Parallelization Strategies for Multicore Data Analysis

Size: px
Start display at page:

Download "Parallelization Strategies for Multicore Data Analysis"

Transcription

1 Parallelization Strategies for Multicore Data Analysis Wei-Chen Chen 1 Russell Zaretzki 2 1 University of Tennessee, Dept of EEB 2 University of Tennessee, Dept. Statistics, Operations, and Management Science Computing in the Cloud, April 6-8, 2014

2 Outline 1 Introduction Basic Strategy Data Analysis Algorithms 2 Data and Analysis Techniques 3 Examples Example 1: Multicore M-H Samplers Example 2: Multicore Bootstrap Sampling Example 3: Multicore Methods for fitting GLMM

3 Basic Strategy Multicore A core is an individual processor CPUs used to have a single core, and the terms were interchangeable. Modern CPU s have several cores on a single CPU chip. Processors on the same chip share memory allowing much easier implementation of parallel algorithms.

4 Basic Strategy Multi Node Multi-node machines typically have many interconnected CPU s. Each CPU may have a number of cores which can share memory. Utilizing a multi node machine usually involves explicitly moving data between nodes. This is a significant complication and a high level of expertise is required to successfully and efficiently use these machines.

5 Basic Strategy Points of Parallelism In order to efficiently make use of multicore resources we need to understand our data and modelling procedure. The basic question is where is the independence? Data: Statistical Independence If our data is such that statistical independence exists between observations or groups of observations we may be able to take advantage of this special structure to divide and conquer. Parallelism of the algorithm Do parts of the algorithm allow for parallelism. Can the problem be divided into independent working pieces that can be computed separately and then recombined?

6 Data Analysis Algorithms Inputs and Outputs Most data based (statistical) analyses in the life sciences follow a basic functional structure. Inputs D - Data in the form of a vector, list, or other structure. Λ - Parameters of interest usually summarized as a vector, matrix, or list. Outputs φ - A scaler, vector, matrix or combination of these things.

7 Data Analysis Algorithms Key Algorithms Simulation Parallel chains running at the same time may improve efficiency. Cost of any burn in or discarded samples needs to be considered. Useful if we want to run many chains with different data or parameter values. Cluster Computers highly effective. Use job schedulers. Optimization Inherently serial operation controlled by a master process. Parallel implementation is most likely to occur within the function call.

8 Sample Data Vicente et al. (2006) looked at the distribution and faecal shedding patterns of the first-stage larvae (L1) of Elaphostrongylus cervi (Nematoda: Protostrongylidae) in red deer across Spain. n = 826 deer sampled. Deer were grouped among 351 farms. Sex of deer and length are explanatory variables. For the response variables, define Y is as 1 if the parasite E. cervi L1 is found in animal j at farm i, and 0 otherwise.

9 Logistic Regression Our goal is to relate presence/absence of the parasite to the size of the host animal and its gender which are known. We assume a binomial distribution for Y is and use the logistic link function to relate the mean p is to the explanatory variables. That is, p is (x is β) = Y is Bin(1, p is (x is β)) exp β 0 + β 1 x s + β 2 x len + β 3 x len x s 1 + exp β 0 + β 1 x s + β 2 x len + β 3 x len x s We are allowing each gender to have its own intercept and slope.

10 Likelihood Function Whether we take a Bayesian or MLE approach, we will need the log likelihood. l(β y, X) = I S i i=1 s=1 ( exp(x T is β) 1 + exp(x T is β) s y isxis T β} = exp { i i s [1 + exp(x T is β)] ) yis ( exp(xis T β) ) 1 yis

11 Likelihood Function Whether we take a Bayesian or MLE approach, we will need the log likelihood. l(β y, X) = I S i i=1 s=1 ( exp(x T is β) 1 + exp(x T is β) s y isxis T β} = exp { i i s [1 + exp(x T is β)] ) yis ( exp(xis T β) ) 1 yis

