A Specific Effort Estimation Method Using Function Point

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Specific Effort Estimation Method Using Function Point"

Transcription

1 JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 27, (2011) A Specific Effort Estimation Method Using Function Point BINGCHIANG JENG 1,*, DOWMING YEH 2, DERON WANG 3, SHU-LAN CHU 2 AND CHIA-MEI CHEN 1 1 Department of Information Management National Sun Yat-sen University Kaohsiung, 804 Taiwan 2 Department of Software Engineering National Kaohsiung Normal University Kaohsiung, 802 Taiwan 3 Department of Information System China Steel Corporation Kaohsiung, 812 Taiwan Software estimation provides an important tool for project planning; whose quality and accuracy greatly affect the success of a project. Despite a plethora of estimation models, practitioners experience difficulties in applying them because most models attempt to include as many influential factors as possible in estimating software size and/or effort. This research suggests a different approach that simplifies and tailors a generic function point analysis model to increase ease of use. The proposed approach redefines the function type categories in the FPA model, on the basis of the target application s characteristics and system architecture. This method makes the function types more suitable for the particular application domain. It also enables function point counting by the programmers themselves instead of by an expert. An empirical study using historical data establishes the regression model and demonstrates that its prediction accuracy is comparable to that of a FPA model. Keywords: effort estimation, function point analysis, empirical model, project management, size measurement 1. INTRODUCTION Size and effort of a software system are two different but correlated terms; size measures how large the system is while effort specifies how much endeavor requires to create it. Given a same size task, the effort required from different teams may vary a lot because their productivities are different. Thus, it is the effort that provides more useful reference for project cost estimation, schedule planning, and so on [1, 2]. However, effort estimation in practice usually rely on human domain experts, who offer estimations based on their experiences with similar projects in past, and estimation quality thus depends on personal experiences and subjective judgments, which tend to result in unstable or even poor estimation accuracy. Algorithmic estimation models address this problem by trying to capture the influence factors to estimate software size and/or effort using predefined equations [3-7]. Yet practitioners experience difficulties with these models due to hidden factors such as team s productivity that affect development effort differently but are not fully reflected in the models [8-11]. In addition, most existing models are complicated and difficult to implement, Received November 9, 2009; revised March 12, 2010; accepted June 10, Communicated by Chih-Ping Chu. * Corresponding author. 1363

2 1364 BINGCHIANG JENG, DOWMING YEH, DERON WANG, SHU-LAN CHU AND CHIA-MEI CHEN which further hinders their acceptance among practitioners [12, 13]. Given this situation, a more sophisticated model to cover ever more factors seems inappropriate since existing ones already take effort to implement [12, 13]. Besides, some factors are inherent to a domain and may not be easy to generalize. An alternative approach might be necessary to face with these problems. This paper presents a new type of estimation approach that is created solely for a specific organization, using its historical project data and some metrics pertaining to the application type and system architecture. It inherits the spirit from function point analysis (FPA) [3, 4, 15] but is much simplified. FPA analysis process usually relies on experts who judge and estimate the various aspects of a software system [13], which makes it difficult for a common project team to adopt. In addition, the new approach generates estimated effort only, without the intermediate step of size estimation, which further simplifies the process. The remainder of this article is organized as follows: Section 2 briefly introduces the related methods of size and effort estimations and FPA. The new model and a redefinition of function points appear in section 3. A regression process establishes the model in section 4, and then an empirical study applies the created model to a real example and compares its result with FPA in section 5. The final section concludes with some implications and further research directions. 2.1 Estimation Methods 2. RELATED ESTIMATION METHODS Effort (and size) estimations are critical to the success of a software project [16]. Of the different techniques presented in prior literature [6-9, 17], the most popular include algorithmic and parametric models, expert judgment, and reasoning by analogy [18]. According to Heemstra s survey, 29 different software-based cost models have been proposed since 1966 [6]. Most effort estimation models rely on empirical derivation, using regression analysis of a collection of historical project data. These models usually take a software size as input to estimate its development effort, where the size measurement can be either lines of code (LOC) or function points. The LOC-based models are mostly nonlinear, and their estimated effort is at least quadratic to the size. Other models based on function points are not; the effort relates linearly to the function points, e.g., the one proposed by Albrecht and Gaffney [4]. A possible explanation to this is that the generation process of counting function points already involves nonlinear computation. Machine learning models for size and/or effort estimation are rather more recent; they include case-based reasoning [20], fuzzy logic [21], neural network [22], and many others [23]. Most such approaches report results that are comparable to those of other techniques [9]. However, because the data needed by these models usually are not available at the start of a software project, most can be applied only during the later stages of the software development process.

