Learning Schemas for Unordered XML

Size: px
Start display at page:

Download "Learning Schemas for Unordered XML"

Transcription

1 Lning Shms fo Unodd XML Rdu Ciunu Univsity of Lill & INRIA, Fn S lwk Stwoko Univsity of Lill & INRIA, Fn Astt W onsid unodd XML, wh th ltiv od mong silings is ignod, nd w invstigt th polm of lning shms fom xmpls givn y th us. W fous on th shm fomlisms poposd in [10]: disjuntiv multipliity shms (DMS) nd its stition, disjuntion-f multipliity shms (MS). A lning lgoithm tks s input st of XML doumnts whih must stisfy th shm (i.., positiv xmpls) nd st of XML doumnts whih must not stisfy th shm (i.., ngtiv xmpls), nd tuns shm onsistnt with th xmpls. W invstigt lning fmwok inspid y Gold [18], wh lning lgoithm should sound i.., lwys tun shm onsistnt with th xmpls givn y th us, nd omplt i.., l to podu vy shm with suffiintly ih st of xmpls. Additionlly, th lgoithm should ffiint i.., polynomil in th siz of th input. W pov tht th DMS lnl fom positiv xmpls only, ut thy not lnl whn w lso llow ngtiv xmpls. Moov, w show tht th MS lnl in th psn of positiv xmpls only, nd lso in th psn of oth positiv nd ngtiv xmpls. Futhmo, fo th lnl ss, th poposd lning lgoithms tun miniml shms onsistnt with th xmpls. 1. Intodution Whn XML is usd fo doumnt-nti pplitions, th ltiv od mong th lmnts is typilly impotnt.g., th ltiv od of pgphs nd hpts in ook. On th oth hnd, in s of dt-nti XML pplitions, th od mong th lmnts my unimpotnt [1]. In this pp w fous on th ltt us s. As n xmpl, tk in Figu 1 th XML doumnts stoing infomtion out ooks. Whil th od of th lmnts titl, y, utho, nd dito my diff fom on ook to noth, it hs no impt on th smntis of th dt stod in this smi-stutud dts. A shm fo XML is dsiption of th typ of dmissil doumnts, typilly dfining fo vy nod its ontnt modl i.., th hildn nods it must, my, o nnot ontin. In this pp w study th polm of lning unodd shms fom doumnt xmpls givn y th us. Fo instn, onsid th th XML doumnts fom Figu 1 nd ssum tht th us wnts to otin shm whih is stisfid y ll th th doumnts. A dsil solution is shm whih llows ook to hv, in ny od, xtly on titl, optionlly on y, nd ith t lst on utho o t lst on dito. Studying th thotil foundtions of lning unodd shms hs svl ptil motivtions. A shm svs s fn fo uss who do not know yt th utho C. Ppdimitiou titl Computtionl lning thoy y 2011 titl Shm mthing nd mpping ook titl Computtionl omplxity ook utho M. Kns ook dito y 1994 utho U. Vzini dito dito E. Rhm A. Bonifti Z. Bllhsn Figu 1. Th XML doumnts stoing infomtion out ooks. stutu of th XML doumnt, nd ttmpt to quy o modify its ontnts. If th shm is not givn xpliitly, it n lnd fom doumnt xmpls nd thn d y th uss. Fom noth point of viw, Flosu [14] pointd out th nd to utomtilly inf good-qulity shms nd to pply thm in th poss of dt intgtion. This is lly dt-nti pplition, thfo unodd shms might mo ppopit. Anoth motivtion of lning th unodd shm of XML olltion is quy minimiztion [2] i.., givn quy nd shm, find smll yt quivlnt quy in th psn of th shm. Futhmo, w wnt to us infd unodd shms nd optimiztion thniqus to oost th lning lgoithms fo twig quis [26], whih od-olivious. Pviously, shm lning hs n studid fom positiv xmpls only i.., doumnts whih must stisfy th shm. Fo instn, w hv ldy shown shm lnd fom th th doumnts fom Figu 1 givn s positiv xmpls. Howv, it is onivl to find pplitions wh ngtiv xmpls (i.., doumnts tht must not stisfy th shm) might usful. Fo instn, ssum snio wh th shm of dt-nti XML olltion volvs ov tim nd som doumnts my om osolt w..t. th nw shm. A us n mploy ths doumnts s ngtiv xmpls to xtt th nw shm of th olltion. Thus, th shm mintnn [14]

2 n don inmntlly, with littl fdk ndd fom th us. This kind of pplition motivts us to invstigt th polm of lning unodd shms whn w lso llow ngtiv xmpls. W fous ou sh on lning th unodd shm fomlisms ntly poposd in [10]: th disjuntiv multipliity shms (DMS) nd its stition, disjuntionf multipliity shms (MS). Whil thy mploy usfindly syntx inspid y DTDs, thy dfin unodd ontnt modl only, nd, thfo, thy tt suitd fo unodd XML. Thy lso tin muh of th xpssivnss of DTDs without n ins in omputtionl omplxity. Essntilly, DMS is st of uls ssoiting with h ll th possil num of ouns fo ll th llowd hildn lls y using multipliitis: (0 o mo ouns), (1 o mo),? (0 o 1), 1 (xtly on oun; oftn omittd fo vity). Additionlly, ltntivs n spifid using stitd disjuntion ( ) nd ll th onditions gthd with unodd ontntion ( ). Fo xmpl, th following shm is stisfid y th th doumnts fom Figu 1. ook Ñ titl y? putho dito q. This DMS llows ook to hv, in ny od, xtly on titl, optionlly on y, nd ith t lst on utho o t lst on dito. Moov, this is miniml shm stisfid y th doumnts fom Figu 1 us it ptus th most spifi shm stisfid y thm. On th oth hnd, th following shm is lso stisfid y th doumnts fom Figu 1, ut it is mo gnl: ook Ñ titl y? utho dito. This shm llows ook to hv, in ny od, xtly on titl, optionlly on y, nd ny num of utho s nd dito s. It is not miniml us it pts ook hving t th sm tim utho s nd dito s, unlik th fist xmpl of shm. Moov, th sond shm is MS us it dos not us th disjuntion option. In this pp w ddss th polm of lning DMS nd MS fom xmpls givn y th us. W popos dfinition of th lnility inflund y omputtionl lning thoy [21], in ptiul y th infn of lngugs [13, 18]. A lning lgoithm tks s input st of XML doumnts whih must stisfy th shm (i.., positiv xmpls), nd st of XML doumnts whih must not stisfy th shm (i.., ngtiv xmpls). Essntilly, lss of shms is lnl if th xists n lgoithm whih tks s input st of xmpls givn y th us nd tuns shm whih is onsistnt with th xmpls. Moov, th lning lgoithm should sound i.., lwys tun shm onsistnt with th xmpls givn y th us, omplt i.., l to podu vy shm with suffiintly ih st of xmpls, nd ffiint i.., polynomil in th siz of th input. Ou ppoh is novl in two ditions: Pvious sh on shm lning hs n don in th ontxt of odd XML, typilly on lning stitd lsss of gul xpssions s ontnt modls of th DTDs. W fous on lning unodd shm fomlisms nd th sults positiv: th DMS nd th MS lnl fom positiv xmpls only. Th lning fmwoks invstigtd fo in th littu typilly inf shm using olltion of doumnts sving s positiv xmpls. W study th impt of ngtiv xmpls in th poss of shm lning. In this s, th lning lgoithm should tun shm stisfid y ll th positiv xmpls nd y non of th ngtiv ons. W show tht th MS lnl in th psn of oth positiv nd ngtiv xmpls, whil th DMS not. W summiz ou lnility sults in Tl 1. Fo th lnl ss, w popos lning lgoithms whih tun miniml shm onsistnt with th xmpls. Shm fomlism + xmpls only + nd - xmpls DMS Ys (Th. 4.4) No (Th. 6.4) MS Ys (Th. 5.1) Ys (Th. 6.1) Tl 1. Summy of lnility sults. Rltd wok. Th Doumnt Typ Dfinition (DTD), th most widspd XML shm fomlism [8, 19], is ssntilly st of uls ssoiting with h ll gul xpssion tht dfins th dmissil squns of hildn. Thfo, lning DTDs dus to lning gul xpssions. Gold [18] showd tht th nti lss of gul lngugs is not idntifil in th limit. Consquntly, sh hs n don on stitd lsss of gul xpssions whih n ffiintly lnl [24]. Hgwld t l. [20] xtndd th ppoh fom [24] nd poposd systm whih infs on-unmiguous gul xpssions [11] s th ontnt modls of th lls. Goflkis t l. [17] dsignd ptil systm whih infs onis nd smntilly mningful DTDs fom doumnt xmpls. Bx t l. [6, 7] poposd lning lgoithms fo two lsss of gul xpssions whih ptu mny ptil DTDs nd suint y dfinition: singl oun gul xpssions (SOREs) nd its sulss onsisting of hin gul xpssions (CHAREs). Bx t l. [5] lso studid lning lgoithms fo th sulss of dtministi gul xpssions in whih h lpht symol ous t most k tims (k-ores). Mo ntly, Fydng nd Kötzing [15] poposd mo ffiint lgoithms fo th ov mntiond stitd lsss of gul xpssions. Sin th DMS disllow ptitions of symols mong th disjuntions, thy n sn s stitd SOREs intptd und ommuttiv losu i.., n unodd olltion of hildn mths gul xpssion if th xists n oding tht mths th gul xpssion in th stndd wy. Th lgoithms poposd fo th infn of SOREs [7, 15] typilly sd on onstuting n utomton nd thn tnsfoming it into n quivlnt SORE. Bing sd on utomt thniqus, th lgoithms fo lning SOREs tk odd input, thfo n dditionl input tht th DMS do not hv i.., th od mong th lls. Fo this son, w nnot du lning DMS to lning SOREs. Consquntly, w hv to invstigt nw thniqus to solv th polm of lning unodd shms. Moov, ll th xisting lning lgoithms tk into ount only positiv xmpls. W lso mntion som of th ltd wok on lning shm fomlisms mo xpssiv thn DTDs. XML Shm, th sond most widspd shm fomlism [8, 19], llow th ontnt modl of n lmnt to dpnd on th ontxt in whih it is usd, thfo it is mo diffiult to ln. Bx t l. [9] poposd ffiint lgoithms to utomtilly inf onis XML Shm dsiing givn st of XML doumnts. In diffnt ppoh, Chidlovskii [12] usd xtndd ontxt-f gmms to modl shms fo