12 Example 1: Multicore M-H Samplers Bayesian Inference in Logistic Regression We ll keep things simple here and assume an improper unit prior for β because of the lack of available conjugate priors. As a proposal distribution we will use a normal random walk sampler. The Prior: β c The posterior π(β y, X) l(β y, X)π(β) l(β y, X) The proposal distribution q(β i β i 1 ) N(β i 1, I 1 (β i 1 ))

13 Example 1: Multicore M-H Samplers Simulation with the Metropolis Hastings Step Lack of conjugate priors and the form of the posterior requires that we simulate the posterior using the MH algorithm. Random Walk M-H Algorithm for Logistic Regression Initialization: Choose an arbitrary starting value β 0 Iteration t (t 1): 1 Given β (t 1), generate β q(β (t 1), β). 2 Compute ( ρ(β (t 1), β) π( = min 1, β)q( β, ) β (t 1) ) π(β (t 1) )q(β (t 1), β) = min(1, π( β)/π(β (t 1) )) 3 With probability ρ(β (t 1), β), accept β and set β t = β; otherwise reject β and set β t = β (t 1)

14 MCMC, the accuracy of estimates and inferences improves with greater sampling. We would like to use parallelism to increase the speed at which we sample. Where are the opportunities for parallelism in this example? Two possibilities: 1 Multichain - We can run multiple independent chains each starting from a different initial value β 0. Very Easy to do but we need to allow each chain to burn in. 2 Faster Function - We could use parallelism to speed up the calculation of the likelihood function, particularly if we had very large samples. For example if we had thousands of observations per farm we could break up the data, compute the likelihood separately for each farm, and finally bring the results together to get a final value. This may be slightly more work than our first idea but will probably only help if the data is very large. Example 1: Multicore M-H Samplers Opportunities for Parallelism.

15 Example 1: Multicore M-H Samplers Example: Random Walk M-H in R Let s try simulating the posterior for our deer parasite example. 1 Method 1 is simply a serial implementation. Run file 21-mcmc-glm.R. 2 Method 2 accesses multiple cores through the mclapply function. Run file 22-mcmc-glm-mclapply.R. 3 Method 3 uses the pbdr package. This allows you to work in a multinode environment and will be discussed more tomorrow. Run file 23-mcmc-glm-pbdR.R

16 Example 1: Multicore M-H Samplers Ex 1: Questions 1 Can you modify the code to change the number of cores/resources that you are using? 2 How can you create 95% credible intervals from the output? 3 Can you time your results to see if there are any improvements?

17 Example 2: Multicore Bootstrap Sampling Variance Components Previous example ignored the variation in the data due to the farms. Farms may be an important source of variation. Introduce a "random intercept" into our model to take this into account. p is (x is β) = where α i N(0, σ 2 α). Y is Bin(1, p is (x T is β)) exp β 0 + α i + β 1 x s + β 2 x len 1 + exp β 0 + α i + β 1 x s + β 2 x len 1 GLMM - generalized linear mixed model. 2 Can be fit by PQL - Penalized Quasi-Likelihood method. 3 This method is known to produce biased estimates of both β and σ 2 α. 4 Confidence intervals for σ 2 α also biased.

18 Example 2: Multicore Bootstrap Sampling Bootstrap to the Rescue Use the bootstrap percentile method to simulate the distribution of the of the estimate and create a confidence interval. Both parametric and nonparametric approaches exist. Non-Parametric Bootstrap Percentile Method Initialization: Fit the PQL Model to the original data. 1 Sample with replacement the subset of observations from each farm and combine to create a new data set. 2 Compute the PQL estimate of the resampled data set. 3 Collect the estimates of σ 2 α and produce a confidence interval. 4 Create prediction intervals for the individual α i.