3 A SPECIFIC EFFORT ESTIMATION METHOD Function Point Analysis FPA denotes a family of algorithmic methods for size estimation. This method separately evaluates two classes of the attributes of a software system: size factors and influence factors. The first version of FPA, invented by Albrecht at IBM in 1979 [3], proposed a new metric (i.e., function point) for software size rather than lines of code. The International Function Point User Group (IFPUG) adopted a revised method [4], defining a function point as a means to measure software size by quantifying the functionality provided to the user based solely on logical designs and functionality specifications [24]. Because the functionality of a software system, from the user s perspective, usually emerges early in a project, FPA offers the unique advantage of being applicable during the early stage, when other approaches to size measurement are not appropriate. A FPA model classifies the functions of a software system into five types: external inputs (EI), which refer to the unique user data or control inputs that add to or change the data; external outputs (EO), which are the unique user data or control outputs that fall outside the boundaries of the system; external inquiries (EQ), which are the unique input that generates immediate output; internal logical files (ILF), which are internally maintained, logical groups of data; and external interface files (EIF) that are passed or shared among applications. Furthermore, IFPUG groups these functions into either data functions (ILFs and EIFs) or transactional functions (EIs, EOs, and EQs). Each category consists of different function elements. For example, the data function category consists of data element type (DET), which refers to a user-recognizable field from a business perspective that participates in a transaction or is stored on a logical data file, and record element type (RET), which refers to a user-recognizable subgroup of data elements within ILF or EIF only. The suggested steps for FPA, according to the IFPUG, are as follows: (1) identify the function elements in each prescribed function; (2) assign each function a ranking level of simple, medium, or complex according to the number of function elements found; (3) calculate an initial function point count; (4) determine the total degree of influence exerted on the general system characteristics; and (5) calculate the final function points on the basis of the initial point count and the influence adjustment factor. Although the description of the first step is simple, it takes effort to identify and count the function elements (i.e., DET, RET, and so on) that occur in each of the five categories. Based on the findings, a user function is then ranked with simple, medium, or complex according to the complexity ranking table defined for each category. This rank equates with a numeric value in the complexity weighting factor table, ranging from 3 to 15. These numeric values sum together to generate the initial count of unadjusted function points, as described in the third step of the process. Because FPA is designed to apply across different organizations, the next step considers fourteen environmental factors and their influences. Depending on the degree of influence, each characteristic receives a value from 0 to 5. The summation of the fourteen factors values, multiplied by 0.01 and then added to a constant of 0.65, generates the value adjustment factor (VAF). The previous unadjusted function point count multiplied by this VAF equals the final count. Various other FPA models exist as well. Since the first revision of FPA in 1984, variations and extensions have altered the original model. For example, Symons introduced Mark II Function Point in 1991 [11], and Abran et al. considered Full Function Point in

4 1366 BINGCHIANG JENG, DOWMING YEH, DERON WANG, SHU-LAN CHU AND CHIA-MEI CHEN 1997 [25]. Other related models include COSMIC, Object Point Analysis, and Feature Point Model [26]; the IFPUG s version is the most recent. Although FPA is well known, it is difficult to adopt in modern software environments, which has been the impetus for various extensions [11]. The coefficients in the complexity weighting factor table also must be justified before implementation, as noted by Kitchenham [14]. The determination of the influence adjustment factor is another problem; empirical studies show that each estimator demands different considerations regarding the influence factor of the general system characteristics, and the final function points may vary by as much as 30% within an organization and even more across organizations when they are based on different estimators [10, 15]. In a specific application domain, with historical project data available, a simpler approach might avoid or at least alleviate these problems. In particular, the FPA model might be made to be specific to the domain, which could mitigate existing concerns, as well as the variance of subjective judgments regarding the influence adjustment factor. 3. TAILORED FUNCTION POINT ANALYSIS The proposed approach consists of three steps. First, it reduces the gap between the classification of function types in FPA and the classification contained in a real application. The five basic function types and function elements from FPA usually cannot match well the functional complexity of a modern application. In addition, counting the function elements requires some expertise. Therefore, the first step redefines the basic function types with respect to the application domain and upgrades the classification to a higher level of meaningful indicators. Second, general system characteristics get incorporated into the function points to reduce possible subjective bias. Our goal here is not to develop a generic model, as FPA does, so there is no need to separate the consideration of function complexity into two parts. Both Kemerer [23] and Low and Jeffery [27] show that size predictions based on raw function points are just as accurate as predictions based on adjusted function points, and Kitchenham [14] supports the abandonment of adjustments. This second step therefore does nothing but set the value of the influence adjustment factor equal to 1. Third, it requires a readjustment of the complexity weighting factor table in FPA according to the system characteristics of different applications. Because the first step has modified the basic function types, which requires updating the weighting table, the third step consists of a regression process that recreates the complexity weighting factor table and determines its coefficients on the basis of historical data. 3.1 Function Type Reclassification Although the five function types in FPA are useful in size estimation, within a specific application domain and developer team, other factors may better reflect the complexity and effort of the task. The application domain entails an information department in a large steel company whose information systems mainly feature mainframe computers running the third-generation language COBOL. This case provides an effective experimental target for two reasons. First, the department keeps good records of its historical project