3 XML nd poposd shm xttion lgoithm. Ogniztion. This pp is ognizd s follows. In Stion 2 w psnt pliminy notions. In Stion 3 w fomlly dfin th lning fmwok. In Stion 4 nd Stion 5 w psnt th lnility sults fo DMS nd MS, sptivly, whn only positiv xmpls llowd. In Stion 6 w disuss th impt of ngtiv xmpls on lning. Finlly, w summiz ou sults nd outlin futh ditions in Stion Pliminis Thoughout this pp w ssum n lpht Σ whih is finit st of symols. W lso ssum tht Σ hs totl od Σ, tht n tstd in onstnt tim. Ts. W modl XML doumnts with unodd lld ts. Fomlly, t t is tupl pn t, oot t, l t, hild tq, wh N t is finit st of nods, oot t P N t is distinguishd oot nod, l t : N t Ñ Σ is lling funtion, nd hild t N t N t is th pnt-hild ltion. W ssum tht th ltion hild t is yli nd qui vy non-oot nod to hv xtly on pdsso in this ltion. By T w dnot th st of ll finit ts. W psnt n xmpl of t in Figu 2. Figu 2. An xmpl of t. Unodd wods. An unodd wod is ssntilly multist of symols i.., funtion w : Σ Ñ N 0 mpping symols fom th lpht to ntul nums, nd w ll wpq th num of ouns of th symol in w. W dnot y W Σ th st ontining ll th unodd wods ov th lpht Σ. W lso wit P w s shothnd fo wpq 0. An mpty wod ε is n unodd wod tht hs 0 ouns of vy symol i.., εpq 0 fo vy P Σ. W oftn us simpl psnttion of unodd wods, witing h symol in th lpht th num of tims it ous in th unodd wod. Fo xmpl, whn th lpht is Σ t,, u, w 0 stnds fo th funtion w 0pq 3, w 0pq 0, nd w 0pq 2. Th (unodd) ontntion of two unodd wods w 1 nd w 2 is dfind s th multist union w 1 Z w 2 i.., th funtion dfind s pw 1 Z w 2qpq w 1pq w 2pq fo ll P Σ. Fo instn, Z. Not tht ε is th idntity lmnt of th unodd ontntion ε Z w w Z ε w fo ll unodd wod w. Also, givn n unodd wod w, y w i w dnot th ontntion w Z... Z w (i tims). A lngug is st of unodd wods. Th unodd ontntion of two lngugs L 1 nd L 2 is lngug L 1 Z L 2 tw 1 Z w 2 w 1 P L 1, w 2 P L 2u. Fo instn, if L 1 t, u nd L 2 t,, εu, thn L 1 Z L 2 t,,,, u. Multipliity shms. A multipliity is n lmnt fom th st t,,?, 0, 1u. W dfin th funtion mpping multipliitis to sts of ntul nums. Mo pisly: t0, 1, 2,...u, t1, 2,...u,? t0, 1u, 1 t1u, 0 t0u. Givn symol P Σ nd multipliity M, th lngug of M, dnotd Lp M q, is t i i P M u. Fo xmpl, Lp q t,,...u, Lp 0 q tεu, nd Lp? q tε, u. A disjuntiv multipliity xpssion E is: E : D M D Mn n, wh fo ll 1 i n, M i is multipliity nd h D i is: D i : M M 1 k k, wh fo ll 1 j k, Mj 1 is multipliity nd j P Σ. Moov, w qui tht vy symol P Σ is psnt t most on in disjuntiv multipliity xpssion. Fo instn, p q p dq is disjuntiv multipliity xpssion, ut p q p dq is not us pps twi. A disjuntion-f multipliity xpssion is n xpssion whih uss no disjuntion symol i.., n xpssion of th fom M M k k, wh th i s piwis distint symols in th lpht nd th M i s multipliitis (with 1 i k). W dnot y DME th st of ll th disjuntiv multipliity xpssions nd y ME th st of ll th disjuntion-f multipliity xpssions. Th lngug of disjuntiv multipliity xpssion is: Lp M M k k q LpM 1 1 q Y... Y Lp M k k q, LpD M q tw 1 Z... Z w i w 1,..., w i P LpDq ^ i P M u, LpD M D Mn n q LpD M 1 1 q Z... Z LpD Mn n q. If n unodd wod w longs to th lngug of disjuntiv multipliity xpssion E, w dnot it y w ù E, nd w sy tht w stisfis E. Whn symol (sp. disjuntiv multipliity xpssion E) hs multipliity 1, w oftn wit (sp. E) instd of 1 (sp. E 1 ). Moov, w omit witing symols nd disjuntiv multipliity xpssions with multipliity 0. Tk, fo instn, E 0 p q d? nd not tht oth th symols nd s wll s th disjuntion p q hv n impliit multipliity 1. Th lngug of E 0 is: LpE 0q t i j k d l i, j, k, l P N 0, i 1, j k 1, l 1u. Nxt, w ll th unodd shm fomlisms fom [10]: Dfinition 2.1 A disjuntiv multipliity shm (DMS) is tupl S poot S, R Sq, wh oot S P Σ is dsigntd oot ll nd R S mps symols in Σ to disjuntiv multipliity xpssions. By DMS w dnot th st of ll disjuntiv multipliity shms. A disjuntion-f multipliity shm (MS) S poot S, R Sq is stition of th DMS, wh R S mps symols in Σ to disjuntion-f multipliity xpssions. By MS w dnot th st of ll disjuntion-f multipliity shms. To dfin stisfiility of DMS S y t t w fist dfin th unodd wod h n t of hildn of nod n P N t i.., h n t pq tm P N t pn, mq P hild t ^ l tpmq u. Now, t t stisfis S, in symols t ù S, if l tpoot tq oot S nd fo ny nod n P N t, h n t P LpR Spl tpnqqq. By LpSq T w dnot th st of ll th ts stisfying S. In th squl, w psnt shm S poot S, R Sq s st of uls of th fom Ñ R Spq, fo ny P Σ. If

4 LpR Spqq ε, thn w wit Ñ ɛ o w simply omit witing suh ul. Exmpl 2.2 W psnt shms S 1, S 2, S 3, S 4 illustting th fomlisms dfind ov. Thy hv th oot ll nd th uls: S 1 : Ñ? Ñ? Ñ? Ñ S 2 : Ñ Ñ? Ñ Ñ S 3 : Ñ p q Ñ? Ñ? Ñ S 4 : Ñ p q Ñ ɛ Ñ? Ñ S 1 nd S 2 MS, whil S 3 nd S 4 DMS. Th t fom Figu 2 stisfis only S 1 nd S 3. Not tht th xist DMS suh tht th smllst t in thi lngug hs siz xponntil in th siz of th lpht, s w osv in th following xmpl. Exmpl 2.3 W onsid fo n 1 th lpht Σ t, 1, 1,..., n, nu nd th DMS S 5 hving th oot ll nd th following uls: Ñ 1 1, i Ñ i 1 i 1 pfo 1 i nq, i Ñ i 1 i 1 pfo 1 i nq, n Ñ ɛ, n Ñ ɛ. W psnt in Figu 3 th uniqu t stisfying this shm nd w osv tht its siz is xponntil in th siz of th lpht n n n n n n n n n n n n n n n n Figu 3. Th uniqu t stisfying th shm S 5. Altntiv dfinition with htizing tipls. Any disjuntiv multipliity xpssion E n xpssd ltntivly y its (htizing) tipl pc E, N E, P Eq onsisting of th following sts: Th onfliting pis of silings C E ontins pis of symols in Σ suh tht E dfins no wod using oth symols simultnously: C E tp 1, 2q P Σ Σ Dw P LpEq. 1 P w ^ 2 P wu. Th xtndd dinlity mp N E ptus fo h symol in th lpht th possil nums of its ouns in th unodd wods dfind y E: N E tp, wpqq P Σ N 0 w P LpEqu. Th sts of quid symols P E whih ptus symols tht must psnt in vy wod; ssntilly, st of symols X longs to P E if vy wod dfind y E ontins t lst on lmnt fom X: P E tx P LpEq. D P X. P wu. As n xmpl w tk E 0 p q d?. Bus P E is losd und supsts, w list only its miniml lmnts: C E0 tp, q, p, qu, P E0 ttu, t, u,...u, N E0 tp, 0q, p, 1q, p, 0q, p, 1q, pd, 0q, pd, 1q, p, 1q, p, 2q,...u. Two quivlnt disjuntiv multipliity xpssions yild th sm tipls nd hn pc E, N E, P Eq n viwd s th noml fom of givn xpssion E [10]. Moov, h st hs ompt psnttion of siz polynomil in th siz of th lpht nd omputl in PTIME. W illustt thm on th sm E 0 p q d? : C E onsists of sts of symols psnt in E suh tht ny piwis two of thm onfliting: C E 0 tt, uu. N E is funtion mpping symols to multipliitis suh tht fo ny unodd wod w P LpEq, nd fo ny symol P Σ, wpq P N Epq : N E 0 pq, N E 0 pq N E 0 pq N E 0 pdq?. P E ontins only th -miniml lmnts of PE: P E 0 ttu, t, uu. Also not tht w n sily onstut disjuntiv multipliity xpssion fom its htizing tipl. A simpl lgoithm hs to loop ov th sts fom C E nd P E to omput fo h ll with whih oth lls it is linkd y th disjuntion opto. Thn, using N E, th lgoithm ssoits to h ll nd h disjuntion th ot multipliity. Fo xmpl, tk th following ompt tipls: C E 1 tt, u, t, duu, P E 1 tt, u, tuu, N E 1 pq, N E 1 pq 1, N E 1 pq N E 1 pdq N E 1 pq?. Not tht thy htiz th xpssion: E 1 p q p? d? q. W hv intodud th ltntiv dfinition with htizing tipls us w lt popos n lgoithm whih lns htizing tipls fom unodd wod xmpls (Algoithm 1 fom Stion 4). Thn, fom this infomtion, th osponding disjuntiv multipliity xpssion n onstutd in stightfowd mnn. 3. Lning fmwok W us vint of th stndd lngug infn fmwok [13, 18] dptd to lning disjuntiv multipliity xpssions nd shms. A lning stting is tupl ontining th st of onpts tht to lnd, th st of instns of th onpts tht to sv s xmpls in lning, nd th smntis mpping vy onpt to its st of instns. Dfinition 3.1 A lning stting is tupl pe, C, Lq, wh E is st of xmpls, C is lss of onpts, nd L is funtion tht mps vy onpt in C to th st of ll its xmpls ( sust of E). Fo xmpl, th stting fo lning disjuntiv multipliity xpssions fom positiv xmpls is th tupl pw Σ, DME, Lq nd th stting fo lning disjuntiv multipliity shms fom positiv xmpls is pt, DMS, Lq. W otin nlogously th lning sttings fo disjuntionf multipliity xpssions nd shms: pw Σ, ME, Lq nd

