Human hybridoma technology for the production of monoclonal antibodies

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Human hybridoma technology for the production of monoclonal antibodies"

Transcription

1 Human hybridoma technology for the production of monoclonal antibodies A new method of creating cell lines has been developed for the production of "totally human" monoclonal antibodies. Professor Hans Coster and Dr David Monaghan, FuCell Pty Ltd In 1975, Köhler and Milstein succeeded in generating mouse monoclonal antibodies (MAbs). Monoclonal antibodies were hailed as a powerful new way to treat viral infections or cancer. However, the hybridoma process, so successful in mouse cells and of such immense value, could not be readily replicated using human cells. Efforts to replicate the mouse hybridoma results using human cells were frustrated by a lack of suitable partner cells which had the requisite metabolic deficiencies (for example, HAT sensitivity), as well as ready access to the spleen tissue of immunised subjects. After many years of unsuccessful research, the prospect of a quick solution from the new technology of genetic engineering led to the abandonment of the human hybridoma approach. The new strategy was to genetically engineer the mouse MAbs so that they mimicked their human counterparts. However, in the intervening 15 years or so, molecular biologists have directed their energy - and literally billions of dollars of public and private funding - into genetically engineering mouse MAbs, only to come up with a handful of humanised MAbs that have reached the market. 76 Innovations in Pharmaceutical Technology

2 Now a new, patented method of creating cell lines has been developed that could change the face of antibody production by providing totally human antibodies and other proteins with natural human glycosylation. This platform technology has been developed by the Australian company, FuCell Pty Ltd. Monoclonal antibodies One type of cell in the immune system of mammals, the B lymphocyte cell, functions by producing and secreting a molecule known as an antibody. These antibody molecules act by binding to specific molecular features (called antigens ) which occur on the surfaces of invading virus particles and bacteria, as well as cancer cells. This initiates the killing of the invading pathogen, or it signals other cells of the mammal s immune system to bind and kill that invading pathogen or cancer cell. Upon recognition of the antigen on the invading pathogen, the B lymphocyte cell - which has the right antibody - proliferates to make millions of copies of itself, and these cells then secrete large quantities of antibody of the right specificity to effect neutralisation of the invading pathogen. Unfortunately, B lymphocytes cannot be grown on a large scale in artificial culture in bioreactors to allow the manufacture of antibodies for therapeutic use; this is because the cells will only divide a finite number of times before the culture dies. Antibodies can, however, be manufactured in culture from cells which are hybrid cells produced by the fusion of a suitable B lymphocyte cell (secreting the right antibody) with an immortal cancer (for example, myeloma) cell. Such hybrid cells both produce the desired antibody and are immortal; they are known as hybridomas. The antibody molecules that are secreted by such cells are known as monoclonal antibodies. Monoclonal antibodies are antibodies produced by one cell line which are specific to one target (antigen); historically, they have been produced using mouse cell lines. Antibodies derived from mouse hybridomas are of limited use as human therapeutics, since they produce an adverse immune reaction with repeated use. There are currently two approaches used in the development of antibodies for therapeutic use in humans. The first of these involves the humanisation of mouse antibodies, and the second is based on the production of human antibodies in a transgenic mouse. The first method is a recombinant DNA approach, as exemplified by the products under development by Protein Design Labs (PDL). With this method, the xenogeneic portions of the mouse MAb are replaced by human immunoglobulin Innovations in Pharmaceutical Technology 77

3 Figure 1. A series of micrographs showing the fusion process between a human cancer cell and a human B lymphocyte. The two cells are brought together using electric fields which are then pulsed causing the two cells to fuse into one hybrid cell.... molecular biologists have directed their energy... into genetically engineering mouse MAbs, only to come up with a handful of humanised MAbs that have reached the market structures in an effort to construct humanised monoclonal antibody molecules. The latest advances - although technically impressive - remain imperfect with substantial refinements still required in order for the engineered products to achieve the desired level of efficacy, without adverse side effects or limitations in vivo. The second method involves the use of transgenic mice which contain segments of the human genome coding for antibodies. The antibodies, as exemplified by the products of Medarex and Abgenix, are chimeric antibodies - that is, they are constructs that combine DNA segments from non-mating species, usually from mouse and human genomes. In addition to these two methods, there are also plantibodies produced by plants transfected with complementing human immunoglobulin genes to produce Mendelian offspring which manufacture antibodies in the bulk tissue. Fragments of human antibodies have also been produced - such as domain antibodies (DAbs) and single-chain variable fragments (scfvs) - where just the bindingsite protein is generated. Many companies have developed humanised antibodies using a variety of different technologies. These humanised products are subject to limitations, including: a reduced binding affinity to their target, abnormal glycosylation (attachment of sugar moieties) - this impairs their ability to provoke the desired immune response and also leads to more rapid clearance from the system, non-human components which have the potential to create an unfavourable immune response in humans, and a low yield for these various methods of production. The FuCell technology At FuCell, we have discovered an entirely new method of generating hybrid cells (hybridomas), that overcomes all the problems limiting the current methods of making such hybridoma cells for the production of monoclonal antibodies for human therapeutic purposes. The new technology: Pre-selects only those cells (B lymphocytes) which are expressing the desired antibody, Simultaneously brings those cells into individual contact with individual cells of the chosen immortal cancer (myeloma) cells, Fuses the pairs of these two selected cells - and only these - to produce the desired immortal hybrid cell (hybridoma), and 78 Innovations in Pharmaceutical Technology