5 A SPECIFIC EFFORT ESTIMATION METHOD 1367 data, and second, it experiences a low turnover rate among software engineers, which helps reduce the effect of the human factor in evaluating the accuracy of the estimation model. In the formalized software development process, most software engineers perform their work according to the schedule assigned by the project. Our study case is a set of On Line Transaction Processing (OLTP) applications running in this company, and interviews with their senior engineers reveal six influential factors that affect their daily programming jobs, namely, 1. Intercommunication parameter sets: As a common feature of the company s OLTP programs, many programs call one another to complete a specific task. These programs usually exchange complicated parameters during their communication. Thus, it is a complexity indicator reflecting the complexity of the task that a program performs. 2. Connected subsystems: Depending on its business purpose, a program might be connected to the sales management, production management, logistic and data warehouse, equipment management, administration, and/or financial management systems. The more subsystems involved, the greater is the functional complexity. At the least, engineers need more time to study the connected systems and their internal data elements. 3. Updated files: As a good standard practice, business application programs keep logs of inserted, deleted, or modified data for failure recovery purposes or auditing trails. These logs provide good indicators of the workload and complexity of a program. 4. User departments involved: A special characteristic of the systems in this study is that most of the applications have similar user interfaces. The more user departments are involved, the more complicated a user interface is. In addition, more user departments imply more complicated function requirements. 5. Utility programs: Utilities are programs that implement code tables, data checking and validation, or certain business rules. The more utilities are invoked, the greater program s execution of the data transformation functions. 6. Subroutines (or subprograms): Similar to a utility program, a subroutine performs various jobs. Again, the more subroutines a program calls, the more complicated it is. Table 1 summarizes the new function categories compared to the original ones. As the table reveals, the spirit of the new function categories follows the FPA s original classification, except that the levels of emphasis differ. In addition, the proposed categories are more natural and easier for project team members to use, because they refer to familiar topics. Table 1. Comparison between basic function types and proposed classification. Categories Equivalent to FPA Inter-communication parameter sets Internal logical files, external interface files Connected subsystems Data communications, distributed functions, complex processing, multiple sites. Updated files Internal logical files User departments External inputs, external outputs, external inquiries Utility programs External interface files Subroutines External interface files

6 1368 BINGCHIANG JENG, DOWMING YEH, DERON WANG, SHU-LAN CHU AND CHIA-MEI CHEN An example illustrates the point: According to the FPA s rules, one cannot update an external file directly but instead must assume an (virtual) external interface with another program that can handle the processing between the application program and the file. The proposed function category is more direct and does not suffer from such a problem. In addition, counting function elements is much easier. Because the new function types are already the most basic elements that provide meaning, there is no need to divide them further to identify the function elements. These factors reflect the specific characteristics for effort estimation under this study. To derive factors for other domain, one may follow a similar procedure. Namely, collect possible factors from senior engineers, consolidates them to preferably no more than seven factors. Too many factors would complicate the estimation model. It is best to compare these factors with the original function point classification to note for possible biases or even pretermission of important aspects. 3.2 Creating the Complexity Weighting Factor Table In FPA, the complexity weighting factor table helps generate the function points of each individual function. Redefining the basic function types according to the application domain requires rebuilding the table and determining its coefficients, using a regression analysis of the historical data. Start with the equation for function point computing: n FP = UFP VAF, i= 1 i where n is the number of function types, and UFP i is the unadjusted function points for the ith function type. In line with the preceding discussion, VAF equals 1 and thus may be ignored hereafter. The total function point is the sum of function points in each classified function type. Assume X i denotes the function points for the ith function type in a program, W is the ratio of person-day per function point, and C is the physical person-days of a programming task. The rewritten equation becomes: n Xi W = C. (1) i = 1 The calculation of X i requires a complexity weighting factor table similar to that of FPA and multiply the number of functions, N i, by the corresponding weight in that category, i.e., X i = N i W i. If treating the weights for the low, medium, and high complexity levels of a function type as independent, 3n variables must be determined. In contrast, in the current FPA, the weight factors for the low, medium, and high complexity levels roughly follow the ratio of 3:4:6. So the proposed model introduces another variable π i and rewrites X i = (N 1 ia 1 i + N 2 ia 2 i + N 3 ia 3 i)π i, where A j i denotes the ratio for different complexity levels, assigned constant value of 3, 4, or 6, and π i is the factor to be determined by the relative weight over the different function types. When π i W = W i, the equation simplifies to: n 3 j j ( Ni Ai ) Wi = C. (2) i= 1 j= 1