5 pt, MS, Lq, sptivly. Th gnl fomultion of th dfinition llows us to sily dfin sttings fo lning fom oth positiv nd ngtiv xmpls, whih w psnt in Stion 6. To dfin lnl onpt, w fix lning stting K pe, C, Lq nd w intodu som uxiliy notions. A smpl is finit nonmpty sust D of E i.., st of xmpls. A smpl D is onsistnt with onpt P C if D Lpq. A lning lgoithm is n lgoithm tht tks smpl nd tuns onpt in C o spil vlu null. Dfinition 3.2 A lss of onpts C is lnl in polynomil tim nd dt in th stting K pe, C, Lq if th xists polynomil lning lgoithm ln stisfying th following two onditions: 1. Soundnss. Fo ny smpl D, th lgoithm lnpdq tuns onpt onsistnt with D o spil null vlu if no suh onpt xists. 2. Compltnss. Fo ny onpt P C th xists smpl CS suh tht fo vy smpl D tht xtnds CS onsistntly with i.., CS D Lpq, th lgoithm lnpdq tuns onpt quivlnt to. Futhmo, th dinlity of CS is polynomilly oundd y th siz of th onpt. Th smpl CS is lld th htisti smpl fo w..t. ln nd K. Fo lning lgoithm th my xist mny suh smpls. Th dfinition quis tht on htisti smpl xists. Th soundnss ondition is ntul quimnt, ut lon it is not suffiint to limint tivil lning lgoithms. Fo instn, if w wnt to ln disjuntiv multipliity xpssions fom positiv xmpls ov th lpht t 1,..., nu, n lgoithm lwys tuning 1... n is sound. Consquntly, w qui th lgoithm to omplt nlogously to how it is don fo gmmtil lngug infn [13, 18]. Typilly, in th s of polynomil gmmtil infn, th siz of th htisti smpl is quid to polynomil in th siz of th onpt to lnd [13], wh th siz of smpl is th sum of th sizs of th xmpls tht it ontins. Fom th dfinition of th DMS, sin ptitions of symols disdd mong th disjuntions, th siz of shm is polynomil in th siz of th lpht. Thus, ntul quimnt would tht th siz of th htisti smpl is polynomilly oundd y th siz of th lpht. Th xist DMS suh tht th smllst t in thi lngug is xponntil in th siz of th lpht (f. Exmpl 2.3). Bus of sp stitions, w hv imposd in th dfinition of lnility tht th dinlity (nd not th siz) of th htisti smpl is polynomilly oundd y th siz of th onpt, hn y th siz of th lpht. Howv, w l to otin htisti smpls of siz polynomil in th siz of th lpht y using ompssd psnttion of th XML ts, fo xmpl with ditd yli gphs [23]. W will povid in th full vsion of th pp th dtils out this ompssion thniqu nd th nw dfinition of th lnility. Th lgoithms tht w popos in this pp tnsf without ny lttion fo th dfinition using ompssd ts. Additionlly to th onditions imposd y th dfinition of lnility, w intstd in th xistn of lning lgoithms whih tun miniml onpts fo givn st of xmpls. It is impotnt to mphsiz tht w mn minimlity in tms on lngug inlusion. Whn only positiv xmpls llowd, DMS S is miniml DMS onsistnt with st of ts D iff D LpSq, nd, fo ny S 1 S, if D LpS 1 q, thn LpS 1 q LpSq. W similly otin th dfinition of minimlity fo lning disjuntiv multipliity xpssions. Intuitivly, miniml shm onsistnt with st of xmpls is th most spifi shm onsistnt with thm. Fo xmpl, ll th th XML doumnts stoing infomtion out ooks fom Figu 1. Assum tht th us povids th th doumnts s positiv xmpls to lning lgoithm. Th most spifi shm onsistnt with th xmpls is: ook Ñ titl y? putho dito q. Anoth possil solution is th shm: ook Ñ titl y? utho dito. It is lss likly tht us wnts to otin suh shm whih llows ook to hv t th sm tim utho s nd dito s. In this s, th most spifi shm lso osponds to th ntul quimnts tht on might wnt to impos on XML olltion stoing infomtion out ooks, in ptiul ook hs ith t lst on utho o t lst on dito. Minimlity is oftn pivd s tt fittd lning solution [3 5, 16], nd this motivts ou quimnt fo th lning lgoithms to tun miniml onpts onsistnt with th xmpls. 4. Lning DMS fom positiv xmpls Th min sult of this stion is th lnility of th disjuntiv multipliity shms fom positiv xmpls i.., in th stting pt, DMS, Lq. W psnt lning lgoithm tht onstuts miniml shm onsistnt with th input st of ts. Fist, w study th polm of lning disjuntiv multipliity xpssion fom positiv xmpls i.., in th stting pw Σ, DME, Lq. W psnt lning lgoithm tht onstuts miniml disjuntiv multipliity xpssion onsistnt with th input olltion of unodd wods. Givn st of unodd wods, th my xist mny onsistnt miniml disjuntiv multipliity xpssions. In ft, fo som sts of positiv xmpls th my n xponntil num of suh xpssions (f. th poof of Lmm 6.2). Tk in Exmpl 4.1 smpl nd two onsistnt miniml disjuntiv multipliity xpssions. Exmpl 4.1 Consid th lpht Σ t,,, d, u nd th st of unodd wods D t, d, u. Tk th following two disjuntiv multipliity xpssions: E 1 p q p? d? q, E 2 p d q. Not tht D LpE 1q nd D LpE 2q. Also not tht LpE 1q LpE 2q (us of ) nd LpE 2q LpE 1q (us of ). On th oth hnd, w sily osv tht oth E 1 nd E 2 miniml disjuntiv multipliity xpssions with lngugs inluding D. Bfo w psnt th lning lgoithms, w hv to intodu dditionl notions. Fist, w dfin th funtion min fit multipliityp q whih, givn st of unodd wods D nd ll P Σ, omputs th multipliity M suh P D. wpq P M nd th dos not xist noth multipliity M 1 suh tht M 1 M P D. wpq P M 1. Fo xmpl, givn th st of unodd

6 wods D t, d, u, w hv: min fit multipliitypd, q, min fit multipliitypd, q 1, min fit multipliitypd, q?. Nxt, w intodu th notion of mximl-liqu ptition of gph. Givn gph G pv, Eq, mximl-liqu ptition of G is gph ptition pv 1,..., V k q suh tht: Th sugph indud in G y ny V i is liqu (with 1 i k), Th sugph indud in G y th union of ny V i nd V j is not liqu (with 1 i j k). In Figu 4 w psnt gph nd mximl-liqu ptition of it i.., tt, u, tu, t, duu. Not tht th gph fom Figu 4 llows on oth mximl-liqu ptition i.., ttu, tu, t, d, uu. On th oth hnd, ttu, tu, t, du, tuu is not mximl-liqu ptition us it ontins two sts suh tht thi union indus liqu i.., tu nd tu. Figu 4. A gph nd mximl-liqu ptition of it. Vtis fom th sm tngl long to th sm st. Unlik th liqu polm, whih is known to NPomplt [25], w n ptition in PTIME gph in mximl liqus with gdy lgoithm. In th squl, w ssum tht th vtis of th gph lls fom Σ. Fo givn gph th my xist mny mximl-liqu ptitions nd w us th totl od Σ to popos dtministi lgoithm onstuting mximl-liqu ptition. Th lgoithm woks s follows: w tk th smllst ll fom Σ w..t. Σ nd not yt usd in liqu, nd w ittivly xtnd it to mximl liqu y dding onntd lls. Evy tim whn w hv hoi to dd nw ll to th unt liqu, w tk th smllst ll w..t. Σ. W pt this until ll th lls usd. This lgoithm yilds to uniqu mximl-liqu ptition. Fo xmpl, fo th gph fom Figu 4, w omput th mximl-liqu ptition mkd on th figu i.., tt, u, tu, t, duu. W dditionlly dfin th funtion mx liqu ptitionp q whih tks s input gph, omputs mximl-liqu ptition using th gdy lgoithm dsid ov nd, t th nd, fo thnil sons, th lgoithm disds th singltons. Fo xmpl, fo th gph fom Figu 4, th funtion mx liqu ptitionp q tuns tt, u, t, duu. Clly, th funtion mx liqu ptitionp q woks in PTIME. Nxt, w psnt Algoithm 1 nd w lim tht, givn st of unodd wods D, it omputs in polynomil tim disjuntiv multipliity xpssion E onsistnt with D. Algoithm 1 woks in th stps nd w illustt h of thm on th smpl D t, d, u fom Exmpl 4.1. Th fist stp (lins 1-2) omputs th ompt psnttion of th xtndd dinlity mp fo h symol fom Σ, using th funtion min fit multipliityp q. W igno in th squl th symols nv ouing in wods fom D (lin 3). Fo th smpl fom Exmpl 4.1, w inf: N Epq, N Epq 1, N Epq N Epdq N Epq?. d Algoithm 1 Lning disjuntiv multipliity xpssions fom positiv xmpls. lgoithm ln DME pdq Input: A st of unodd wods D tw 1,..., w nu Output: A miniml disjuntiv multipliity xpssion E onsistnt with D 1: fo P Σ do 2: lt N Epq min fit multipliitypd, q 3: lt Σ 1 t P Σ N Epq P t?, 1,, uu 4: lt G pσ 1, tp, q P Σ 1 Σ P D. R w _ R wuq 5: lt C E mx liqu ptitionpgq 6: lt P E ttu N Epq P t1, uu Y tx P C P D. D P X. P wu 7: tun E htizd y th tipl pc E, N E, P E q Th sond stp of th lgoithm (lins 4-5) omputs th ompt sts of onfliting silings. Fist, w onstut th gph G hving s st of vtis th lls ouing t lst on in unodd wods fom D. Two lls linkd y n dg in G if th dos not xist n unodd wod in D wh oth of thm psnt t th sm tim, in oth wods th two lls ndidt pi of onfliting silings. Nxt, w pply th funtion mx liqu ptitionp q on th gph G. Fo th unodd wods fom Exmpl 4.1 w otin th gph fom Figu 4, nd w inf C E tt, u, t, duu. Not tht th mximl-liqu ptition implis th minimlity of th disjuntiv multipliity xpssion onstutd lt using th infd C E. Th thid stp of th lgoithm (lin 6) omputs th - miniml sts of quid symols P E. Eh symol hving ssoitd multipliity 1 o longs to quid st of symols ontining only itslf us it is psnt in ll th unodd wods fom D nd w wnt to ln miniml onpt. Moov, w dd in P E th sts of onfliting silings infd t th pvious stp with th popty tht on of thm is psnt in ny unodd wod fom D, to gunt th minimlity of th infd lngug. Fo th smpl fom Exmpl 4.1, tu longs to P E. Sin fom th pvious stp w hv C E tt, u, t, duu, t this stp w hv to dd t, u to P E us ll th wods in th smpl ontin ith o. On th oth hnd, w do not dd t, du us th smpl ontins th wod. Th infd P E is tt, u, tuu. Finlly, th lgoithm tuns th disjuntiv multipliity xpssion htizd y th infd tipl (lin 7). Fo th smpl D, it tuns E p q p? d? q. Not tht if t stp 2 w tk ptition whih is not mximlliqu on, fo xmpl ttu, tu, t, du, tuu, nd w lt onstut disjuntiv multipliity xpssion using it, w gt p? d? q?, whih inluds oth E 1 nd E 2 fom Exmpl 4.1, thfo is not miniml. Also not tht t stp 3, without t, u ddd to P E, th sulting shm would pt n unodd wod without ny nd, so th lnd lngug would not miniml. Algoithm 1 is sound nd h of its th stps quis polynomil tim. Nxt, w pov th ompltnss of th lgoithm. Givn disjuntiv multipliity xpssion E, w onstut in th stps its htisti smpl CS E. At th sm tim, w illustt th onstution on th disjuntiv multipliity xpssion E 1 p q p? d? q: 1. W tk th pis of symols whih n found togth in n unodd wod in LpEq. Fo h of thm, w dd in CS E n unodd wod ontining only