4 Figure 2. An overview of the FuCell fusion apparatus. A single user can operate the apparatus. All the necessary fields are pre-programmed and the micro-manipulators used for cell transfer, as well as the generation of the electric fields, are under computer control. Allows the use of almost any immortal fusion partner cell; the method does not require post-fusion selection, as the only cells remaining are hybridomas expressing antibodies to the target antigen. This procedure obviates the need to screen and separate ( clone ) large numbers of fused cells to find the desired hybridoma. All that is required is to "grow up" the hybridomas produced in culture; this greatly reduces the cycle of time involved in the process of making hybridomas. The FuCell product is described as totally human to emphasise its natural human origin; both the amino acid sequence and the glycosylation is human. This is distinct from many 80 Innovations in Pharmaceutical Technology

5 Figure 3. A close-up of the FuCell fusion apparatus. On the left is the femto-pipette used for transferring single cells, and on the right is a pair of micro-electrodes used for applying the electric fields used during the fusion process. mouse-derived products, which are sometimes described as fully human but which, nonetheless, retain a significant percentage of mouse components in their amino acid sequences and, in all cases, lack normal human glycosylation. The FuCell products, therefore, will potentially be better tolerated, less rapidly cleared from the system and have high affinity binding. As a therapeutic, they will have the ability to utilise the normal immunological pathways of complementand cell-mediated destruction of the targets. If desired, the antibodies can also be conjugated to cytotoxic or radioactive moieties to effect destruction of their targets - as has also been proposed for use with some non-human antibodies. "One-on-one" cell fusion Particles placed in an electric field will distort the field in their immediate vicinity. The field distortion is dependent on the geometry and electrical properties of the particle, and those of the surrounding particles. Living cells have an interior (cytoplasm) that is highly conductive, due to the accumulation of ions (such as K + ), and a relatively high dielectric constant; the surrounding membrane has a very low conductivity and a lower dielectric constant. The degree of distortion of the field, both inside and outside of the cell, is a very strong function of the frequency of the applied electric field. As a result, when placed in a non-uniform electric field, cells will experience a force whose magnitude and direction will vary - in a complicated manner - with the frequency of the applied field. This effect can be exploited to selectively manipulate living cells using AC electric fields created via suitable micro-electrodes. The movement of particles in AC electric fields is referred to as "dielectrophoresis" (DEP), and is independent of any net charge on the particle. The FuCell technology uses radio-frequency electric fields to exert a positive DEP force on two cells, in order that they be brought into close contact with each other. A stronger electric field is then used to induce electrical breakdown of the The FuCell product is described as totally human to emphasise its natural human origin; both the amino acid sequence and the glycosylation is human Innovations in Pharmaceutical Technology 81

6 This controlled electroporation triggers a process of cell fusion... creating a hybrid cell that has a genetic make-up which is a combination of the two original cells that were fused The new technology will enable the production of human hybridomas for the manufacture of monoclonal antibodies for a wide variety of human therapeutic purposes... two cells' membranes at their point of contact. This controlled electroporation triggers a process of cell fusion, somewhat akin to reverse-mitosis, thereby creating a hybrid cell that has a genetic make-up which is a combination of the two original cells that were fused. Conclusion The fusion efficiency of the selected pairs of cells using FuCell technology is almost 100 per cent and very few cells are required - thus making it feasible to work, for instance, with cells taken from small tissue samples of donors known to be responding immunologically to a particular virus or bacterium. At FuCell, we have also developed a method of immunising lymphocytes taken from tissue samples of donors in vitro to produce B lymphocytes secreting antibodies to a specific target (vaccine). We can, therefore, produce human hybridomas that secrete human monoclonal antibodies. The new technology will enable the production of human hybridomas for the manufacture of monoclonal antibodies for a wide variety of human therapeutic purposes, including the possible treatment of cancer. The world market for monoclonal antibodies is currently valued at US$3,000 million and is estimated to reach US$20,000 million per annum by the year Currently-available mouse monoclonal antibodies sell for $5,000 to $1,000,000 per gram, depending on type. Our new method makes it possible to produce monoclonal antibodies to human cell surface antigens (a pharmaceutically very important group of antibodies). Hybridomas made by our method will produce antibodies to a specific human cell surface antigen - and that antigen alone. With current techniques, it is not possible to make monoclonal antibodies to only one cell surface antigen and not to others - unless the antigen can be identified, extracted and purified, and that is usually impossible. To date, FuCell has attracted equity investment and substantial government support to develop the technology further. Patents for the FuCell technology have been granted in the US, Australia, New Zealand, Mexico and Brazil, and are pending in Europe, Canada, Japan and Korea. Professor Hans Coster (MSc, PhD, FAIP, MIP) is General Manager and Chief Scientist at FuCell. He also holds a personal chair in Physics at the University of New South Wales, and was the Foundation Chairman of the Department of Biophysics. He is a Director (and Co-Founder) of the Centre for Membrane Science and Technology, which is a Commonwealth Special Research Centre and became a UNESCO Centre in Professor Coster has a long-standing interest in the field of biophysics and is a Founder of FuCell. Dr David Monaghan (BSc Hons, PhD, MAIP) is R&D Manager (Biophysics) at FuCell. He is also a visiting fellow in Physics at the University of New South Wales. Dr Monaghan has been with FuCell since He has been involved in research on dielectrophoresis of cells, and the development of computer-controlled cell manipulation and fusion technologies. Further reading 1. Coster HGL (1999). Aust J Phys, 52, Mahaworasilpa TL, Coster HGL and George EPG (1994). Biochim Biophys Acta, 1193, Kahler KVIS and Jones TB (1990). Biophys J, 57, Jones TB, Electromechanics of Particles, Cambridge University Press, Innovations in Pharmaceutical Technology

