1,2 Department of Computer Engineering, JSPM s Imperial College of Engineering and Research, Pune, India

More information

Big Data Analytics by Using Hadoop

Big Data Analytics by Using Hadoop Governors State University OPUS Open Portal to University Scholarship All Capstone Projects Student Capstone Projects Spring 2015 Big Data Analytics by Using Hadoop Chaitanya Arava Governors State University

More information

Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12

Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12 Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using

More information

Map Reduce / Hadoop / HDFS

Map Reduce / Hadoop / HDFS Chapter 3: Map Reduce / Hadoop / HDFS 97 Overview Outline Distributed File Systems (re-visited) Motivation Programming Model Example Applications Big Data in Apache Hadoop HDFS in Hadoop YARN 98 Overview

More information

Problem Solving Hands-on Labware for Teaching Big Data Cybersecurity Analysis

Problem Solving Hands-on Labware for Teaching Big Data Cybersecurity Analysis , 22-24 October, 2014, San Francisco, USA Problem Solving Hands-on Labware for Teaching Big Data Cybersecurity Analysis Teng Zhao, Kai Qian, Dan Lo, Minzhe Guo, Prabir Bhattacharya, Wei Chen, and Ying

More information

High Performance Computing MapReduce & Hadoop. 17th Apr 2014

High Performance Computing MapReduce & Hadoop. 17th Apr 2014 High Performance Computing MapReduce & Hadoop 17th Apr 2014 MapReduce Programming model for parallel processing vast amounts of data (TBs/PBs) distributed on commodity clusters Borrows from map() and reduce()

More information

Implement Hadoop jobs to extract business value from large and varied data sets

Implement Hadoop jobs to extract business value from large and varied data sets Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to

More information

EFFICIENT DATA ANALYSIS SCHEME FOR INCREASING PERFORMANCE IN BIG DATA

EFFICIENT DATA ANALYSIS SCHEME FOR INCREASING PERFORMANCE IN BIG DATA EFFICIENT DATA ANALYSIS SCHEME FOR INCREASING PERFORMANCE IN BIG DATA Mr. V. Vivekanandan Computer Science and Engineering, SriGuru Institute of Technology, Coimbatore, Tamilnadu, India. Abstract Big data

More information

Big Data - Infrastructure Considerations

Big Data - Infrastructure Considerations April 2014, HAPPIEST MINDS TECHNOLOGIES Big Data - Infrastructure Considerations Author Anand Veeramani / Deepak Shivamurthy SHARING. MINDFUL. INTEGRITY. LEARNING. EXCELLENCE. SOCIAL RESPONSIBILITY. Copyright

More information

Large scale processing using Hadoop. Ján Vaňo

Large scale processing using Hadoop. Ján Vaňo Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine

More information

Intro to Map/Reduce a.k.a. Hadoop

Intro to Map/Reduce a.k.a. Hadoop Intro to Map/Reduce a.k.a. Hadoop Based on: Mining of Massive Datasets by Ra jaraman and Ullman, Cambridge University Press, 2011 Data Mining for the masses by North, Global Text Project, 2012 Slides by

More information

Hadoop & its Usage at Facebook

Hadoop & its Usage at Facebook Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System dhruba@apache.org Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture

More information

Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies

Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com Image

More information

Generic Log Analyzer Using Hadoop Mapreduce Framework

Generic Log Analyzer Using Hadoop Mapreduce Framework Generic Log Analyzer Using Hadoop Mapreduce Framework Milind Bhandare 1, Prof. Kuntal Barua 2, Vikas Nagare 3, Dynaneshwar Ekhande 4, Rahul Pawar 5 1 M.Tech(Appeare), 2 Asst. Prof., LNCT, Indore 3 ME,

More information

Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware

Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after

More information

Research on Clustering Analysis of Big Data Yuan Yuanming 1, 2, a, Wu Chanle 1, 2

Research on Clustering Analysis of Big Data Yuan Yuanming 1, 2, a, Wu Chanle 1, 2 Advanced Engineering Forum Vols. 6-7 (2012) pp 82-87 Online: 2012-09-26 (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/aef.6-7.82 Research on Clustering Analysis of Big Data

More information

Survey of Parallel Data Processing in Context with MapReduce

Survey of Parallel Data Processing in Context with MapReduce Survey of Parallel Data Processing in Context with MapReduce Madhavi Vaidya Department of Computer Science, Vivekanand College, Chembur, Mumbai vamadhavi04@yahoo.co.in Abstract MapReduce is a parallel

More information

Reduction of Data at Namenode in HDFS using harballing Technique

Reduction of Data at Namenode in HDFS using harballing Technique Reduction of Data at Namenode in HDFS using harballing Technique Vaibhav Gopal Korat, Kumar Swamy Pamu vgkorat@gmail.com swamy.uncis@gmail.com Abstract HDFS stands for the Hadoop Distributed File System.

More information

Constructing a Data Lake: Hadoop and Oracle Database United!

Constructing a Data Lake: Hadoop and Oracle Database United! Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.

More information

International Journal of Innovative Research in Information Security (IJIRIS) ISSN: 2349-7017(O) Volume 1 Issue 3 (September 2014)

International Journal of Innovative Research in Information Security (IJIRIS) ISSN: 2349-7017(O) Volume 1 Issue 3 (September 2014) SURVEY ON BIG DATA PROCESSING USING HADOOP, MAP REDUCE N.Alamelu Menaka * Department of Computer Applications Dr.Jabasheela Department of Computer Applications Abstract-We are in the age of big data which

More information

MapReduce and Hadoop Distributed File System

MapReduce and Hadoop Distributed File System MapReduce and Hadoop Distributed File System 1 B. RAMAMURTHY Contact: Dr. Bina Ramamurthy CSE Department University at Buffalo (SUNY) bina@buffalo.edu http://www.cse.buffalo.edu/faculty/bina Partially

More information

Big Data and Hadoop. Sreedhar C, Dr. D. Kavitha, K. Asha Rani

Big Data and Hadoop. Sreedhar C, Dr. D. Kavitha, K. Asha Rani Big Data and Hadoop Sreedhar C, Dr. D. Kavitha, K. Asha Rani Abstract Big data has become a buzzword in the recent years. Big data is used to describe a massive volume of both structured and unstructured

More information

Keywords: Big Data, HDFS, Map Reduce, Hadoop

Keywords: Big Data, HDFS, Map Reduce, Hadoop Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Configuration Tuning

More information