7 th two symols. Nxt, fo h symol ouing in th disjuntions fom E, w dd in CS E n unodd wod ontining only on oun of tht symol. W lso dd in CS E th mpty wod. Fo E 1 w otin: t,, d,, d,,, d,,,, d,, εu. 2. W pl h unodd wod w otind t th pvious stp with w Z w 1, wh w 1 is miniml unodd wod suh tht w Z w 1 P LpEq. Th nwly otind CS E ontins unodd wods fom LpEq. Fo E 1 w otin: t,, d,,, du. 3. Fo h symol fom th lpht suh tht N Epq is o, w ndomly tk n unodd wod w fom CS E nd ontining nd w dd to CS E th unodd wod w Z. In th wost s, t this stp th num of wods in th htisti smpl is dould, ut it mins polynomil in th siz of th lpht. Fo E 1 w otin: t,,, d,,, du. Not tht th my xist mny quivlnt htisti smpls. Th fist stp of th onstution implis tht th only potntil onflits to onsidd in Algoithm 1 th onflits implid y th xpssion. In oth wods, ll th onntd omponnts of th gph of potntil onflits fom Algoithm 1 liqus. Thus, th is only on possil mximl-liqu ptition to don in th lgoithm. Moov, th sond nd thid stps of th onstution nsu tht, fo ny smpl onsistntly xtnding th htisti smpl, Algoithm 1 infs th ot sts of quid symols nd th xtndd dinlity mp, sptivly. W hv poposd Algoithm 1, whih is sound nd omplt lgoithm fo lning miniml disjuntiv multipliity xpssions fom unodd wods positiv xmpls. Thus, w n stt th following sult: Lmm 4.2 Th onpt lss DME is lnl in polynomil tim nd dt fom positiv xmpls i.., in th stting pw Σ, DME, Lq. Nxt, w xtnd th sult fo DMS. W popos Algoithm 2, whih lns disjuntiv multipliity shm fom st of ts. W ssum w.l.o.g. tht ll th ts fom th smpl hv s oot ll th sm ll. If this ssumption is not stisfid, th smpl is not onsistnt. Th lgoithm infs, fo h ll fom th lpht, th miniml disjuntiv multipliity xpssion onsistnt with th hildn of ll th nods lld fom th ts fom th smpl. Algoithm 2 Lning DMS fom positiv xmpls. lgoithm: ln DMS pdq Input: A st of ts D tt 1,..., t nu s.t. l ti poot ti q (with 1 i nq Output: A miniml DMS S onsistnt with D 1: fo P Σ do 2: lt D 1 th n t t P D. n P N t. l tpnq u 3: lt R Spq ln DME pd 1 q 4: tun S p, R Sq Algoithm 2 tuns miniml disjuntiv multipliity shm onsistnt with th smpl us th infd ul fo h ll psnts miniml disjuntiv multipliity xpssion otind using Algoithm 1. Nxt, w show tht Algoithm 2 is lso omplt y poviding onstution of htisti smpl of dinlity polynomil in th siz of th lpht. Fo this pupos, w hv to dfin fist two dditionl notions. Givn DMS S poot S, R Sq nd ll P Σ, w dfin th following two ts: min tòps,q is miniml t stisfying S nd ontining nod lld, min tóps,q is miniml t stisfying S 1 p, R Sq. It is quivlnt to min tòps 1,q. W illustt th two notions dfind ov in th following xmpl: Exmpl 4.3 Consid th DMS S hving th oot ll nd th uls: Ñ p q Ñ d?, Ñ d, Ñ ɛ W psnt in Figu 5 som ts nd w xplin fo h of thm how it n usd. () min tóps,q min tòps,q min tòps,q min tòps,q (f) min tóps,q () min tóps,q min tòps,q min tòps,q min tòps,q (g) min tóps,q () min tòps,q d d (h) min tóps,dq (d) min tòps,dq d (i) min tóps,q Figu 5. Ts usd fo Exmpl 4.3. () min tóps,q Nxt, w psnt th onstution of th htisti smpl fo lning DMS fom positiv xmpls. W tk DMS S poot S, R Sq ov n lpht Σ nd w ssum w.l.o.g. tht ny symol of th lpht n psnt in t lst on t fom LpSq. Fo h P Σ, fo h w P CS RS pq, w omput t t s follows: w gnt t min tòps,q, w tk th nod lld y (lt it n ), nd fo ny P Σ, whil h n t pq wpq w fus in n opy of min tóps,q. W otin smpl of dinlity polynomilly oundd y th siz of th lpht. Givn DMS S, th my xist mny htisti smpls CS S. Eh of thm hs th popty tht, if w onstut smpl D whih xtnds CS S onsistntly with S, thn ln DMS pdq tuns S. This povs th ompltnss of Algoithm 2. W illustt th onstution of th htisti smpl on th shm S fom Exmpl 4.3. Rll tht w hv ldy psntd th ts min tòps,q nd min tóps,q fo h fom th lpht. W lso onstut th htisti smpls fo th disjuntiv multipliity xpssions fom th uls of S: CS RS pq t,,,, u, CS RS pq tε, du, CS RS pq CS RS pq t, u, CS RS pdq CS RS pq tεu.

8 In Figu 6 w psnt htisti smpl CS S fo th DMS S nd w xplin th pupos of h t: (), (), (), (d), nd () nsu tht th is infd th ot ul fo th oot i.., R Spq, () nd (f) nsu tht th is infd th ot R Spq, (d) nd (g) nsu tht th is infd th ot R Spq, () nd (h) nsu tht th is infd th ot R Spq, Th nods lld y d nd nv hv hildn in th ts fom CS S, so th infd th ot uls fo R Spdq nd R Spq. () () () (d) Figu 6. Chtisti smpl fo th shm S fom Exmpl 4.3. W hv poposd Algoithm 2, whih is sound nd omplt lgoithm fo lning disjuntiv multipliity shms fom ts positiv xmpls. Thus, w n stt th min sult of this stion: Thom 4.4 Th onpt lss DMS is lnl in polynomil tim nd dt fom positiv xmpls i.., in th stting pt, DMS, Lq. 5. Lning MS fom positiv xmpls In this stion w show tht th MS lnl fom positiv xmpls i.., in th stting pt, MS, Lq. Rll tht th MS llow no disjuntion in th uls, in oth wods thy us xpssions of th fom M Mn n. Du to this vy ptiul fom, w n ptu MS S poot S, R Sq using funtion µ : Σ Σ Ñ t0, 1,?,, u otind ditly fom th uls of S: () d (f) Ñ µp, 1q 1... µp,nq n. Fo xmpl, givn th shm S hving th oot nd th uls: w hv : (g) Ñ, Ñ, Ñ??, µp, q, µp, q 1, µp, q 0, µp, q 0, µp, q, µp, q 0, µp, q?, µp, q?, µp, q 0. Not tht givn th funtion µp q w n sily onstut th initil S. W us this htiztion in Algoithm 3, polynomil nd sound lgoithm whih lns miniml MS fom st of ts. W ssum w.l.o.g. tht ll th ts fom th smpl hv s oot ll th sm ll. If this ssumption is not stisfid, th smpl is not onsistnt. Th minimlity of th lgoithm follows fom th minimlity of th infd multipliity fo h pi of lls p, q, using th funtion min fit multipliityp q (f. Stion 4). Moov, Algoithm 3 is omplt. W n sily (h) onstut htisti smpl of dinlity polynomil in th siz of th lpht y using th sm stps povidd in th pvious stion, fo unodd wods nd fo ts. Algoithm 3 Lning MS fom positiv xmpls. lgoithm ln MS pdq Input A st of ts D tt 1,..., t nu s.t. l ti poot ti q (with 1 i nq Output A miniml MS S onsistnt with D 1: fo P Σ do 2: lt D 1 th n t t P D. n P N t. l tpnq u 3: fo P Σ do 4: lt µp, q min fit multipliitypd 1, q 5: tun S hving th oot ll nd ptud y µ W hv poposd sound nd omplt lgoithm whih lns miniml MS onsistnt with st of positiv xmpls, so w n stt th following sult: Thom 5.1 Th onpt lss MS is lnl in polynomil tim nd dt fom positiv xmpls i.., in th stting pt, MS, Lq. 6. Impt of ngtiv xmpls In th pvious stions, w hv onsidd th sttings wh th us povids positiv xmpls only. In this stion, w llow th us to dditionlly spify ngtiv xmpls. Th min sults of this stion tht th MS lnl in polynomil tim nd dt in th psn of oth positiv nd ngtiv xmpls, whil th DMS not. W us two symols nd to mk whth n xmpl is positiv o ngtiv, nd w dfin: W Σ WΣ t, u, L peq tpw, q w P LpEquYtpw, q w P W Σ z LpEqu, wh E is disjuntiv multipliity xpssion, T T t, u, L psq tpt, q t P LpSqu Y tpt, q t P T z LpSqu, wh S is disjuntiv multipliity shm. Fomlly, th stting fo lning disjuntiv multipliity xpssions fom positiv nd ngtiv xmpls is pw Σ, DME, L q, whil fo lning DMS fom positiv nd ngtiv xmpls w hv pt, DMS, L q. W otin nlogously th sttings fo disjuntion-f multipliity xpssions nd shms: pw Σ, ME, L q nd pt, MS, L q, sptivly. W study th polm of hking whth th xists onpt onsistnt with th input smpl us ny sound lning lgoithm nds to tun null if nd only if th is no suh onpt. Thfo, onsistny hking is n si polm thn lning nd its inttility pluds lnility. Fomlly, givn lning stting K pe, C, Lq, th K-onsistny is th following dision polm: CONS K td E D P C. D Lpqu. Not tht th onsistny hking is tivil whn only positiv xmpls llowd. Fo instn, if w wnt to ln disjuntiv multipliity xpssions fom positiv xmpls ov th lpht t 1,..., nu, th disjuntiv multipliity xpssion 1... n is lwys onsistnt with th xmpls. Whn w lso llow ngtiv xmpls, th polm oms mo omplx, ptiully in th s of disjuntiv multipliity xpssions nd shms, wh this polm is not ttl.