Chapter 18: Applications of Immunology

Chapter 18: Applications of Immunology Chapter 18: Applications of Immunology 1. Vaccinations 2. Monoclonal vs Polyclonal Ab 3. Diagnostic Immunology 1. Vaccinations What is Vaccination? A method of inducing artificial immunity by exposing

More information

1. Vaccinations. What is Vaccination? Chapter 18: Applications of Immunology. 1. Vaccinations. 2. Monoclonal vs Polyclonal Ab 3. Diagnostic Immunology

1. Vaccinations. What is Vaccination? Chapter 18: Applications of Immunology. 1. Vaccinations. 2. Monoclonal vs Polyclonal Ab 3. Diagnostic Immunology Chapter 18: Applications of Immunology 1. Vaccinations 2. Monoclonal vs Polyclonal Ab 3. Diagnostic Immunology 1. Vaccinations What is Vaccination? A method of inducing artificial immunity by exposing

More information

specific B cells Humoral immunity lymphocytes antibodies B cells bone marrow Cell-mediated immunity: T cells antibodies proteins

specific B cells Humoral immunity lymphocytes antibodies B cells bone marrow Cell-mediated immunity: T cells antibodies proteins Adaptive Immunity Chapter 17: Adaptive (specific) Immunity Bio 139 Dr. Amy Rogers Host defenses that are specific to a particular infectious agent Can be innate or genetic for humans as a group: most microbes

More information

Applications of Ab Molecules. Chapter 4 Monoclonal Ab (p.99) Chapter 5 Ab genes and Ab Engineering (p.128)

Applications of Ab Molecules. Chapter 4 Monoclonal Ab (p.99) Chapter 5 Ab genes and Ab Engineering (p.128) Applications of Ab Molecules Chapter 4 Monoclonal Ab (p.99) Chapter 5 Ab genes and Ab Engineering (p.128) Monoclonal Antibodies Clonal Selection of B Lymphocytes Hybridoma Köhler and Milsten (1975) - continuous

More information

MAB Solut. MABSolys Génopole Campus 1 5 rue Henri Desbruères 91030 Evry Cedex. www.mabsolut.com. is involved at each stage of your project

MAB Solut. MABSolys Génopole Campus 1 5 rue Henri Desbruères 91030 Evry Cedex. www.mabsolut.com. is involved at each stage of your project Mabsolus-2015-UK:Mise en page 1 03/07/15 14:13 Page1 Services provider Department of MABSolys from conception to validation MAB Solut is involved at each stage of your project Creation of antibodies Production

More information

Custom Antibody Services

Custom Antibody Services Custom Antibody Services Custom service offerings DNA sequence Plasmid Peptide Structure Protein Peptide Small molecule Cells Spleen Lymphocytes Antigen Preparation Immunization Fusion & Subcloning Expansion

More information

Recombinant DNA Technology

Recombinant DNA Technology PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology

More information

perfectprotein Antibodies ntelechon

perfectprotein Antibodies ntelechon Antibodies ntelechon Milstein and Köhler: The hybridoma technology December 1974, Cambridge: Georges J.F. Köhler, a postdoctorial fellow of César Milstein, had given eternal life to normal antibody producing

More information

Antibody Function & Structure

Antibody Function & Structure Antibody Function & Structure Specifically bind to antigens in both the recognition phase (cellular receptors) and during the effector phase (synthesis and secretion) of humoral immunity Serology: the

More information

Antigens have specific regions where antibodies bind to them Antigens are usually molecules on the surface of viruses or foreign cells Antigenic

Antigens have specific regions where antibodies bind to them Antigens are usually molecules on the surface of viruses or foreign cells Antigenic Bio 100 Guide 22 Antigens have specific regions where antibodies bind to them Antigens are usually molecules on the surface of viruses or foreign cells Antigenic determinants are the specific regions on

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Interpreting Sameness of Monoclonal Antibody Products Under the Orphan Drug Regulations U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation

More information

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites.

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites. 1. A recombinant DNA molecules is one that is a. produced through the process of crossing over that occurs in meiosis b. constructed from DNA from different sources c. constructed from novel combinations

More information

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA INTRODUCTION DNA : DNA is deoxyribose nucleic acid. It is made up of a base consisting of sugar, phosphate and one nitrogen base.the

More information

Immunology Ambassador Guide (updated 2014)

Immunology Ambassador Guide (updated 2014) Immunology Ambassador Guide (updated 2014) Immunity and Disease We will talk today about the immune system and how it protects us from disease. Also, we ll learn some unique ways that our immune system

More information

Production of antigens and antibodies in plants: alternative technology?