19 Example 2: Multicore Bootstrap Sampling Opportunities for Parallelism. As before, the accuracy of estimates and inferences improves with greater sampling. We would like to use parallelism to increase the speed at which we sample. Where are the opportunities for parallelism in this example? Two possibilities: 1 Multichain - Again, run multiple chains since the bootstrap simulation is totally independent. 2 Faster Function - The re-sampling step is a very simple task and can be computed in one step. Most of the work is involved in refitting the PQL model on the resampled data. A multicore PQL may make sense, however, the data set may again be too small to have this be of much benefit. 3 Take advantage of gains by using vectorization and avoiding loops.

20 Example 2: Multicore Bootstrap Sampling Example: Nonparametric Bootstrap Let s try bootstrapping the farm effect for our deer parasite example. 1 First run 01-max_pql.R to fit the initial model. 2 Method 1 is simply a serial implementation with a for loop. Run file 11-npbs_for.R. 3 Method 2 uses lapply to eliminate the for loop. Run file 12-npbs_lapply.R. 4 Method 3 uses the mclapply package. Run file 13-npbs_mclapply.R 5 Method 4 again uses the pbdr package. Run file 14-npbs_pbdR.R

21 Example 2: Multicore Bootstrap Sampling Ex 2: Questions 1 Can you modify the code to change the number of cores/resources that you are using? 2 Can you time your results to see if there are any improvements? 3 Estimate mean and the median of variation for the bootstrapped samples? 4 Find a C.I. for beta. 5 More appropriate way to bootstrap?

22 Example 3: Multicore Methods for fitting GLMM The GLMM Likelihood The generalized linear mixed model likelihood requires us to integrate over the α i with respect to their densities. l(β y, X) = i ( { exp s (y isxis T β + α i) } ) s [1 + exp(x T is β + α p(α i σα)ds 2 i i)] where p(α i σ 2 α) = N(0, σ 2 α). PQL approximates this integral using a quadratic approximation. What can we do to improve the quality of the estimates?

23 Example 3: Multicore Methods for fitting GLMM Approach 1: Maximizing the Likelihood Outer Layer Optimization Level: Inherently Serial. Master Process chooses new parameter values to pass to the function (β, σ 2 α). Function returns a value to the optimization algorithm. Function Evaluation Numerical integration or Monte Carlo integration. Compute the product/sum of the integrals.

24 Example 3: Multicore Methods for fitting GLMM Opportunities for Parallelism. Where are the opportunities for parallelism in this example? Two possibilities: 1 Multichain - Not viable at the outer level. Could try multiple optimizations to check convergence. 2 Faster Function - Break the function up by doing integrations for each group(farm) separately.

25 Example 3: Multicore Methods for fitting GLMM Bayesian Approach to GLMM p(β, α, σα y) 2 p(y β, α, σα)p(β)p(α σ 2 α)p(σ 2 α) 2 Full Conditionals I S i p(β ) p(y ij β, α i )p(β) i=1 s=1 S i p(β ) p(y ij β, α i )p(β) s=1 S i p(σα ) 2 p(α i σα)p(σ 2 α) 2 s=1

26 Example 3: Multicore Methods for fitting GLMM Example: Sampling the Posterior Distribution of the GLMM 1 Method 1 is simply a serial implementation with a for loop. 31-mcmc_glmm.R. 2 Method 2 uses mclapply to eliminate the need to loop through all of the random effects. Run file 41-mcmc_glmm_mclapply.R. 3 Method 3 like 2 but uses the pbdr package. 42-mcmc_glmm_pbdR.R.

27 Example 3: Multicore Methods for fitting GLMM Ex 3: Questions 1 Exercise: Find 95% creditable intervals for sd.random. 2 Other ideas.