9 Fist, w show tht th onsistny hking is ttl fo MS. In Stion 5, w hv poposd Algoithm 3, whih lns miniml MS onsistnt with st of positiv xmpls. Not tht, givn st of ts, th xists uniqu miniml MS onsistnt with thm. Th gumnt is tht Algoithm 3 uss th funtion min fit multipliityp q (f. Stion 4) to inf miniml multipliitis whih uniqu nd suffiint to ptu MS. Thus, th onsistny hking oms tivil fo MS: givn smpl ontining positiv nd ngtiv xmpls, th xists MS onsistnt with thm iff no t usd s ngtiv xmpl stisfis th miniml MS tund y Algoithm 3. Consquntly, w sily dpt Algoithm 3 to hndl oth positiv nd ngtiv xmpls nd w popos Algoithm 4. Algoithm 4 Lning MS fom positiv nd ngtiv xmpls. lgoithm ln MS pdq Input A smpl D tpt, αq t P T, α P t, uu Output A miniml MS S suh tht D L psq, o null if no suh shm xists 1: lt D 1 tt P T pt, q P Du 2: lt S ln MS pd 1 q 3: if Dt P T. pt, q P D ^ t P LpSq thn 4: tun null 5: tun S Essntilly, Algoithm 4 tuns th miniml shm onsistnt with th positiv xmpls iff th is no ngtiv xmpl stisfying it, nd othwis it tuns null. Not tht Algoithm 4 is sound nd woks in polynomil tim in th siz of th input. Th ompltnss of Algoithm 4 follows fom th ompltnss of Algoithm 3. Givn MS S, w n onstut htisti smpl CS S tht ontins only positiv xmpls, nlogously to how it is don fo Algoithm 3. W hv poposd polynomil, sound, nd omplt lgoithm whih lns miniml MS fom positiv nd ngtiv xmpls, so w stt th fist sult of this stion: Thom 6.1 Th onpt lss MS is lnl in polynomil tim nd dt fom positiv nd ngtiv xmpls i.., in th stting pt, MS, L q. Nxt, w pov tht th onpt lss DMS is not lnl in polynomil tim nd dt in th stting DMS pt, DMS, L q. Fo this pupos, w fist show th inttility of lning disjuntiv multipliity xpssions fom positiv nd ngtiv xmpls i.., in th stting DME pw Σ, DME, L q. W study th omplxity of hking th onsistny of st of positiv nd ngtiv xmpls nd w pov th inttility of CONS DME. Intuitivly, this follows fom th ft tht, givn st of unodd wods, th my xist n xponntil num of miniml onsistnt disjuntiv multipliity xpssions, nd w my nd to hk ll of thm to did whth th xist ngtiv xmpls stisfying thm. Fomlly, w hv th following sult: Lmm 6.2 CONS DME is NP-omplt. Poof W pov th NP-hdnss y dution fom 3SAT whih is known s ing NP-omplt. W tk fomul ϕ in 3CNF ontining th luss 1,..., k ov th vils x 1,..., x n. W gnt smpl D ϕ ov th lpht Σ tt 1, f 1,..., t n, f nu suh tht: pt 1f 1... t nf n, q P D ϕ, pε, q P D ϕ, pt if i, q, pt it if if i, q P D ϕ, fo 1 i n, pw j, q P D ϕ, wh w j v j1v j1v j2v j2v j3v j3, fo ny j suh tht 1 j k, wh x j1, x j2, x j3 th litls usd in th lus j nd fo ny l suh tht 1 l 3, v jl is t jl if x jl is ngtiv litl in j, nd f jl othwis. Fo xmpl, fo th fomul px 1 _ x 2 _ x 3q ^ p x 1 _ x 3 _ x 4q, w gnt th smpl: pt 1f 1t 2f 2t 3f 3t 4f 4, q, pt 1f 1, q, pt 2f 2, q, pt 3f 3, q, pt 4f 4, q, pε, q, pt 1t 1f 1f 1, q, pt 2t 2f 2f 2, q, pt 3t 3f 3f 3, q, pt 4t 4f 4f 4, q, pf 1f 1t 2t 2f 3f 3, q, pt 1t 1f 3f 3t 4t 4, q. Fo givn ϕ, vlution is funtion V : tx 1,..., x nu Ñ ttu, flsu. Eh of th 2 n possil vlutions nods miniml disjuntiv multipliity xpssion E V onsistnt with th positiv xmpls fom D ϕ, onstutd s follows: E V pv 1... v nq v 1?... v n?, wh, fo 1 i n, if V px iq tu thn v i t i nd v i f i. Othwis, v i f i nd v i t i. Nxt, w show tht, fo ny vlution V, V ù ϕ iff E V is onsistnt with D ϕ. Fo th only if s, onsid vlution V suh tht V ù ϕ nd w tk th osponding xpssion E V pv 1... v nq v? 1... v? n. Not tht t 1f 1... t nf n nd ll t if i s (with 1 i n) stisfy E V, whil ε dos not stisfy E V. Also not tht fo 1 i n, on symol twn t i nd f i ous t lst on, whil th oth ous t most on, so ll t it if if i s do not stisfy E V. Assum tht th is w j (with 1 j k) suh tht w j stisfis E V, whih y onstution implis tht th lus j is not stisfid y th vlution V, whih implis ontdition. Hn, w j dos not stisfy E V fo ny 1 j k. Thfo, E V is onsistnt with D ϕ. Fo th if s, w ssum tht E V is onsistnt with th smpl D ϕ. Sin th w j s (with 1 j k) nod th vlutions mking th luss j s fls nd non of th w j s stisfis E V, thn th vlution V nodd in E V mks th fomul ϕ stisfil. Th onstution of D ϕ lso nsus tht if th xists disjuntiv multipliity xpssion onsistnt with D ϕ, it hs th fom of E V. Thfo, ϕ P 3SAT iff D ϕ P CONS DME. To pov th mmship of CONS DME to NP, w point out tht Tuing mhin gusss disjuntiv multipliity xpssion E, whos siz is lin in Σ sin ptitions disdd mong th disjuntions of E. Moov, hking whth E is onsistnt with th smpl n sily don in polynomil tim. W xtnd th ov sult to CONS DMS : Coolly 6.3 CONS DMS is NP-omplt. Poof Th NP-hdnss of CONS DME implis th NPhdnss of CONS DMS : it is suffiint to onsid flt ts hving ll th sm oot ll. Moov, to pov th mmship of CONS DMS to NP, Tuing mhin gusss disjuntiv multipliity shm S, whos siz is polynomil in Σ, nd hks whth S is onsistnt with th smpl (whih n don in polynomil tim).