Production of antigens and antibodies in plants: alternative technology? Production of antigens and antibodies in plants: alternative technology? George Lomonossoff John Innes Centre Norwich, UK ECOPA, Alicante 29 th Sept. 2006 Why use Plants as Biofactories? Produce large

More information

Chapter 3. Immunity and how vaccines work

Chapter 3. Immunity and how vaccines work Chapter 3 Immunity and how vaccines work 3.1 Objectives: To understand and describe the immune system and how vaccines produce immunity To understand the differences between Passive and Active immunity

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Chapter 22: The Lymphatic System and Immunity Introduction Immune system the body s defenses against pathogens that produce disease 2 types of immunity Nonspecific immune mechanisms (Innate immunity) Provide

More information

Quality and Safety Evaluation of Gene Therapy Products in Japan

Quality and Safety Evaluation of Gene Therapy Products in Japan Quality and Safety Evaluation of Gene Therapy Products in Japan Review Mechanism for Gene Therapy in Japan The review mechanism for gene therapy in Japan was partially amended to simplify the necessary

More information

Pathogens and the immune system

Pathogens and the immune system Review of lecture 7 Pathogens and the immune system Veronica Leautaud, Ph.D. vl2@ rice.edu BRC 511 / 530-lab Lecture 8 BIOE 301-Bioengineering and World Health Science Science is the human activity of

More information

In Vitro And In Vivo Production Of Antibodies

In Vitro And In Vivo Production Of Antibodies In Vitro And In Vivo Production Of Antibodies OCTOBER 27, 2015 BY ADMIN Overview An antibody is a protein normally produced by the B cells of the immune system. Their original purpose is to identify and

More information

Microbiology AN INTRODUCTION EIGHTH EDITION

Microbiology AN INTRODUCTION EIGHTH EDITION TORTORA FUNKE CASE Microbiology AN INTRODUCTION EIGHTH EDITION Differentiate between innate and acquired immunity. Chapter 17 Specific Defenses of the Host: The Immune Response B.E Pruitt & Jane J. Stein

More information

ImmunoGenes. Improving Antibody Production Using Genetically Modified Animals. HIPO - April 3-4, 2012

ImmunoGenes. Improving Antibody Production Using Genetically Modified Animals. HIPO - April 3-4, 2012 ImmunoGenes Improving Antibody Production Using Genetically Modified Animals HIPO - April 3-4, 2012 Significant Opportunity The $40 billion monoclonal antibody (mab) and $ 4 billion polyclonal antibody

More information

KMS-Specialist & Customized Biosimilar Service

KMS-Specialist & Customized Biosimilar Service KMS-Specialist & Customized Biosimilar Service 1. Polyclonal Antibody Development Service KMS offering a variety of Polyclonal Antibody Services to fit your research and production needs. we develop polyclonal

More information

MONOCLONAL ANTIBODY PRODUCTION

MONOCLONAL ANTIBODY PRODUCTION MONOCLONAL ANTIBODY PRODUCTION Antibodies having single specificity produced from a single clone of B cell are referred as Mono clonal antibodies (MAbs). In 1975, Georges Köhler and Cesar Milstein devised

More information

Recombinant DNA and Biotechnology

Recombinant DNA and Biotechnology Recombinant DNA and Biotechnology Chapter 18 Lecture Objectives What Is Recombinant DNA? How Are New Genes Inserted into Cells? What Sources of DNA Are Used in Cloning? What Other Tools Are Used to Study

More information

Growth of Animal Cells in Culture

Growth of Animal Cells in Culture Growth of Animal Cells in Culture The ability to study cells depends largely on how readily they can be grown and manipulated in the laboratory. Although the process is technically far more difficult than

More information

Custom Antibodies & Recombinant Proteins

Custom Antibodies & Recombinant Proteins Custom Antibodies & Recombinant Proteins INTRODUCTION Custom services to meet your research and development requirements Improvements in health, medicine and diagnostics over the past century can be largely

More information

I. Gene transfer and genetic engineering (Chapter 8) A. General concepts 1. Genetic information is contained in the nucleotide sequence of DNA

I. Gene transfer and genetic engineering (Chapter 8) A. General concepts 1. Genetic information is contained in the nucleotide sequence of DNA I. Gene transfer and genetic engineering (Chapter 8) A. General concepts 1. Genetic information is contained in the nucleotide sequence of DNA (sometimes RNA). Amino acids are specified by a triplet codon.

More information

Frequently Asked Questions (FAQs): Antibodies General

Frequently Asked Questions (FAQs): Antibodies General Frequently Asked Questions (FAQs): Antibodies General Should I choose mab or pab? The production of antibodies involves the immunisation of one or more animals with an antigen in order to elicit an immune

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

Recognise phagocytes and lymphocytes under the light microscope;

Recognise phagocytes and lymphocytes under the light microscope; Immunity The immune system Vaccination Learning Objective Recognise phagocytes and lymphocytes under the light microscope; The following micrographs show as to how different types of phagocytes and lymphocytes

More information

Transgenic technology in the production of therapeutic proteins

Transgenic technology in the production of therapeutic proteins Transgenic technology in the production of therapeutic proteins Transgenic technology represents a new generation of biopharmaceutical production system to meet the medical needs of the new millennium.