7 A SPECIFIC EFFORT ESTIMATION METHOD 1369 This equation is ready for regression. Substitution the historical data into it will determine the best values for W i. Assume the initial solution be represented by W i, in which case the equation becomes n 3 j j ( Ni Ai ) Wi = C + e. (3) i= 1 j= 1 The next step minimizes the summation of the squared errors for m number of training data to find W i : m 2 e j. j= 1 s = (4) The converging criterion restricts the difference between the largest and smallest W i to less than 5% (which can be adjusted). Alternatively, the smallest W i can divide all A i W i and reveal a new set of A i, which, when substituted into Eq. (3), generates a new set of W i. The iteration process terminates when the criterion is satisfied. 4. REGRESSION MODELS The software team under study develops new functions for existing systems in response to daily requests from other departments in the company. To simplify the data analysis, this investigation applies effort estimation to the last two phases of software development, namely, implementation and testing, when the function requirements and overall design of programs are already known so that counting function points is easier and more certain. The analysis can be extended to the whole life cycle, if necessary, in that the effort expended during these two phases exhibits roughly a constant ratio with total development effort, with minor variance. Table 2. Test data profiles. System Number of Programs Total Lines of Code Effort (person-day) A B C D E The regression analysis includes program data from five historical projects, as Table 2 shows. For each system, the programs are sorted according to their complexity in each classified function category. A program earns a low complexity rank in a function category if its complexity falls below 30% on the spectrum, a medium rank if it appears greater than 30% but less than 70%, and a high rank otherwise. During the regression process, sensitivity analysis reveals the strength of different factors that contribute to development effort; factors with smaller values disappear from

8 1370 BINGCHIANG JENG, DOWMING YEH, DERON WANG, SHU-LAN CHU AND CHIA-MEI CHEN Complexity Weights Intercommunication Parameter Sets Table 3. Sensitivity analyses of function categories. Connected Subsystems User Departments Called Subroutines Connected Utility Programs Updated Files (3, 4, 5) (3, 4, 6) (7, 10, 15) Table 4. Convergences of weight control factors. Model 1 Model 2 Model 3 Model 4 Model 5 Category W i A i W i A i W i A i W i A i W i A i Inter-communication parameter sets /8/ /18/ /4/ /6/ /6/10 Connected subsystems /13/ /7/ /13/ /170/ /15/22 User departments /7/ /6/ /7/ /16/ /4/6 Connected utility programs /5/ /5/ /9/ /238/ /9/13 Updated files /4/ /5/ /6/ /84/ /6/9 the function category. The test indicates that the called subroutines function category attained too much emphasis, in that its related value is far less than that of others, as Table 3 displays. This category therefore joins the similar category of connected utility programs. An iteration of the regression analysis process determines the best values for W i that lead to the total error summation in Eq. (4) within the threshold value, 5%. The initial values of A i are 3, 4, and 6, respectively. If the error summation after the regression fails to reach the threshold value, the values of A i require adjustment, by multiplying corresponding W i, dividing by the minimum value of W i, and iterating the regression analysis. The evaluation of the generated regression models employs a five-fold cross-validation process; in each run of the process, data from four out of the five projects serve to train the model, and then data from the remaining project test it. The five repetitions of this process produce the results in Table 4. One of the basic assumptions of multiple regression analysis is that the error e i of independent variables should not be related. The Durbin-Watson (DW) test can examine this assumption. The DW values in all five runs are close to 2. This result implies there are no significant relations in the model and that its predictions are reliable. Another test to examine the validity of the overall regression model is the analysis of variance (ANOVA). The test results demonstrate that all p-values are less than 0.05, in support of the linear relationship in the proposed model. 5. EXPERIMENTAL RESULTS AND MODEL EVALUATION This section describes the physical test of the effectiveness of the proposed new models and compares their estimation accuracies with those obtained by standard FPA. For easy comparisons, all the results are shown in the commonly used measure of the mean value of the magnitude of relative error (MMRE) [9, 16, 22]. The magnitude of relative