10 Sin onsistny hking in th psn of positiv nd ngtiv xmpls is inttl fo DMS, w onlud tht: Thom 6.4 Unlss P = NP, th onpt lss DMS is not lnl in polynomil tim nd dt fom positiv nd ngtiv xmpls i.., in th stting pt, DMS, L q. 7. Conlusions nd futu wok W hv studid th polm of lning unodd XML shms fom xmpls givn y th us. W hv invstigtd th lnility of DMS nd MS in two sttings: on llowing positiv xmpls only, nd on tht llows oth positiv nd ngtiv xmpls. To th st of ou knowldg, no sh hs n don on lning unodd XML shm fomlisms, no on llowing oth positiv nd ngtiv xmpls in th poss of shm lning. W hv povn tht th DMS lnl only fom positiv xmpls, nd w hv shown tht thy not lnl fom positiv nd ngtiv xmpls y using th inttility of th onsistny hking. Moov, w hv povn tht th MS lnl in oth sttings: fom only positiv xmpls, nd lso fom positiv nd ngtiv xmpls. Fo ll th lnl ss w hv poposd lning lgoithms tht tun miniml shms onsistnt with th xmpls. As futu wok, w wnt to us mo spifi lnility ondition i.., to qui th siz (instd of th dinlity) of th htisti smpl to polynomil in th siz of th lpht. Thus, w will fully dh to th lssil dfinition of th htisti smpl in th ontxt of gmmtil infn [13]. Ou pliminy sh indits tht w l to do this y using ompssd psnttion of th XML doumnts with ditd yli gphs [23]. Th lning lgoithms tht w popos in this pp will wok without ny lttion. Moov, w would lik to xtnd ou lning lgoithms fo mo xpssiv unodd shms, fo instn shms whih llow numi ouns [22] of th fom n,ms tht gnliz multipliitis y quiing th psn of t lst n nd t most m lmnts. Additionlly, w wnt to us th lning lgoithms fo unodd shms to oost th xisting lning lgoithms fo twig quis [26]. Fo this pupos, w hv to invstigt fist th polm of quy minimiztion [2] in th psn of DMS. Nxt, w wnt to popos twig quy lning lgoithm whih infs th shm of th doumnts nd thn it uss th shm to impov th qulity of th lnd twig quy. Rfns [1] S. Aitoul, P. Bouhis, nd V. Vinu. Highly xpssiv quy lngugs fo unodd dt ts. In ICDT, pgs 46 60, [2] S. Am-Yhi, S. Cho, L. V. S. Lkshmnn, nd D. Sivstv. T pttn quy minimiztion. VLDB J., 11(4): , [3] D. Angluin. Indutiv infn of foml lngugs fom positiv dt. Infomtion nd Contol, 45(2): , [4] D. Angluin. Infn of vsil lngugs. J. ACM, 29(3): , [5] G. J. Bx, W. Gld, F. Nvn, nd S. Vnsummn. Lning dtministi gul xpssions fo th infn of shms fom XML dt. TWEB, 4(4), [6] G. J. Bx, F. Nvn, T. Shwntik, nd K. Tuyls. Infn of onis DTDs fom XML dt. In VLDB, pgs , [7] G. J. Bx, F. Nvn, T. Shwntik, nd S. Vnsummn. Infn of onis gul xpssions nd DTDs. ACM Tns. Dts Syst., 35(2), [8] G. J. Bx, F. Nvn, nd J. Vn dn Bussh. DTDs vsus XML Shm: A ptil study. In WDB, pgs 79 84, [9] G. J. Bx, F. Nvn, nd S. Vnsummn. Infing XML shm dfinitions fom XML dt. In VLDB, pgs , [10] I. Bonv, R. Ciunu, nd S. Stwoko. Simpl shms fo unodd XML. In WDB, Thnil pot t [11] A. Büggmnn-Klin nd D. Wood. On-unmiguous gul lngugs. Inf. Comput., 142(2): , [12] B. Chidlovskii. Shm xttion fom XML: A gmmtil infn ppoh. In KRDB, [13] C. d l Higu. Chtisti sts fo polynomil gmmtil infn. Mhin Lning, 27(2): , [14] D. Flosu. Mnging smi-stutud dt. ACM Quu, 3(8):18 24, [15] D. D. Fydng nd T. Kötzing. Fst lning of stitd gul xpssions nd DTDs. In ICDT, pgs 45 56, [16] P. Gi nd E. Vidl. Infn of k-tstl lngugs in th stit sns nd pplition to syntti pttn ognition. IEEE Tns. Pttn Anl. Mh. Intll., 12(9): , [17] M. Goflkis, A. Gionis, R. Rstogi, S. Sshdi, nd K. Shim. XTRACT: Lning doumnt typ dsiptos fom XML doumnt olltions. Dt Min. Knowl. Disov., 7(1):23 56, [18] E. M. Gold. Lngug idntifition in th limit. Infomtion nd Contol, 10(5): , [19] S. Gijznhout nd M. Mx. Th qulity of th XML w. In CIKM, pgs , [20] J. Hgwld, F. Numnn, nd M. Wis. XStut: Effiint shm xttion fom multipl nd lg XML doumnts. In ICDE Wokshops, pg 81, [21] M. J. Kns nd U. V. Vzini. An intodution to omputtionl lning thoy. MIT Pss, [22] P. Kilpläinn nd R. Tuhknn. On-unmiguity of gul xpssions with numi oun inditos. Inf. Comput., 205(6): , [23] M. Lohy, S. Mnth, nd E. Noth. XML ompssion vi DAGs. In ICDT, pgs 69 80, [24] J.-K. Min, J.-Y. Ahn, nd C.-W. Chung. Effiint xttion of shms fo XML doumnts. Inf. Poss. Ltt., 85(1):7 12, [25] C. H. Ppdimitiou. Computtionl omplxity. Addison- Wsly, [26] S. Stwoko nd P. Wizok. Lning twig nd pth quis. In ICDT, pgs , 2012.

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6 Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h

More information

An overview on XML similarity: background, current trends and future directions

An overview on XML similarity: background, current trends and future directions Sumitt to Elsvi Sin An ovviw on XML simility: kgoun, unt tns n futu itions Jo Tkli, Rih Chi *, n Kokou Ytongnon LE2I Lotoy UMR-CNRS, Univsity of Bougogn, 21078 Dijon Cx Fn ABSTRACT In nt ys, XML hs n stlish

More information

Instruction: Solving Exponential Equations without Logarithms. This lecture uses a four-step process to solve exponential equations:

Instruction: Solving Exponential Equations without Logarithms. This lecture uses a four-step process to solve exponential equations: 49 Instuction: Solving Eponntil Equtions without Logithms This lctu uss fou-stp pocss to solv ponntil qutions: Isolt th bs. Wit both sids of th qution s ponntil pssions with lik bss. St th ponnts qul to

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Nikolus Augstn Fr Univrsity of Bozn-Bolzno Fulty of Computr Sin DIS 1 Binry Rprsnttion of Tr Binry Brnhs Lowr Boun for th Eit Distn Unit 10 My 17, 2012 Nikolus Augstn (DIS) Similrity

More information

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture Distriut Systms Prinipls n Prigms Mrtn vn Stn VU mstrm, Dpt. Computr Sin stn@s.vu.nl Chptr 11: Vrsion: Dmr 10, 2012 1 / 14 Gnrl gol Try to mk fil systm trnsprntly vill to rmot lints. 1. Fil mov to lint

More information

Usability Test Checklist

Usability Test Checklist Crtifi Profssionl for Usility n Usr Exprin Usility Tsting (CPUX-UT) Vrsion.0, Jun 0 Pulishr: UXQB. V. Contt: info@uxq.org www.uxq.org Autorn: R. Molih, T. Gis, B. Rumml, O. Klug, K. Polkhn Contnt Lgn...

More information

XML Data Integration using Fragment Join

XML Data Integration using Fragment Join XML Dt Integtion using Fgment Join Jin Gong, Dvi W. Cheung, Nikos Mmoulis, n Ben Ko Deptment of Compute Siene, The Univesity of Hong Kong Pokfulm, Hong Kong, Chin {jgong,heung,nikos,ko}@s.hku.hk Astt.

More information

FEE-HELP INFORMATION SHEET FOR DOMESTIC FULL FEE STUDENTS

FEE-HELP INFORMATION SHEET FOR DOMESTIC FULL FEE STUDENTS FEE-HELP INFORMATION SHEET FOR DOMESTIC FULL FEE STUDENTS This is n infomtion sht poducd by th Monsh Lw Studnts Socity Juis Docto Potfolio to ssist full f pying studnts (domstic) in undstnding th issus

More information

Combinatorial Testing for Tree-Structured Test Models with Constraints

Combinatorial Testing for Tree-Structured Test Models with Constraints Comintoil Testing fo Tee-Stutued Test Models with Constints Tkshi Kitmu, Akihis Ymd, Goo Htym, Cyille Atho, Eun-Hye Choi, Ngo Thi Bih Do, Yutk Oiw, Shiny Skugi Ntionl Institute of Advned Industil Siene

More information

Oracle PL/SQL Programming Advanced

Oracle PL/SQL Programming Advanced Orl PL/SQL Progrmming Avn In orr to lrn whih qustions hv n nswr orrtly: 1. Print ths pgs. 2. Answr th qustions. 3. Sn this ssssmnt with th nswrs vi:. FAX to (212) 967-3498. Or. Mil th nswrs to th following

More information

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993 (Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx

More information

Uses for Binary Trees -- Binary Search Trees

Uses for Binary Trees -- Binary Search Trees CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,

More information

HEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE

HEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE Scintific Jounal of Impact Facto(SJIF): 3.34 Intnational Jounal of Advanc Engining and sach Dvlopmnt Volum,Issu, Fbuay -05 HEAT TANSFE ANALYSIS OF LNG TANSFE LINE J.D. Jani -ISSN(O): 348-4470 p-issn(p):

More information

Link-Disjoint Paths for Reliable QoS Routing

Link-Disjoint Paths for Reliable QoS Routing Link-Disjoint Pths or Rlil QoS Routing Yuhun Guo, Frnno Kuiprs n Pit Vn Mighm # Shool o Eltril n Inormtion Enginring, Northrn Jiotong Univrsity, Bijing, 000, P.R. Chin Fulty o Inormtion Thnology n Systms,

More information

The pressure screen a tool for the modern fibre alchemist

The pressure screen a tool for the modern fibre alchemist Th pssu sn tool o th mon i lhmist MICHELLE SLOANE 1, PAUL KIBBLEWHITE, MARK RIDDELL 3 AND SUE WILLIAMS 4 1 Sintist Ensis Ppo, Pinipl Sintist Ensis Woo Qulity, 3 Sintist Ensis Woo Qulity, 4 Rsh Oi Ensis

More information

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission Enhning Downlink Prormn in Wirlss Ntworks y Simultnous Multipl Pkt Trnsmission Zhngho Zhng n Yunyun Yng Dprtmnt o Eltril n Computr Enginring, Stt Univrsity o Nw York, Stony Brook, NY 11794, USA Astrt In

More information

Analyzing the Economic Efficiency of ebay-like Online Reputation Reporting Mechanisms Chrysanthos Dellarocas

Analyzing the Economic Efficiency of ebay-like Online Reputation Reporting Mechanisms Chrysanthos Dellarocas Anlyzing th Economic Efficincy of By-lik Onlin Rputtion Rpoting Mchnisms Chysnthos Dllocs Slon School of Mngmnt Msschustts Institut of Tchnology Cmbidg, MA 39, USA dll@mit.du ABSTRACT This pp intoducs

More information

Paper Technics Orientation Course in Papermaking 2009:

Paper Technics Orientation Course in Papermaking 2009: P P Otto Cou Pmkg 2009: g to mk u tt you ol o tgt P Wo ould ttd? Otto Cou Pmkg wll b of vlu to t followg gou of ol:- 1. P mll mloy, wo dl dtly wt t o of mkg d w to mov t udtdg of t o d t mll oto t bod

More information

Menu Structure. Section 5. Introduction. General Functions Menu

Menu Structure. Section 5. Introduction. General Functions Menu Menu Structure Section 5 Introduction General Functions Menu Most workstation functions are accessed by menu selections. This section explains the menu structure and provides a tree structured view of

More information

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics LALACE S EQUATION IN SHERICAL COORDINATES With Appitions to Eetodynmis We hve seen tht Lpe s eqution is one of the most signifint equtions in physis. It is the soution to pobems in wide viety of fieds

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

Quality and Pricing for Outsourcing Service: Optimal Contract Design

Quality and Pricing for Outsourcing Service: Optimal Contract Design Qulity nd Pricing for Outsourcing Srvic: Optiml Contrct Dsign Smr K. Mukhopdhyy Univrsity of Wisconsin-Milwuk Co-uthor: Xiowi Zhu, Wst Chstr Univrsity of PA Third nnul confrnc, POMS Collg of Srvic Oprtions

More information

Discovering Petri Nets From Event Logs

Discovering Petri Nets From Event Logs Disovring Ptri Nts From Evnt Logs W.M.P. vn r Alst n B.F. vn Dongn Dprtmnt of Mthmtis n Computr Sin, Thnish Univrsitit Einhovn, Th Nthrlns. {W.M.P.v..Alst,B.F.v.Dongn}@tu.nl Astrt. As informtion systms