More information

The production of monoclonal antibodies using the hybridoma technology

The production of monoclonal antibodies using the hybridoma technology The production of monoclonal antibodies using the hybridoma technology Sbonelo Hadebe 211554629 October 16, 2015 Contents 1 Introduction 1 2 Theory 2 2.1 Monoclonal antibodies...................... 2 2.2

More information

Geniron. Custom Antibody Services. Serum services Antibody Monoclonal. Purification Antibody Mono Y Genetic Immunization Genbody Polyclonal Antibody

Geniron. Custom Antibody Services. Serum services Antibody Monoclonal. Purification Antibody Mono Y Genetic Immunization Genbody Polyclonal Antibody Geniron Custom Antibody Services Serum services Antibody Monoclonal Purification Antibody Mono Y Genetic Immunization Genbody Polyclonal Antibody Geniron Poly Y WE PROVIDE OUR SERVICES TO With Expertise

More information

The Humoral Immune system Structure and Diversity

The Humoral Immune system Structure and Diversity The Humoral Immune system Structure and Diversity Discussion: Introduction Our immune system protects our bodies from the harmful affects of a dizzying array of disease causing pathogens. Although our

More information

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells.

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells. Virus and Immune System Review Directions: Write your answers on a separate piece of paper. 1. Why does a cut in the skin threaten the body s nonspecific defenses against disease? a. If a cut bleeds, disease-fighting

More information

Name (print) Name (signature) Period. (Total 30 points)

Name (print) Name (signature) Period. (Total 30 points) AP Biology Worksheet Chapter 43 The Immune System Lambdin April 4, 2011 Due Date: Thurs. April 7, 2011 You may use the following: Text Notes Power point Internet One other person in class "On my honor,

More information

Why is FTO important?

Why is FTO important? Antibodies, Patents and Freedom to Operate: The Monoclonal Maze Timothy J. Shea, Jr. Director Tracy Muller Associate Sterne, Kessler, Goldstein & Fox P.L.L.C. 4 th Annual Antibody Therapeutics Conference

More information

2) Macrophages function to engulf and present antigen to other immune cells.

2) Macrophages function to engulf and present antigen to other immune cells. Immunology The immune system has specificity and memory. It specifically recognizes different antigens and has memory for these same antigens the next time they are encountered. The Cellular Components

More information

B Cells and Antibodies

B Cells and Antibodies B Cells and Antibodies Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School Lecture outline Functions of antibodies B cell activation; the role of helper T cells in antibody production

More information

Biotechnology in Medicine and Agriculture

Biotechnology in Medicine and Agriculture Biotechnology in Medicine and Agriculture Bởi: OpenStaxCollege It is easy to see how biotechnology can be used for medicinal purposes. Knowledge of the genetic makeup of our species, the genetic basis

More information

CUSTOM ANTIBODIES & RECOMBINANT PROTEINS

CUSTOM ANTIBODIES & RECOMBINANT PROTEINS CUSTOM ANTIBODIES & RECOMBINANT PROTEINS INTRODUCTION Custom services to meet your research and development requirements Improvements in health, medicine and diagnostics over the past century can be largely

More information

RECOMBINANT DNA TECHNOLOGY

RECOMBINANT DNA TECHNOLOGY RECOMBINANT DNA TECHNOLOGY By; Dr. Adeel Chaudhary 2 nd yr Molecular Genetics Medical Technology College of Applied Medical Sciences Recombinant DNA is a form of artificial DNA that is made through the

More information

Page 1. Name: 1) The diagram below represents one possible immune response that can occur in the human body.

Page 1. Name: 1) The diagram below represents one possible immune response that can occur in the human body. Name: 8931-1 - Page 1 1) The diagram below represents one possible immune response that can occur in the human body. 5) One similarity between cell receptors and antibodies is that both A) are involved

More information

Chapter 5: Organization and Expression of Immunoglobulin Genes

Chapter 5: Organization and Expression of Immunoglobulin Genes Chapter 5: Organization and Expression of Immunoglobulin Genes I. Genetic Model Compatible with Ig Structure A. Two models for Ab structure diversity 1. Germ-line theory: maintained that the genome contributed

More information

Fact Sheet 22 CLONING AND STEM CELLS

Fact Sheet 22 CLONING AND STEM CELLS 11111 This fact sheet describes the process of cloning and producing stem cells. It outlines the potential benefits, ethical challenges, and provides an overview of the current policies governing the technology.