Bayesian Statistics in One Hour. Patrick Lam

Bayesian Statistics in One Hour. Patrick Lam Bayesian Statistics in One Hour Patrick Lam Outline Introduction Bayesian Models Applications Missing Data Hierarchical Models Outline Introduction Bayesian Models Applications Missing Data Hierarchical

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Imputing Values to Missing Data

Imputing Values to Missing Data Imputing Values to Missing Data In federated data, between 30%-70% of the data points will have at least one missing attribute - data wastage if we ignore all records with a missing value Remaining data

More information

Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection

Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection Directions in Statistical Methodology for Multivariable Predictive Modeling Frank E Harrell Jr University of Virginia Seattle WA 19May98 Overview of Modeling Process Model selection Regression shape Diagnostics

More information

From the help desk: Bootstrapped standard errors

From the help desk: Bootstrapped standard errors The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

More information

CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS

CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships

More information

Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )

Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples

More information

BayesX - Software for Bayesian Inference in Structured Additive Regression

BayesX - Software for Bayesian Inference in Structured Additive Regression BayesX - Software for Bayesian Inference in Structured Additive Regression Thomas Kneib Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich

More information

Sampling via Moment Sharing: A New Framework for Distributed Bayesian Inference for Big Data

Sampling via Moment Sharing: A New Framework for Distributed Bayesian Inference for Big Data Sampling via Moment Sharing: A New Framework for Distributed Bayesian Inference for Big Data (Oxford) in collaboration with: Minjie Xu, Jun Zhu, Bo Zhang (Tsinghua) Balaji Lakshminarayanan (Gatsby) Bayesian

More information

Inference on Phase-type Models via MCMC

Inference on Phase-type Models via MCMC Inference on Phase-type Models via MCMC with application to networks of repairable redundant systems Louis JM Aslett and Simon P Wilson Trinity College Dublin 28 th June 202 Toy Example : Redundant Repairable

More information

L3: Statistical Modeling with Hadoop

L3: Statistical Modeling with Hadoop L3: Statistical Modeling with Hadoop Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Revision: December 10, 2014 Today we are going to learn...

More information

Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011

Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011 Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis

More information

A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data

A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data Faming Liang University of Florida August 9, 2015 Abstract MCMC methods have proven to be a very powerful tool for analyzing

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

More information

Imputing Missing Data using SAS

Imputing Missing Data using SAS ABSTRACT Paper 3295-2015 Imputing Missing Data using SAS Christopher Yim, California Polytechnic State University, San Luis Obispo Missing data is an unfortunate reality of statistics. However, there are

More information

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Beckman HLM Reading Group: Questions, Answers and Examples Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Linear Algebra Slide 1 of

More information

Applied Multivariate Analysis - Big data analytics

Applied Multivariate Analysis - Big data analytics Applied Multivariate Analysis - Big data analytics Nathalie Villa-Vialaneix nathalie.villa@toulouse.inra.fr http://www.nathalievilla.org M1 in Economics and Economics and Statistics Toulouse School of

More information

An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics

An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics Slide 1 An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics Dr. Christian Asseburg Centre for Health Economics Part 1 Slide 2 Talk overview Foundations of Bayesian statistics

More information

Gamma Distribution Fitting

Gamma Distribution Fitting Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

More information

Applying MCMC Methods to Multi-level Models submitted by William J Browne for the degree of PhD of the University of Bath 1998 COPYRIGHT Attention is drawn tothefactthatcopyright of this thesis rests with

More information

A Basic Introduction to Missing Data

A Basic Introduction to Missing Data John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item

More information

Tutorial on Markov Chain Monte Carlo

Tutorial on Markov Chain Monte Carlo Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem

More information

Bootstrapping Big Data

Bootstrapping Big Data Bootstrapping Big Data Ariel Kleiner Ameet Talwalkar Purnamrita Sarkar Michael I. Jordan Computer Science Division University of California, Berkeley {akleiner, ameet, psarkar, jordan}@eecs.berkeley.edu

More information

CHAPTER 2 Estimating Probabilities

CHAPTER 2 Estimating Probabilities CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a