9 A SPECIFIC EFFORT ESTIMATION METHOD 1371 error (MRE) is a normalized measure of the variance between actual values (V A ) and predicted values (V F ): VA VF MRE =. V A 5.1 Estimation Accuracy of the Tailored Models The tests of the five regression models established in the previous section return the average estimation accuracies in Table 5. The mean error of the new estimation method based on the five-fold test is 25.91% in MMRE, with 13.37% variance not very good but comparable to other known studies [19, 22]. Table 5. New models effort estimation (by application systems). Reference Projects Tested Project MRE A, B, C, D E 49.55% A, B, C, E D 21.52% A, B, D, E C 18.75% A, C,D, E B 17.36% B, C, D, E A 22.39% MMRE 25.91% Standard deviation 13.37% Table 6. New models effort Estimation (by random partition). Reference Groups Tested group MRE V, W, X,Y Z 13.06% V, W, X, Z Y 17.67% V, W,Y, Z X 25.00% V, X, Y, Z W 15.86% W, X, Y, Z V 9.12% MMRE 16.14% Standard deviation 5.91% Yet the experiment is not perfect. Model quality depends on the regression analysis of historical project data, and these models are not trained with a sufficient number of projects. If different projects vary greatly in their characteristics, the proposed model is less reliable, as indicated by the large standard deviation in MRE. Another experiment therefore trained the models using the program, rather than the system, units. This experiment breaks down the application systems boundaries and randomly assigns each program from the five projects into five groups so that the application characteristics from the five systems distribute evenly into these groups. After a random partitioning, the five groups contained 14, 16, 17, 13, and 12 programs. The same process applied to these groups creates five new models. Estimation accuracies in this test are better (see Table 6). These experimental outcomes appear closer to

10 1372 BINGCHIANG JENG, DOWMING YEH, DERON WANG, SHU-LAN CHU AND CHIA-MEI CHEN the real evaluation of the new approach, because the models derive from more random data items, and the standard deviation of MRE declines greatly. 5.2 Comparison with Standard FPA Another way to evaluate the new approach is to compare the estimation results with those from standard FPA. Table 7 shows the function points and person-days per function point for each of the five applications using the standard FPA method. Table 7. Function points and person-days conversion. Application A B C D E Adjusted function points Actual person-days Person-days per function point Table 8. FPA s effort estimation (by application systems). Reference projects Average MD/FP Tested Project MRE A, B, C, D E 0.28% A, B, C, E D 14.88% A, B, D, E C 29.64% A, C,D, E B 8.73% B, C, D, E A 2.84% MMRE 11.28% Standard deviation 11.72% A similar experimental process uses four of the five projects as the historical data to compute an average number of person-days per function point, which then serves as an estimation of the effort for the last project. For example, the average person-days per function point from projects A, B, C, and D is ( )/( ) = This value, multiplied by 78, is the estimated effort for project E, which equals Compared with the actual value for person-day 23, the estimation accuracy is 0.28% in MMRE. Table 8 shows the estimation results of this experiment. The surprisingly high estimation accuracies of some models indicate that the standard FPA has physical support, which likely explains its persistent popularity. The only shortcoming is its stability, which varies up to 29% in terms of accuracy from the best to the worst. The large variation indicates that the intrinsic characteristics of these applications vary greatly across different projects in the experiment. Thus another experiment, similar to the second one in the last subsection, follows, and its estimation outcomes appear in Table 9. The statistics in this table, however, are not as reliable as those in Table 9, because the standard deviation of MRE increases. That is, FPA prefers to estimate using a whole project s data rather than randomized data. This experiment does not represent the usual way in using FPA, because the VAF factors in the final process to adjust function points are designed to evaluate a whole system, not programs.

11 A SPECIFIC EFFORT ESTIMATION METHOD 1373 Table 9. FPA s effort estimation (by random partition). Reference Groups Average MD/FP Tested Group MRE V, W, X,Y Z 9.80% V, W, X, Z Y 26.31% V, W,Y, Z X 44.33% V, X, Y, Z W 3.73% W, X, Y, Z V 2.13% MMRE 17.26% Standard deviation 17.90% 6. DISCUSSION AND CONCLUSION Although effort estimation is a critical step for the success of a software project, in practice, many projects still use ad hoc methods to conduct this task. This phenomenon may result because most of the generic algorithmic estimation models are difficult to be adopted, in that they require the collection of many detailed items that may affect the size (and effort) associated with an application. This research presents a different approach that trades generic with specific and greatly simplifies the estimation model to enable common programmers to use it. Although the new approach may not be as formal as a normal estimation model, it does reduce the difficulties of using it by giving programmers a method to build their own model, which captures more of a given application domain s characteristics and is easier to use. The demonstration of this approach offers an unique benefit in that it makes the function classification more suitable for a particular application domain so that function point counting can be conducted by programmers themselves instead of by a certified FPA expert. We believe such an approach should be applicable to domains when FPA works since it still stays with the FPA spirit. However, it may shares the limitations of FPA also. To verify its usefulness, it is no doubt that more experimental data from a wider range of application domains and environments should be collected to deepen the investigation into the trade-off between generic versus specific. At least two research directions exist. First, studies could evaluate whether the tailored FPA model always fits a business application domain and still maintains comparable estimation accuracy. Second, the ideas presented herein might be adopted to another estimation model and determine how it performs. Each direction will lead to more detailed research findings. REFERENCES 1. K. Molokken and M. Jorgensen, A review of software surveys on software effort estimation, in Proceedings of International Symposium on Empirical Software Engineering, 2003, pp J. S. Osmundson, J. B. Micheal, M. J. Machniak, and M. A. Grossman, Quality management metrics for software development, Information and Management, Vol. 40, 2003, pp