More information

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies A Brief Review of Antibody Structure A Brief Review of Antibody Structure The basic antibody is a dimer of dimer (2 heavy chain-light chain pairs) composed of repeats of a single structural unit known

More information

Plasmid Isolation. Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250

Plasmid Isolation. Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250 Plasmid Isolation Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250 Plasmid Plasmids are small, double strand, closed circular DNA molecules. Isolated from bacterial cells. Replicate independently

More information

Basics of Immunology

Basics of Immunology Basics of Immunology 2 Basics of Immunology What is the immune system? Biological mechanism for identifying and destroying pathogens within a larger organism. Pathogens: agents that cause disease Bacteria,

More information

Biotechnology and Recombinant DNA

Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Recombinant DNA procedures - an overview Biotechnology: The use of microorganisms, cells, or cell components to make a product. Foods, antibiotics, vitamins, enzymes Recombinant

More information

Animal Pharming: The Industrialization of Transgenic Animals December 1999

Animal Pharming: The Industrialization of Transgenic Animals December 1999 Animal Pharming: The Industrialization of Transgenic Animals December 1999 Animal pharming, the process of using transgenic animals to produce human drugs, is staking its claim in a lucrative world market.

More information

BioMmune Technologies Inc. Corporate Presentation 2015

BioMmune Technologies Inc. Corporate Presentation 2015 BioMmune Technologies Inc Corporate Presentation 2015 * Harnessing the body s own immune system to fight cancer & other autoimmune diseases BioMmune Technologies Inc. (IMU) ABOUT A public biopharmaceutical

More information

Types, production of antibodies and Antibody/antigen interaction

Types, production of antibodies and Antibody/antigen interaction Types, production of antibodies and Antibody/antigen interaction Antibodies Secreted by B lymphocytes Great diversity and specificity: >109 different antibodies; can distinguish between very similar molecules

More information

Roles of Plant Tissue Culture in Plant Genetic Engineering

Roles of Plant Tissue Culture in Plant Genetic Engineering Roles of Plant Tissue Culture in Plant Genetic Engineering What are Transgenic Plants? Plants that contain a source gene inserted from a species outside of the target plant species. The gene may 1) have

More information

Test 4 Immune System (Chapters 20 & 21)

Test 4 Immune System (Chapters 20 & 21) Test 4 Immune System (Chapters 20 & 21) Name: Date: 1) The is the largest lymphoid organ. 1) A. lymph node B. spleen C. thymus D. tonsil 2) Tonsils promote memory of pathogens by. 2) A. secreting antibodies

More information

The Body s Defenses CHAPTER 24

The Body s Defenses CHAPTER 24 CHAPTER 24 The Body s Defenses PowerPoint Lectures for Essential Biology, Third Edition Neil Campbell, Jane Reece, and Eric Simon Essential Biology with Physiology, Second Edition Neil Campbell, Jane Reece,

More information

Name Class Date. KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. frameshift mutation

Name Class Date. KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. frameshift mutation Unit 7 Study Guide Section 8.7: Mutations KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. VOCABULARY mutation point mutation frameshift mutation mutagen MAIN IDEA: Some mutations

More information

Transgenic Animals: Their Benefits To Human Welfare

Transgenic Animals: Their Benefits To Human Welfare Transgenic Animals: Their Benefits To Human Welfare Endang Tri Margawati An Action Bioscience.org original article January 2003 Transgenic mice, rats, rabbits, pigs, sheep, and cows have already been created.

More information

Chapter 3.2» Custom Monoclonal

Chapter 3.2» Custom Monoclonal 198 3 3.2 Custom Monoclonal 199 Mouse monoclonal antibody development Chapter 3.2» Custom Monoclonal 200 In vitro monoclonals expression service 201 Mouse monoclonal antibody additional services 202 Magnetic

More information

Advanced BioDesign Outlines Solutions. Antibody Overview. by Advanced BioDesign. Project Start. Immunogenicity. Selecting Your Antigen

Advanced BioDesign Outlines Solutions. Antibody Overview. by Advanced BioDesign. Project Start. Immunogenicity. Selecting Your Antigen Advanced BioDesign Outlines Solutions by Advanced BioDesign Antibody Overview Launching an immunisation programme is an important experimental step that needs care. With Advanced BioDesign, you may develop

More information

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes.

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology has had-and will havemany important

More information

CUSTOM ANTIBODIES. Fully customised services: rat and murine monoclonals, rat and rabbit polyclonals, antibody characterisation, antigen preparation

CUSTOM ANTIBODIES. Fully customised services: rat and murine monoclonals, rat and rabbit polyclonals, antibody characterisation, antigen preparation CUSTOM ANTIBODIES Highly competitive pricing without compromising quality. Rat monoclonal antibodies for the study of gene expression and proteomics in mice and in mouse models of human diseases available.

More information

3 months 1.5 months 1.5 months. 1 month

3 months 1.5 months 1.5 months. 1 month Rabbit monoclonal antibody (Mab) is secreted by the plasma B-cell of the rabbit. Traditional generation of rabbit Mab relies on a rabbit myeloma for B- cell fusion (

More information

Chapter 12 - DNA Technology

Chapter 12 - DNA Technology Bio 100 DNA Technology 1 Chapter 12 - DNA Technology Among bacteria, there are 3 mechanisms for transferring genes from one cell to another cell: transformation, transduction, and conjugation 1. Transformation

More information

Activation and effector functions of HMI

Activation and effector functions of HMI Activation and effector functions of HMI Hathairat Thananchai, DPhil Department of Microbiology Faculty of Medicine Chiang Mai University 25 August 2015 ว ตถ ประสงค หล งจากช วโมงบรรยายน แล วน กศ กษาสามารถ