More information

Compression and Aggregation of Bayesian Estimates for Data Intensive Computing

Compression and Aggregation of Bayesian Estimates for Data Intensive Computing Under consideration for publication in Knowledge and Information Systems Compression and Aggregation of Bayesian Estimates for Data Intensive Computing Ruibin Xi 1, Nan Lin 2, Yixin Chen 3 and Youngjin

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

Introduction to parallel computing in R

Introduction to parallel computing in R Introduction to parallel computing in R Clint Leach April 10, 2014 1 Motivation When working with R, you will often encounter situations in which you need to repeat a computation, or a series of computations,

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Analysis of Bayesian Dynamic Linear Models

Analysis of Bayesian Dynamic Linear Models Analysis of Bayesian Dynamic Linear Models Emily M. Casleton December 17, 2010 1 Introduction The main purpose of this project is to explore the Bayesian analysis of Dynamic Linear Models (DLMs). The main

More information

Reliability estimators for the components of series and parallel systems: The Weibull model

Reliability estimators for the components of series and parallel systems: The Weibull model Reliability estimators for the components of series and parallel systems: The Weibull model Felipe L. Bhering 1, Carlos Alberto de Bragança Pereira 1, Adriano Polpo 2 1 Department of Statistics, University

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Centre for Central Banking Studies

Centre for Central Banking Studies Centre for Central Banking Studies Technical Handbook No. 4 Applied Bayesian econometrics for central bankers Andrew Blake and Haroon Mumtaz CCBS Technical Handbook No. 4 Applied Bayesian econometrics

More information

PS 271B: Quantitative Methods II. Lecture Notes

PS 271B: Quantitative Methods II. Lecture Notes PS 271B: Quantitative Methods II Lecture Notes Langche Zeng zeng@ucsd.edu The Empirical Research Process; Fundamental Methodological Issues 2 Theory; Data; Models/model selection; Estimation; Inference.

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

More information

DURATION ANALYSIS OF FLEET DYNAMICS

DURATION ANALYSIS OF FLEET DYNAMICS DURATION ANALYSIS OF FLEET DYNAMICS Garth Holloway, University of Reading, garth.holloway@reading.ac.uk David Tomberlin, NOAA Fisheries, david.tomberlin@noaa.gov ABSTRACT Though long a standard technique

More information

Statistics Graduate Courses

Statistics Graduate Courses Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

More information

Handling missing data in large data sets. Agostino Di Ciaccio Dept. of Statistics University of Rome La Sapienza

Handling missing data in large data sets. Agostino Di Ciaccio Dept. of Statistics University of Rome La Sapienza Handling missing data in large data sets Agostino Di Ciaccio Dept. of Statistics University of Rome La Sapienza The problem Often in official statistics we have large data sets with many variables and

More information

Short title: Measurement error in binary regression. T. Fearn 1, D.C. Hill 2 and S.C. Darby 2. of Oxford, Oxford, U.K.

Short title: Measurement error in binary regression. T. Fearn 1, D.C. Hill 2 and S.C. Darby 2. of Oxford, Oxford, U.K. Measurement error in the explanatory variable of a binary regression: regression calibration and integrated conditional likelihood in studies of residential radon and lung cancer Short title: Measurement

More information

Big Data and Parallel Work with R

Big Data and Parallel Work with R Big Data and Parallel Work with R What We'll Cover Data Limits in R Optional Data packages Optional Function packages Going parallel Deciding what to do Data Limits in R Big Data? What is big data? More

More information

Bayesian Phylogeny and Measures of Branch Support

Bayesian Phylogeny and Measures of Branch Support Bayesian Phylogeny and Measures of Branch Support Bayesian Statistics Imagine we have a bag containing 100 dice of which we know that 90 are fair and 10 are biased. The

More information

Incorporating cost in Bayesian Variable Selection, with application to cost-effective measurement of quality of health care.