12 1374 BINGCHIANG JENG, DOWMING YEH, DERON WANG, SHU-LAN CHU AND CHIA-MEI CHEN 3. A. J. Albrecht, Measuring application development productivity, in Proceedings of IBM Applications Development Symposium, 1979, pp A. J. Albrecht and J. E. Gaffney Jr., Software function, source lines of code, and development effort prediction: A software science validation, IEEE Transactions on Software Engineering, Vol. 9, 1983, pp B. W. Boehm, Software Cost Estimation with Cocomo II, Prentice Hall, New Jersey, A. L. Lederer and J. Prasad, A causal model for software cost estimating error, IEEE Transactions on Software Engineering, Vol. 24, 1998, pp F. Walkerden and R. Jeffery, An empirical study of analogy-based software effort estimation, Empirical Software Engineering, Vol. 4, 1999, pp N. E. Fenton and M. Neil, Software metrics: success, failures and new directions, Journal of Systems and Software, Vol. 47, 1997, pp A. R. Gray and S. G. MacDonell, A comparison of techniques for developing predictive models of software metrics, Information and Software Technology, Vol. 39, 1997, pp D. Garmus and D. Herron, Function Point Analysis: Measurement Practices for Successful Software Projects, Addison-Wesley, Boston, MA, C. R. Symons, Software Sizing and Estimating MkII FPA (Function Point Analysis), John Wiley and Sons, Chichester, U.K., J. J. Dolado, On the problem of the software cost function, Information and Software Technology, Vol. 43, 2001, pp A. Abran and P. N. Robillard, Function points analysis: An empirical study of its measurement processes, IEEE Transactions on Software Engineering, Vol. 22, 1996, pp B. Kitchenham, The problem with function points, IEEE Software, Vol. 14, 1997, pp R. Jeffery and J. Stathis, Function point sizing: Structure, validity and applicability, Empirical Software Engineering, Vol. 1, 1996, pp M. Jorgensen and D. I. K. Sjoberg, Impact of effort estimates on software project work, Information and Software Technology, Vol. 43, 2001, pp C. Gencel and O. Demirors, Functional size measurement revisited, ACM Transactions on Software Engineering and Methodology, Vol. 17, 2008, pp B. Barry, C. Abts, and S. Chulani, Software development cost estimation approaches A survey, Annals of Software Engineering, Vol. 10, 2000, pp L. H. Putnam and W. Myers, Measures for Excellence: Reliable Software on Time, within Budget, Yourdon Press, Englewood Cliffs, NJ, R. Bisio and F. Malabocchia, Cost estimation of software projects through case-base reasoning, in Proceedings of Case-Based Reasoning Research and Development, 1995, pp O. D. Lima, P. M. Farias, and A. D. Belchior Fuzzy modeling for function points analysis, Software Quality Journal, Vol. 11, 2003, pp J. Hakkarainen, P. Laamamen, and R. Rask, Neural networks in specification level software size estimation, in P. K. Simpson, ed., Neural Network Applications, IEEE Technology Update Series, 1993, pp A. Heiat, Comparison of artificial neural network and regression models for estimat-

13 A SPECIFIC EFFORT ESTIMATION METHOD 1375 ing software development effort, Information and Software Technology, Vol. 44, 2002, pp R. Boehm, Frequently asked questions, A. Abran, M. Maya, J. M. Desharnais, and D. St-Pierre, Adapting function points to real-time software, American Programmer, Vol. 10, 1997, pp C. Jones, Applied Software Measurement: Assuring Productivity and Quality, McGraw- Hill, New York, G. C. Low and D. R. Jeffery, Function points in the estimation and evaluation of the software process, IEEE Transactions on Software Engineering, Vol. 16, 1990, pp Bingchiang Jeng ( ) joined in the National Sun Yat- Sen University as an Associate Professor in 1990 and became a full Professor in He is currently the department chair of Information Management and the graduate director of Communication Management. He received B.S. in Computer Science and Information Engineering from National Chiao Tung University, and Ph.D. in Computer Science from New York University. His current research interests include software testing, model checking, and computer-aided instruction in programming. Dowming Yeh ( ) is a Professor in the Department of Software Engineering at the National Kaohsiung Normal University, Taiwan, R.O.C. He received his Ph.D. in Computer Science from the University of Utah in U.S.A. Before assuming his current post, he was an Associate Professor in the Department of Management Information System at the National Pingtung University of Science and Technology and a manager at the Institute for Information Industry in Taiwan. His research interest includes software reengineering, e-learning, web engineering, program analysis, and human computer interaction. Dr. Yeh is a member of IEEE and ACM. Deron Wang ( ) joined in the China Steel Corporation as a system engineer in 1978 and became a section manager of Information System Department in He received M.S. in Information Management from National Sun Yat-Sen University in His working interests include ERP consulting, downsizing migration, data center management and network security.