More information

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Chapter 9 Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Q&A Interferons are species specific, so that interferons to be used in humans must be produced in human cells. Can you think

More information

PX Therapeutics : the partner for early stage biotherapeutics development Biotuesday, May 5 2009

PX Therapeutics : the partner for early stage biotherapeutics development Biotuesday, May 5 2009 PX Therapeutics : the partner for early stage biotherapeutics development Biotuesday, May 5 2009 Christelle Dagoneau, PhD Business Development Director Company Profile Protein expert incorporated in 2000

More information

AFFITECH and XOMA Sign Antibody Collaboration and Cross-License Agreement

AFFITECH and XOMA Sign Antibody Collaboration and Cross-License Agreement FOR IMMEDIATE RELEASE Ref 05AFF05 Contacts for Affitech: Contacts for XOMA Affitech (Norway): Investor Inquiries Dr. Martin Welschof Ellen M Martin Chief Executive Officer Kureczka/Martin Associates Phone:

More information

GENETICS OF BACTERIA AND VIRUSES

GENETICS OF BACTERIA AND VIRUSES GENETICS OF BACTERIA AND VIRUSES 1 Genes of bacteria are found in bacterial chromosomes Usually a single type of chromosome May have more than one copy of that chromosome Number of copies depends on the

More information

Immuno-Oncology Therapies to Treat Lung Cancer

Immuno-Oncology Therapies to Treat Lung Cancer Immuno-Oncology Therapies to Treat Lung Cancer What you need to know ONCHQ14NP07519 Introduction: Immuno-oncology represents an innovative approach to cancer research that seeks to harness the body s own

More information

IEL / ETM Case Study Series

IEL / ETM Case Study Series IEL / ETM Case Study Series XENO MOUSE PATENT PORTFOLIO ANALYSIS No. 02/12 Division of Engineering & Technology Management (D-ETM) Institute of Engineering Leadership (IEL) Faculty of Engineering MT5001

More information

Gene Cloning Technology

Gene Cloning Technology Gene Cloning Technology Also known as: Genetic engineering or Genetic manipulation (GM) technology implies precision engineering being applied to DNA molecules Recombinant DNA technology - implies that

More information

Genes to Proteins to Antibodies

Genes to Proteins to Antibodies Genes to Proteins to Antibodies About Us Fusion Antibodies is a CRO established in 2001 as a spin-out from Queen s University Belfast. The company building is situated in a charming area of Springbank

More information

Building without a blueprint

Building without a blueprint 2 IN A HOME PREGNANCY TEST, something inside the test stick reacts with something in the sample to provide a yes or no answer. The stakes are high: if the something inside the test doesn t properly identify

More information

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope Viruses Chapter 10: Viruses Lecture Exam #3 Wednesday, November 22 nd (This lecture WILL be on Exam #3) Dr. Amy Rogers Office Hours: MW 9-10 AM Too small to see with a light microscope Visible with electron

More information

Chapter 20: Biotechnology

Chapter 20: Biotechnology Name Period The AP Biology exam has reached into this chapter for essay questions on a regular basis over the past 15 years. Student responses show that biotechnology is a difficult topic. This chapter

More information

Chapter 17A: Adaptive Immunity Part I

Chapter 17A: Adaptive Immunity Part I Chapter 17A: Adaptive Immunity Part I 1. Overview of Adaptive Immunity 2. T and B Cell Production 3. Antigens & Antigen Presentation 4. Helper T cells 1. Overview of Adaptive Immunity The Nature of Adaptive

More information

MICROBIOLOGY - IMMUNOLOGY MODULE Dr Ronnie Russell

MICROBIOLOGY - IMMUNOLOGY MODULE Dr Ronnie Russell The Specific/Adaptive Immune Response The Third Line of Defence Is called specific immunity The body s ability to recognize and defend itself against distinct invaders and their products Is a smart system

More information

RADIOPHARMACEUTICALS BASED ON MONOCLONAL ANTIBODIES

RADIOPHARMACEUTICALS BASED ON MONOCLONAL ANTIBODIES RADIOPHARMACEUTICALS BASED ON MONOCLONAL ANTIBODIES Guideline Title Radiopharmaceuticals based on Monoclonal Antibodies Legislative basis Directives 65/65/EEC, 75/318/EEC as amended, Directive 89/343/EEC

More information

2006 7.012 Problem Set 6 KEY

2006 7.012 Problem Set 6 KEY 2006 7.012 Problem Set 6 KEY ** Due before 5 PM on WEDNESDAY, November 22, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You create an artificial

More information

GenScript Antibody Services

GenScript Antibody Services GenScript Antibody Services Scientific experts, innovative technologies, proven performance We specialize in custom antibody production to empower your research Custom Polyclonal Antibody Production Custom

More information

PRODUCTION AND QUALITY CONTROL OF MONOCLONAL ANTIBODIES

PRODUCTION AND QUALITY CONTROL OF MONOCLONAL ANTIBODIES PRODUCTION AND QUALITY CONTROL OF MONOCLONAL ANTIBODIES Guideline Title Production And Quality Control Of Monoclonal Antibodies Legislative basis Directive 75/318/EEC as amended Date of first adoption

More information

Final Review. Aptamers. Making Aptamers: SELEX 6/3/2011. sirna and mirna. Central Dogma. RNAi: A translation regulation mechanism.