More information

SYSTEMS & SERVICES VENDOR PROGRAMS SPECIALTY MARKET PROGRAMS BE A SPECIALIST OR REFER A SPECIALIST

SYSTEMS & SERVICES VENDOR PROGRAMS SPECIALTY MARKET PROGRAMS BE A SPECIALIST OR REFER A SPECIALIST SYSS & SVICS CNUY 21 is th xclusiv sponso in th l stt ctgoy, nd is th only l stt ogniztion tht cn off I ILS wd ils. Poud suppot of st Sls sinc 1979. In 2008, CNUY 21 Cnd ctd th Kids to Cp pog wh vy $2,100

More information

32. The Tangency Problem of Apollonius.

32. The Tangency Problem of Apollonius. . The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 60-70 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok

More information

11 + Non-verbal Reasoning

11 + Non-verbal Reasoning Prti Tst + Non-vrl Rsoning R th instrutions rfully. Do not gin th tst or opn th ooklt until tol to o so. Work s quikly n s rfully s you n. Cirl th orrt lttr from th options givn to nswr h qustion. You

More information

December Homework- Week 1

December Homework- Week 1 Dcmbr Hmwrk- Wk 1 Mth Cmmn Cr Stndrds: K.CC.A.1 - Cunt t 100 by ns nd by tns. K.CC.A.2 - Cunt frwrd bginning frm givn numbr within th knwn squnc (instd f hving t bgin t 1). K.CC.B.4.A - Whn cunting bjcts,

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Clause Trees: a Tool for Understanding and Implementing Resolution in Automated Reasoning

Clause Trees: a Tool for Understanding and Implementing Resolution in Automated Reasoning Cluse Trees: Tool for Understnding nd Implementing Resolution in Automted Resoning J. D. Horton nd Brue Spener University of New Brunswik, Frederiton, New Brunswik, Cnd E3B 5A3 emil : jdh@un. nd spener@un.

More information

SE3BB4: Software Design III Concurrent System Design. Sample Solutions to Assignment 1

SE3BB4: Software Design III Concurrent System Design. Sample Solutions to Assignment 1 SE3BB4: Softwre Design III Conurrent System Design Winter 2011 Smple Solutions to Assignment 1 Eh question is worth 10pts. Totl of this ssignment is 70pts. Eh ssignment is worth 9%. If you think your solution

More information

Contracts in outsourcing

Contracts in outsourcing Contt in outouin Chnd, Him M pp, Sptmb 2006 Supvio: D. S. huli Vij Univitit Amtdm Fulty of Sin D olln 1081 1081 HV Amtdm Pf Th M-pp i on of th finl ompuloy ubjt of my tudy uin Mthmti nd nfomti (M t th

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

Preflighting for Newspaper

Preflighting for Newspaper Pflighing f Nwspp PS PDF EPS TIFF JPG Cifid Ghn pflighing* Lyd PDF pfligh ps Fixs ppss isss: ich blck x, hilins, vpins, c. Cn psv nspncis Cs nlizd p Pxy Csizbl pfligh nd p-fix pins Cn wch UNC nd FTP flds

More information

Equivalence Checking. Sean Weaver

Equivalence Checking. Sean Weaver Equivlene Cheking Sen Wever Equivlene Cheking Given two Boolen funtions, prove whether or not two they re funtionlly equivlent This tlk fouses speifilly on the mehnis of heking the equivlene of pirs of

More information

Important result on the first passage time and its integral functional for a certain diffusion process

Important result on the first passage time and its integral functional for a certain diffusion process Lcturs Mtmátics Volumn 22 (21), págins 5 9 Importnt rsult on th first pssg tim nd its intgrl functionl for crtin diffusion procss Yousf AL-Zlzlh nd Bsl M. AL-Eidh Kuwit Univrsity, Kuwit Abstrct. In this

More information

Tank Level GPRS/GSM Wireless Monitoring System Solutions

Tank Level GPRS/GSM Wireless Monitoring System Solutions Tank Lvl GPRS/GSM Wilss Monitoing Systm Solutions HOLYKELL TECHNOLOGY CO.LTD May,2014 Ⅰ. Solution Rquimnts 1. Intoduction Th solution is mainly including: wilss data tansciv tminal, lvl snso and PC sv

More information

The Casino Experience

The Casino Experience Th Casino Expin with Mahi s authnti Indian uisin Lt us nttain you Th Casino Expin 10 Th Staight Flush Expin 20 p ps If you looking fo a gat night out, a Casino Expin patnd This is a gat intoduti to gaing

More information

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism. Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte

More information

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A 0V TO 0V SUPPLY +0V TO +0V RS85 ONVRTR 9 TO OM PORT ON P TO P OM PORT US 9600 U 8IT, NO PRITY, STOP, NO FLOW TRL. OPTO SNSOR # +0V TO +0V RS85 RS85 OPTO SNSOR # PHOTO TRNSISTOR OPTO SNSOR # L TO OTHR Z

More information

Reach Versus Competition in Channels with Internet and Traditional Retailers

Reach Versus Competition in Channels with Internet and Traditional Retailers Rach Vsus Comptition in Channls with Intnt and Taditional Rtails Bai R Nault Haskayn School of Businss, Univsity of Calgay, Calgay, Albta, Canada, nault@ucalgayca Mohammad S Rahman Haskayn School of Businss,

More information

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA Features: Glass passivated junction Low incremental surge resistance, excellent clamping capability 600W peak pulse power capability with a 10/1,000μs waveform, repetition rate (duty cycle): 0.01% Very

More information

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00 Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume

More information

Higher. Exponentials and Logarithms 160

Higher. Exponentials and Logarithms 160 hsn uknt Highr Mthmtics UNIT UTCME Eponntils nd Logrithms Contnts Eponntils nd Logrithms 6 Eponntils 6 Logrithms 6 Lws of Logrithms 6 Eponntils nd Logrithms to th Bs 65 5 Eponntil nd Logrithmic Equtions

More information

Design of Extended Warranties in Supply Chains. Abstract

Design of Extended Warranties in Supply Chains. Abstract Dsign of Extndd Waantis in Supply Chains Kunpng Li Univsity of Illinois at Ubana Champaign, Collg of Businss Dilip Chhajd Univsity of Illinois at Ubana Champaign, Collg of Businss Suman Mallik Univsity

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Problem Solving Session 1: Electric Dipoles and Torque

Problem Solving Session 1: Electric Dipoles and Torque MASSACHUSETTS INSTITUTE OF TECHNOLOGY Dpatmnt of Physics 8.02 Poblm Solving Sssion 1: Elctic Dipols and Toqu Sction Tabl (if applicabl) Goup Mmbs Intoduction: In th fist poblm you will lan to apply Coulomb

More information

fun www.sausalitos.de

fun www.sausalitos.de O ily i f www.lit. Ctt. Cy... 4 5 Rtt... 6 7 B... 8 11 Tt... 12 13 Pt... 14 15. 2 Ctt. Cy. Rtt. B. Tt. Pt Ctt. Cy. Rtt. B. Tt. Pt. 3 Ti t f vyy lif, ity viti. AUALITO i l t t fi, t ty, t t, jy ktil jt

More information

Density Curve. Continuous Distributions. Continuous Distribution. Density Curve. Meaning of Area Under Curve. Meaning of Area Under Curve

Density Curve. Continuous Distributions. Continuous Distribution. Density Curve. Meaning of Area Under Curve. Meaning of Area Under Curve Continuous Distributions Rndom Vribles of the Continuous Tye Density Curve Perent Density funtion f () f() A smooth urve tht fit the distribution 6 7 9 Test sores Density Curve Perent Probbility Density

More information

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks Algorithmi Aspts o Ass Ntworks Dsign in BG/G Cllulr Ntworks Dvi Amzllg, Josph (Si) Nor,DnnyRz Computr Sin Dprtmnt Thnion, Hi 000, Isrl {mzllg,nny}@s.thnion..il Mirosot Rsrh On Mirosot Wy, Rmon, WA 980

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Chapter 3 Chemical Equations and Stoichiometry

Chapter 3 Chemical Equations and Stoichiometry Chptr Chmicl Equtions nd Stoichiomtry Homwork (This is VERY importnt chptr) Chptr 27, 29, 1, 9, 5, 7, 9, 55, 57, 65, 71, 75, 77, 81, 87, 91, 95, 99, 101, 111, 117, 121 1 2 Introduction Up until now w hv

More information

Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance

Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance Compg p ow mp wth mt p Iu p py 0% 0% Iu p py T T T T T T 0% t to M G - No G B No B Iu p py 0% Iu p py Iu Hth Iu Mt p po you wth ho. Th m wth mt p th ptg you p w gy py o. 0% A Hth O tm. Cot. Cg o you. Wh

More information

Active Directory Service

Active Directory Service In order to lern whih questions hve een nswered orretly: 1. Print these pges. 2. Answer the questions. 3. Send this ssessment with the nswers vi:. FAX to (212) 967-3498. Or. Mil the nswers to the following

More information

Network Decoupling for Secure Communications in Wireless Sensor Networks

Network Decoupling for Secure Communications in Wireless Sensor Networks Ntwork Doupling for Sur Communitions in Wirlss Snsor Ntworks Wnjun Gu, Xiol Bi, Srirm Chllppn n Dong Xun Dprtmnt of Computr Sin n Enginring Th Ohio-Stt Univrsity, Columus, Ohio 43210 1277 Emil: gu, ixi,

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

Approximate Subtree Identification in Heterogeneous XML Document Collections

Approximate Subtree Identification in Heterogeneous XML Document Collections Approximat Sutr Intiiation in Htrognous XML Doumnt Colltions Ismal Sanz 1, Maro Msiti 2, Giovanna Gurrini 3 an Raal Brlanga 1 1 Univrsitat Jaum I, Spain 2 Univrsità gli Stui i Milano, Italy 3 Univrsità

More information

1. Number of questions to be answered: ALL Multiple Choice (Section A) and 3 from 5 of the short answer questions (Section B)

1. Number of questions to be answered: ALL Multiple Choice (Section A) and 3 from 5 of the short answer questions (Section B) LEEDS METROPOLITAN UNIVERSITY UK Cntr for Evnts Mngmnt (RESIT) Moul Titl: Evnts Mrkting Ativitis Ami Yr: 2011/12 Lvl: 4 Smstr: 2 Cours: BA(Hons)/ HND Evnt Mngmnt Intrnl Exminrs: Exmintion Dt: 2 n July

More information

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,

More information

Orbits and Kepler s Laws

Orbits and Kepler s Laws Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three

Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three Upwr Plnr Drwins of ris-prlll Dirps wit Mximum Dr Tr (Extn Astrt) M. Aul Hssn m n M. iur Rmn Dprtmnt of Computr in n Eninrin, Bnls Univrsity of Eninrin n Tnoloy (BUET). {sm,siurrmn}@s.ut.. Astrt. An upwr

More information

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

Oscar & Associates Photography and Video Services

Oscar & Associates Photography and Video Services l d o phot og phy d og phy m l ps d o&phot o omb n d pos tp oduon & t ou h ng p n ngs s l kh t os ouo df o m! Os & Assots Photogphy nd Vdo Ss Exhbt Photogphy Pg 1 Exhbt Vdo & Ent Photogphy Pg 2 Vdo Poduton

More information

Level 3. Monday FRACTIONS ⅔ ⅗ 2) ⅔ =?/18. 1) What is a) ⅕ of 30? b) ⅖ of 30?