14 1376 BINGCHIANG JENG, DOWMING YEH, DERON WANG, SHU-LAN CHU AND CHIA-MEI CHEN Shu-Lan Chu ( ) is presently employed as an Associate Technical Specialist in the Southern Regional Regulatory Department of National Communications Commission. She received Master of Education in Information and Computer Education Institute, from National Kaohsiung Normal University in Chia-Mei Chen ( ) joined in the National Sun Yat- Sen University as an Associate Professor in 1996 and became a full professor in In addition, she is Section Chef of Network Division, Office of Library and Information Services. She received B.S. in Computer Science and Information Engineering from National Chiao Tung University, and Ph.D. in Computer Science from the University of Maryland, College Park. She serves as a coordinator of TWCERT/CC (Taiwan Computer Emergency Response Team/Coordination Center) since 1998 and continues working for the network security society. Her current research interests include mobile networks, multimedia systems, and network security.

Full Function Points for Embedded and Real-Time Software. UKSMA Fall Conference

Full Function Points for Embedded and Real-Time Software. UKSMA Fall Conference Full Function Points for Embedded and Real-Time Software UKSMA Fall Conference London (UK) Oct. 30-31, 1998 Software Engineering Management Research Laboratory Université du Québec à Montréal & Software

More information

Function Point Analysis. By: Abbas HeydarNoori

Function Point Analysis. By: Abbas HeydarNoori Function Point Analysis By: Abbas HeydarNoori Introduction Function point metrics, developed by Alan Albercht of IBM, were first published in 1979 In 1984, the International Function Point Users Group

More information

A Comparison of Calibrated Equations for Software Development Effort Estimation

A Comparison of Calibrated Equations for Software Development Effort Estimation A Comparison of Calibrated Equations for Software Development Effort Estimation Cuauhtemoc Lopez Martin Edgardo Felipe Riveron Agustin Gutierrez Tornes 3,, 3 Center for Computing Research, National Polytechnic

More information

Function Point Measurement from Java Programs

Function Point Measurement from Java Programs Function Point Measurement from Java Programs Shinji Kusumoto, Masahiro Imagawa, Katsuro Inoue Graduate School of Engineering Science Osaka University Toyonaka, Osaka, Japan {kusumoto, imagawa, inoue}@icsesosaka-uacjp

More information

Introduction to Function Points www.davidconsultinggroup.com

Introduction to Function Points www.davidconsultinggroup.com By Sheila P. Dennis and David Garmus, David Consulting Group IBM first introduced the Function Point (FP) metric in 1978 [1]. Function Point counting has evolved into the most flexible standard of software

More information

Software project cost estimation using AI techniques

Software project cost estimation using AI techniques Software project cost estimation using AI techniques Rodríguez Montequín, V.; Villanueva Balsera, J.; Alba González, C.; Martínez Huerta, G. Project Management Area University of Oviedo C/Independencia

More information

Software Cost Estimation: A Tool for Object Oriented Console Applications

Software Cost Estimation: A Tool for Object Oriented Console Applications Software Cost Estimation: A Tool for Object Oriented Console Applications Ghazy Assassa, PhD Hatim Aboalsamh, PhD Amel Al Hussan, MSc Dept. of Computer Science, Dept. of Computer Science, Computer Dept.,

More information

APPLYING FUNCTION POINTS WITHIN A SOA ENVIRONMENT

APPLYING FUNCTION POINTS WITHIN A SOA ENVIRONMENT APPLYING FUNCTION POINTS WITHIN A SOA ENVIRONMENT Jeff Lindskoog EDS, An HP Company 1401 E. Hoffer St Kokomo, IN 46902 USA 1 / 16 SEPTEMBER 2009 / EDS INTERNAL So, Ah, How Big is it? 2 / 16 SEPTEMBER 2009

More information

MEASURING THE SIZE OF SMALL FUNCTIONAL ENHANCEMENTS TO SOFTWARE

MEASURING THE SIZE OF SMALL FUNCTIONAL ENHANCEMENTS TO SOFTWARE MEASURING THE SIZE OF SMALL FUNCTIONAL ENHANCEMENTS TO SOFTWARE Marcela Maya, Alain Abran, Pierre Bourque Université du Québec à Montréal P.O. Box 8888 (Centre-Ville) Montréal (Québec), Canada H3C 3P8

More information

An Evaluation of Functional Size Methods and a Bespoke Estimation Method for Real-Time Systems

An Evaluation of Functional Size Methods and a Bespoke Estimation Method for Real-Time Systems An Evaluation of Functional Size Methods and a Bespoke Estimation Method for Real-Time Systems Per Runeson 1, Niklas Borgquist 1, Markus Landin 1 and Wladyslaw Bolanowski 2 1 Dept. Communication Systems,

More information

Why SNAP? What is SNAP (in a nutshell)? Does SNAP work? How to use SNAP when we already use Function Points? How can I learn more? What s next?