Final Review. Aptamers. Making Aptamers: SELEX 6/3/2011. sirna and mirna. Central Dogma. RNAi: A translation regulation mechanism. Central Dogma Final Review Section Week 10 DNA RNA Protein DNA DNA replication DNA RNA transcription RNA Protein translation **RNA DNA reverse transcription http://bass.bio.uci.edu/~hudel/bs99a/lecture20/lecture1_1.html

More information

Guidelines for Monoclonal Antibody Production

Guidelines for Monoclonal Antibody Production Guidelines for Monoclonal Antibody Production 2008 Guidelines for Monclonal Antibody Production 2008 Commonwealth of Australia 2008 Electronic documents This work is copyright. You may download, display,

More information

Genetic engineering or Genetic manipulation (GM) technology. implies precision engineering being applied to DNA molecules

Genetic engineering or Genetic manipulation (GM) technology. implies precision engineering being applied to DNA molecules Gene Cloning Technology Also known as: Genetic engineering or Genetic manipulation (GM) technology implies precision engineering being applied to DNA molecules Recombinant DNA technology - implies that

More information

SCANTIBODIES Laboratory, Inc. Contract Monoclonal Antibody Production

SCANTIBODIES Laboratory, Inc. Contract Monoclonal Antibody Production A Technical Publication of SCANTIBODIES Laboratory, Inc. Volume 1 Number 4 9336 Abraham Way Santee, CA 92071 USA (619) 258-9300 fax (619) 258-9366 www.scantibodies.com SCANTIBODIES Laboratory, Inc. Contract

More information

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology

More information

ATGCell. ATGCell Inc.

ATGCell. ATGCell Inc. ATGCell Inc. http://www.atgcell.com Corporate ATGCell is a revenue generating spin-off biotech company from University of Alberta. Incorporated in September 2007; 6 employees (5 PhD and 1 MSc); several

More information

Basic Overview of Preclinical Toxicology Animal Models

Basic Overview of Preclinical Toxicology Animal Models Basic Overview of Preclinical Toxicology Animal Models Charles D. Hebert, Ph.D., D.A.B.T. December 5, 2013 Outline Background In Vitro Toxicology In Vivo Toxicology Animal Models What is Toxicology? Background

More information

Immunity and how vaccines work

Immunity and how vaccines work 1 Introduction Immunity is the ability of the human body to protect itself from infectious disease. The defence mechanisms of the body are complex and include innate (non-specific, non-adaptive) mechanisms

More information

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA DNA Fingerprinting Unless they are identical twins, individuals have unique DNA DNA fingerprinting The name used for the unambiguous identifying technique that takes advantage of differences in DNA sequence

More information

Custom Antibody Services

Custom Antibody Services prosci-inc.com Custom Antibody Services High Performance Antibodies and More Broad Antibody Catalog Extensive Antibody Services CUSTOM ANTIBODY SERVICES Established in 1998, ProSci Incorporated is a leading

More information

INDUSTRY OVERVIEW. Our business segments. (ii) Global drug development service market Preclinical drug development services

INDUSTRY OVERVIEW. Our business segments. (ii) Global drug development service market Preclinical drug development services The information and statistics set out in this section and other sections of this document were extracted from different official government publications, available sources from public market research

More information

Your partner in immunology

Your partner in immunology Your partner in immunology Expertise Expertise Reactivity Reactivity Quality Quality Advice Advice Who are we? Specialist of antibody engineering Covalab is a French biotechnology company, specialised

More information

Transformation. Making Change Happen

Transformation. Making Change Happen Transformation Making Change Happen Genetic Engineering Definition: The alteration of an organism s genetic, or hereditary, material to eliminate undesirable characteristics or to produce desirable new

More information

CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES

CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES An understanding of the distinct families of molecules present on different cells of the immune system provides the tools for distinguishing

More information

How to construct transgenic mice

How to construct transgenic mice How to construct transgenic mice Sandra Beer-Hammer Autumn School 2010 Bad Schandau Methods additional genetic information transgenic mouse line gene inactivation gene-deficient knockout mouse line Jak2

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

Name: Period: Date: Biotechnology refers to technology used to DNA. The procedures are often referred to as. DNA is cut into small pieces using (RE).

Name: Period: Date: Biotechnology refers to technology used to DNA. The procedures are often referred to as. DNA is cut into small pieces using (RE). Name: Period: Date: I. OVERVIEW OF GENETIC ENGINEERING: Biotechnology refers to technology used to DNA. The procedures are often referred to as. is the genetic material of all living organisms. o All organisms

More information

CONTENT. Chapter 1 Review of Literature. List of figures. List of tables

CONTENT. Chapter 1 Review of Literature. List of figures. List of tables Abstract Abbreviations List of figures CONTENT I-VI VII-VIII IX-XII List of tables XIII Chapter 1 Review of Literature 1. Vaccination against intracellular pathogens 1-34 1.1 Role of different immune responses

More information