Incorporating cost in Bayesian Variable Selection, with application to cost-effective measurement of quality of health care. Incorporating cost in Bayesian Variable Selection, with application to cost-effective measurement of quality of health care University of Florida 10th Annual Winter Workshop: Bayesian Model Selection and

More information

PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE

PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE BY P.D. ENGLAND AND R.J. VERRALL ABSTRACT This paper extends the methods introduced in England & Verrall (00), and shows how predictive

More information

Big data in R EPIC 2015

Big data in R EPIC 2015 Big data in R EPIC 2015 Big Data: the new 'The Future' In which Forbes magazine finds common ground with Nancy Krieger (for the first time ever?), by arguing the need for theory-driven analysis This future

More information

Regression Modeling Strategies

Regression Modeling Strategies Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions

More information

Markov Chain Monte Carlo Simulation Made Simple

Markov Chain Monte Carlo Simulation Made Simple Markov Chain Monte Carlo Simulation Made Simple Alastair Smith Department of Politics New York University April2,2003 1 Markov Chain Monte Carlo (MCMC) simualtion is a powerful technique to perform numerical

More information

Generalized Linear Mixed Models via Monte Carlo Likelihood Approximation Short Title: Monte Carlo Likelihood Approximation

Generalized Linear Mixed Models via Monte Carlo Likelihood Approximation Short Title: Monte Carlo Likelihood Approximation Generalized Linear Mixed Models via Monte Carlo Likelihood Approximation Short Title: Monte Carlo Likelihood Approximation http://users.stat.umn.edu/ christina/googleproposal.pdf Christina Knudson Bio

More information

Bayesian inference for population prediction of individuals without health insurance in Florida

Bayesian inference for population prediction of individuals without health insurance in Florida Bayesian inference for population prediction of individuals without health insurance in Florida Neung Soo Ha 1 1 NISS 1 / 24 Outline Motivation Description of the Behavioral Risk Factor Surveillance System,

More information

Applications of R Software in Bayesian Data Analysis

Applications of R Software in Bayesian Data Analysis Article International Journal of Information Science and System, 2012, 1(1): 7-23 International Journal of Information Science and System Journal homepage: www.modernscientificpress.com/journals/ijinfosci.aspx

More information

Gaussian Processes to Speed up Hamiltonian Monte Carlo

Gaussian Processes to Speed up Hamiltonian Monte Carlo Gaussian Processes to Speed up Hamiltonian Monte Carlo Matthieu Lê Murray, Iain http://videolectures.net/mlss09uk_murray_mcmc/ Rasmussen, Carl Edward. "Gaussian processes to speed up hybrid Monte Carlo

More information

How To Understand The Theory Of Probability

How To Understand The Theory Of Probability Graduate Programs in Statistics Course Titles STAT 100 CALCULUS AND MATR IX ALGEBRA FOR STATISTICS. Differential and integral calculus; infinite series; matrix algebra STAT 195 INTRODUCTION TO MATHEMATICAL

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

More details on the inputs, functionality, and output can be found below.

More details on the inputs, functionality, and output can be found below. Overview: The SMEEACT (Software for More Efficient, Ethical, and Affordable Clinical Trials) web interface (http://research.mdacc.tmc.edu/smeeactweb) implements a single analysis of a two-armed trial comparing

More information

LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as

LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

Logistic Regression (1/24/13)

Logistic Regression (1/24/13) STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

More information

Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan

Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan Data Mining: An Overview David Madigan http://www.stat.columbia.edu/~madigan Overview Brief Introduction to Data Mining Data Mining Algorithms Specific Eamples Algorithms: Disease Clusters Algorithms:

More information

Model Combination. 24 Novembre 2009

Model Combination. 24 Novembre 2009 Model Combination 24 Novembre 2009 Datamining 1 2009-2010 Plan 1 Principles of model combination 2 Resampling methods Bagging Random Forests Boosting 3 Hybrid methods Stacking Generic algorithm for mulistrategy