Level 3. Monday FRACTIONS ⅔ ⅗ 2) ⅔ =?/18. 1) What is a) ⅕ of 30? b) ⅖ of 30? 2014 Th Wkly Pln. All rights rsrv. Mony 2) ⅔ =?/18 1) Wht is ) ⅕ o 30? ) ⅖ o 30? 4) Us or = to show th rltionship twn th ollowing rtions: 3) Writ n quivlnt rtion or ½ ⅔ ⅗ 5) Brook pik ouqut o 24 lowrs.

More information

Predicting Current User Intent with Contextual Markov Models

Predicting Current User Intent with Contextual Markov Models Priting Currnt Usr Intnt with Contxtul Mrkov Mols Juli Kislv, Hong Thnh Lm, Mykol Phnizkiy Dprtmnt of Computr Sin Einhovn Univrsity of Thnology P.O. Box 513, NL-5600MB, th Nthrlns {t.l.hong, j.kislv, m.phnizkiy}@tu.nl

More information

Ratio and Proportion

Ratio and Proportion Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

Fundamentals of Tensor Analysis

Fundamentals of Tensor Analysis MCEN 503/ASEN 50 Chptr Fundmntls of Tnsor Anlysis Fll, 006 Fundmntls of Tnsor Anlysis Concpts of Sclr, Vctor, nd Tnsor Sclr α Vctor A physicl quntity tht cn compltly dscrid y rl numr. Exmpl: Tmprtur; Mss;

More information

- DAY 1 - Website Design and Project Planning

- DAY 1 - Website Design and Project Planning Wesite Design nd Projet Plnning Ojetive This module provides n overview of the onepts of wesite design nd liner workflow for produing wesite. Prtiipnts will outline the sope of wesite projet, inluding

More information

Lecture 27. Rectangular Metal Waveguides

Lecture 27. Rectangular Metal Waveguides Lctu 7 Rctgul Mtl Wvguids I this lctu u will l: Rctgul tl wvguids T d TM guidd ds i ctgul tl wvguids C 303 Fll 006 Fh R Cll Uivsit Plll Plt Mtl Wvguids d 1 T Mds: Dispsi lti: ( ) si { 1,, d d d 1 TM Mds:

More information

Incorporating Statistical Process Control and Statistical Quality Control Techniques into a Quality Assurance Program

Incorporating Statistical Process Control and Statistical Quality Control Techniques into a Quality Assurance Program Incooating Statistical Pocss Contol and Statistical Quality Contol Tchniqus into a Quality Assuanc Pogam Robyn Sikis U.S. Cnsus Buau Puos Incooat SPC and SQC mthods into quality assuanc ogam Monito and

More information

MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

More information

Load Balancing Algorithm Based on QoS Awareness Applied in Wireless Networks

Load Balancing Algorithm Based on QoS Awareness Applied in Wireless Networks , pp.191-195 http://x.oi.og/10.14257/astl.2015.111.37 Loa Balancing Algoithm Bas on QoS Awanss Appli in Wilss Ntwoks CHEN Xiangqian, MA Shaohui Dpatmnt of Comput Scinc an Tchnology, Hnan Mchanic an Elctical

More information

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Cuvtue Com S 477/577 Notes Yn-Bin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.

More information

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP)

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP) Whr prprtion mts opportunity. My Ami Plnnr Erly Ami Outrh Prorm (EAOP) Follow this 4-stp pln to prpr or mission to th Univrsity o Cliorni (UC), Cliorni Stt Univrsity (CSU) n mny inpnnt olls with similr

More information

CS 316: Gates and Logic

CS 316: Gates and Logic CS 36: Gtes nd Logi Kvit Bl Fll 27 Computer Siene Cornell University Announements Clss newsgroup reted Posted on we-pge Use it for prtner finding First ssignment is to find prtners P nd N Trnsistors PNP

More information

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis Flow-Insnsitiv Pointr Anlysis Lst tim Intrprocurl nlysis Dimnsions of prcision (flow- n contxt-snsitivity) Flow-Snsitiv Pointr Anlysis Toy Flow-Insnsitiv Pointr Anlysis CIS 570 Lctur 12 Flow-Insnsitiv

More information

Diagram Editing with Hypergraph Parser Support

Diagram Editing with Hypergraph Parser Support Copyright 1997 IEEE. Pulish in th Proings o VL 97, Sptmr 23-26, 1997 in Cpri, Itly. Prsonl us o this mtril is prmitt. Howvr, prmission to rprint/rpulish this mtril or vrtising or promotionl purposs or

More information

N V V L. R a L I. Transformer Equation Notes

N V V L. R a L I. Transformer Equation Notes Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions

More information

Random Variables and Distribution Functions

Random Variables and Distribution Functions Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using

More information

Laplace Transformation Techniques vs. Extended Semi-Markov Processes Method

Laplace Transformation Techniques vs. Extended Semi-Markov Processes Method Innionl Jounl of Alid Sin nd hnology Vol. No.4; July Ll nsfomion hniqus vs. Endd Smi-Mkov Posss Mhod Abs Ling Hong ASA Ph.D. Assisn Pofsso of Mhmis nd Auil sin Dmn of Mhmis dly Univsiy 5 Ws dly Avnu Poi

More information

Recall from Last Time: Disjoint Set ADT

Recall from Last Time: Disjoint Set ADT Ltur 21: Unon n Fn twn Up-Trs Toy s An: Plntn n rown orst o Up-Trs Unon-n n Fn-n Extn xmpl Implmntn Unon/Fn Smrt Unon n Fn Unon-y-sz/t n Pt Comprsson Run Tm Anlyss s tou s t ts! Covr n Cptr 8 o t txtook

More information

P U B L I C A T I O N I N T E R N E 1800 PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID USING THEM

P U B L I C A T I O N I N T E R N E 1800 PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID USING THEM I R I P U B L I C A T I O N I N T E R N E 1800 N o S INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES A PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID

More information

Maximum area of polygon

Maximum area of polygon Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is

More information

How To Organize A Meeting On Gotomeeting

How To Organize A Meeting On Gotomeeting NOTES ON ORGANIZING AND SCHEDULING MEETINGS Individul GoToMeeting orgnizers my hold meetings for up to 15 ttendees. GoToMeeting Corporte orgnizers my hold meetings for up to 25 ttendees. GoToMeeting orgnizers

More information

UNIVERSITY AND WORK-STUDY EMPLOYERS WEBSITE USER S GUIDE

UNIVERSITY AND WORK-STUDY EMPLOYERS WEBSITE USER S GUIDE UNIVERSITY AND WORK-STUDY EMPLOYERS WEBSITE USER S GUIDE Tble of Contents 1 Home Pge 1 2 Pge 2 3 Your Control Pnel 3 4 Add New Job (Three-Step Form) 4-6 5 Mnging Job Postings (Mnge Job Pge) 7-8 6 Additionl

More information

The Best and Worst of Property Tax Administration

The Best and Worst of Property Tax Administration Th Bst n Wost of Popty Tx Aministtion COST Scoc on Stt Popty Tx Aministtiv Pctics Fick J. Nicly My 2011 Dougls J. Tun Excutiv Summy Fi popty tx ministtion is citiclly impotnt to both iniviul n businss

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

An AnyLogic Simulation Model for Power and Performance Analysis of Data Centres

An AnyLogic Simulation Model for Power and Performance Analysis of Data Centres An AnyLogic Simulation Modl fo Pow and Pfomanc Analysis of Data Cnts Bjön F. Postma and Boudwijn R. Havkot Cnt fo Tlmatics and Infomation Tchnology, Univsity of Twnt, th Nthlands {b.f.postma, b..h.m.havkot}@utwnt.nl

More information

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5. . Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

control policies to be declared over by associating security

control policies to be declared over by associating security Seure XML Querying with Seurity Views Wenfei Fn University of Edinurgh & Bell Lortories wenfei@infeduk Chee-Yong Chn Ntionl University of Singpore hny@ompnusedusg Minos Groflkis Bell Lortories minos@reserhell-lsom

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

Student Access to Virtual Desktops from personally owned Windows computers

Student Access to Virtual Desktops from personally owned Windows computers Student Aess to Virtul Desktops from personlly owned Windows omputers Mdison College is plesed to nnoune the ility for students to ess nd use virtul desktops, vi Mdison College wireless, from personlly

More information

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990.

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990. SCHEDULE H Hospitls OMB No. 1545-0047 (Form 990) Complt if th orgniztion nswr "Ys" to Form 990, Prt IV, qustion 20. Atth to Form 990. Opn to Puli Dprtmnt of th Trsury Intrnl Rvnu Srvi Informtion out Shul

More information

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 -

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 - E ffic a c y o f S e le c tiv e M y e lo id L in e a g e L e u c o c y te D e p le tio n in P y o d e r m a G a n g re n o su m a n d P so r ia sis A sso c ia te d w ith In fla m m a to r y B o w e l D

More information

If two triangles are perspective from a point, then they are also perspective from a line.

If two triangles are perspective from a point, then they are also perspective from a line. Mth 487 hter 4 Prtie Prolem Solutions 1. Give the definition of eh of the following terms: () omlete qudrngle omlete qudrngle is set of four oints, no three of whih re olliner, nd the six lines inident

More information

Chapter. Contents: A Constructing decimal numbers

Chapter. Contents: A Constructing decimal numbers Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting

More information

Project Management 101

Project Management 101 P Wh is i? Th pli, ii d dii f ll sps f p d h ivi f ll hs ivlvd i d hiv dsid suls. Why shuld I h i? P skills hihly dsibl i h wkpl. Shl ps pvid xll ppuiis f suds fi hi pli d i skills d qui xuiv hiki skills

More information