More information

Handling attrition and non-response in longitudinal data

Handling attrition and non-response in longitudinal data Longitudinal and Life Course Studies 2009 Volume 1 Issue 1 Pp 63-72 Handling attrition and non-response in longitudinal data Harvey Goldstein University of Bristol Correspondence. Professor H. Goldstein

More information

SAS Certificate Applied Statistics and SAS Programming

SAS Certificate Applied Statistics and SAS Programming SAS Certificate Applied Statistics and SAS Programming SAS Certificate Applied Statistics and Advanced SAS Programming Brigham Young University Department of Statistics offers an Applied Statistics and

More information

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

More information

Note on the EM Algorithm in Linear Regression Model

Note on the EM Algorithm in Linear Regression Model International Mathematical Forum 4 2009 no. 38 1883-1889 Note on the M Algorithm in Linear Regression Model Ji-Xia Wang and Yu Miao College of Mathematics and Information Science Henan Normal University

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

More information

Advanced Big Data Analytics with R and Hadoop

Advanced Big Data Analytics with R and Hadoop REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional

More information

Server Load Prediction

Server Load Prediction Server Load Prediction Suthee Chaidaroon (unsuthee@stanford.edu) Joon Yeong Kim (kim64@stanford.edu) Jonghan Seo (jonghan@stanford.edu) Abstract Estimating server load average is one of the methods that

More information

Lecture 6: Logistic Regression

Lecture 6: Logistic Regression Lecture 6: CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,

More information

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni 1 Web-based Supplementary Materials for Bayesian Effect Estimation Accounting for Adjustment Uncertainty by Chi Wang, Giovanni Parmigiani, and Francesca Dominici In Web Appendix A, we provide detailed

More information

A Latent Variable Approach to Validate Credit Rating Systems using R

A Latent Variable Approach to Validate Credit Rating Systems using R A Latent Variable Approach to Validate Credit Rating Systems using R Chicago, April 24, 2009 Bettina Grün a, Paul Hofmarcher a, Kurt Hornik a, Christoph Leitner a, Stefan Pichler a a WU Wien Grün/Hofmarcher/Hornik/Leitner/Pichler

More information

Multivariate Logistic Regression

Multivariate Logistic Regression 1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation

More information

A Scalable Bootstrap for Massive Data

A Scalable Bootstrap for Massive Data A Scalable Bootstrap for Massive Data arxiv:2.56v2 [stat.me] 28 Jun 22 Ariel Kleiner Department of Electrical Engineering and Computer Science University of California, Bereley aleiner@eecs.bereley.edu

More information

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics. Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are

More information

Java Modules for Time Series Analysis

Java Modules for Time Series Analysis Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

The Variability of P-Values. Summary

The Variability of P-Values. Summary The Variability of P-Values Dennis D. Boos Department of Statistics North Carolina State University Raleigh, NC 27695-8203 boos@stat.ncsu.edu August 15, 2009 NC State Statistics Departement Tech Report

More information

Big Data, Statistics, and the Internet

Big Data, Statistics, and the Internet Big Data, Statistics, and the Internet Steven L. Scott April, 4 Steve Scott (Google) Big Data, Statistics, and the Internet April, 4 / 39 Summary Big data live on more than one machine. Computing takes

More information

Part 2: One-parameter models

Part 2: One-parameter models Part 2: One-parameter models Bernoilli/binomial models Return to iid Y 1,...,Y n Bin(1, θ). The sampling model/likelihood is p(y 1,...,y n θ) =θ P y i (1 θ) n P y i When combined with a prior p(θ), Bayes

More information

HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

More information

Bayes and Big Data: The Consensus Monte Carlo Algorithm

Bayes and Big Data: The Consensus Monte Carlo Algorithm Bayes and Big Data: The Consensus Monte Carlo Algorithm Steven L. Scott, Alexander W. Blocker, Fernando V. Bonassi, Hugh A. Chipman, Edward I. George 3, and Robert E. McCulloch 4 Google, Inc. Acadia University

More information

Detection of changes in variance using binary segmentation and optimal partitioning

Detection of changes in variance using binary segmentation and optimal partitioning Detection of changes in variance using binary segmentation and optimal partitioning Christian Rohrbeck Abstract This work explores the performance of binary segmentation and optimal partitioning in the

More information

Leveraging Ensemble Models in SAS Enterprise Miner

Leveraging Ensemble Models in SAS Enterprise Miner ABSTRACT Paper SAS133-2014 Leveraging Ensemble Models in SAS Enterprise Miner Miguel Maldonado, Jared Dean, Wendy Czika, and Susan Haller SAS Institute Inc. Ensemble models combine two or more models to

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

Model Selection and Claim Frequency for Workers Compensation Insurance

Model Selection and Claim Frequency for Workers Compensation Insurance Model Selection and Claim Frequency for Workers Compensation Insurance Jisheng Cui, David Pitt and Guoqi Qian Abstract We consider a set of workers compensation insurance claim data where the aggregate

More information

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

More information

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012 Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

More information

Local classification and local likelihoods

Local classification and local likelihoods Local classification and local likelihoods November 18 k-nearest neighbors The idea of local regression can be extended to classification as well The simplest way of doing so is called nearest neighbor

More information

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 6 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, and Colonic Polyps

More information

ANALYSIS, THEORY AND DESIGN OF LOGISTIC REGRESSION CLASSIFIERS USED FOR VERY LARGE SCALE DATA MINING

ANALYSIS, THEORY AND DESIGN OF LOGISTIC REGRESSION CLASSIFIERS USED FOR VERY LARGE SCALE DATA MINING ANALYSIS, THEORY AND DESIGN OF LOGISTIC REGRESSION CLASSIFIERS USED FOR VERY LARGE SCALE DATA MINING BY OMID ROUHANI-KALLEH THESIS Submitted as partial fulfillment of the requirements for the degree of

More information

A Bayesian hierarchical surrogate outcome model for multiple sclerosis

A Bayesian hierarchical surrogate outcome model for multiple sclerosis A Bayesian hierarchical surrogate outcome model for multiple sclerosis 3 rd Annual ASA New Jersey Chapter / Bayer Statistics Workshop David Ohlssen (Novartis), Luca Pozzi and Heinz Schmidli (Novartis)

More information

STATISTICA Formula Guide: Logistic Regression. Table of Contents

STATISTICA Formula Guide: Logistic Regression. Table of Contents : Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

More information

ANOVA. February 12, 2015

ANOVA. February 12, 2015 ANOVA February 12, 2015 1 ANOVA models Last time, we discussed the use of categorical variables in multivariate regression. Often, these are encoded as indicator columns in the design matrix. In [1]: %%R

More information

Dirichlet Processes A gentle tutorial

Dirichlet Processes A gentle tutorial Dirichlet Processes A gentle tutorial SELECT Lab Meeting October 14, 2008 Khalid El-Arini Motivation We are given a data set, and are told that it was generated from a mixture of Gaussian distributions.

More information

Lecture/Recitation Topic SMA 5303 L1 Sampling and statistical distributions

Lecture/Recitation Topic SMA 5303 L1 Sampling and statistical distributions SMA 50: Statistical Learning and Data Mining in Bioinformatics (also listed as 5.077: Statistical Learning and Data Mining ()) Spring Term (Feb May 200) Faculty: Professor Roy Welsch Wed 0 Feb 7:00-8:0

More information

Introduction to Monte Carlo. Astro 542 Princeton University Shirley Ho

Introduction to Monte Carlo. Astro 542 Princeton University Shirley Ho Introduction to Monte Carlo Astro 542 Princeton University Shirley Ho Agenda Monte Carlo -- definition, examples Sampling Methods (Rejection, Metropolis, Metropolis-Hasting, Exact Sampling) Markov Chains

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information