Why SNAP? What is SNAP (in a nutshell)? Does SNAP work? How to use SNAP when we already use Function Points? How can I learn more? What s next? 1 Agenda Why SNAP? What is SNAP (in a nutshell)? Does SNAP work? How to use SNAP when we already use Function Points? How can I learn more? What s next? 2 Agenda Why SNAP? What is SNAP (in a nutshell)?

More information

Software Development Cost and Time Forecasting Using a High Performance Artificial Neural Network Model

Software Development Cost and Time Forecasting Using a High Performance Artificial Neural Network Model Software Development Cost and Time Forecasting Using a High Performance Artificial Neural Network Model Iman Attarzadeh and Siew Hock Ow Department of Software Engineering Faculty of Computer Science &

More information

Efficient Indicators to Evaluate the Status of Software Development Effort Estimation inside the Organizations

Efficient Indicators to Evaluate the Status of Software Development Effort Estimation inside the Organizations Efficient Indicators to Evaluate the Status of Software Development Effort Estimation inside the Organizations Elham Khatibi Department of Information System Universiti Teknologi Malaysia (UTM) Skudai

More information

SOFTWARE ESTIMATING RULES OF THUMB. Version 1 - April 6, 1997 Version 2 June 13, 2003 Version 3 March 20, 2007

SOFTWARE ESTIMATING RULES OF THUMB. Version 1 - April 6, 1997 Version 2 June 13, 2003 Version 3 March 20, 2007 SOFTWARE ESTIMATING RULES OF THUMB Version 1 - April 6, 1997 Version 2 June 13, 2003 Version 3 March 20, 2007 Abstract Accurate software estimating is too difficult for simple rules of thumb. Yet in spite

More information

Fundamentals of Function Point Analysis

Fundamentals of Function Point Analysis Fundamentals of Function Point Analysis By David@SoftwareMetrics.Com Abstract Systems continue to grow in size and complexity. They are becoming more and more difficult to understand. Improvement of coding

More information

Project Planning and Project Estimation Techniques. Naveen Aggarwal

Project Planning and Project Estimation Techniques. Naveen Aggarwal Project Planning and Project Estimation Techniques Naveen Aggarwal Responsibilities of a software project manager The job responsibility of a project manager ranges from invisible activities like building

More information

Role of Function Point as a Reuse Metric in a Software Asset Reuse Program

Role of Function Point as a Reuse Metric in a Software Asset Reuse Program Role of Function Point as a Reuse Metric in a Software Asset Reuse Program Johns T. Joseph 1 1 Department of Computer Science, Kent State University, Kent, Ohio, USA Abstract - The role of Function Point

More information

Using Productivity Measure and Function Points to Improve the Software Development Process

Using Productivity Measure and Function Points to Improve the Software Development Process Using Productivity Measure and Function Points to Improve the Software Development Process Eduardo Alves de Oliveira and Ricardo Choren Noya Computer Engineering Section, Military Engineering Institute,

More information

Hathaichanok Suwanjang and Nakornthip Prompoon

Hathaichanok Suwanjang and Nakornthip Prompoon Framework for Developing a Software Cost Estimation Model for Software Based on a Relational Matrix of Project Profile and Software Cost Using an Analogy Estimation Method Hathaichanok Suwanjang and Nakornthip

More information

Software Metrics & Software Metrology. Alain Abran. Chapter 4 Quantification and Measurement are Not the Same!

Software Metrics & Software Metrology. Alain Abran. Chapter 4 Quantification and Measurement are Not the Same! Software Metrics & Software Metrology Alain Abran Chapter 4 Quantification and Measurement are Not the Same! 1 Agenda This chapter covers: The difference between a number & an analysis model. The Measurement

More information

Analysis of Attributes Relating to Custom Software Price

Analysis of Attributes Relating to Custom Software Price Analysis of Attributes Relating to Custom Software Price Masateru Tsunoda Department of Information Sciences and Arts Toyo University Saitama, Japan tsunoda@toyo.jp Akito Monden, Kenichi Matsumoto Graduate

More information

Information Security and Risk Management

Information Security and Risk Management Information Security and Risk Management by Lawrence D. Bodin Professor Emeritus of Decision and Information Technology Robert H. Smith School of Business University of Maryland College Park, MD 20742

More information

COMPLEXITY METRIC FOR ANALOGY BASED EFFORT ESTIMATION

COMPLEXITY METRIC FOR ANALOGY BASED EFFORT ESTIMATION COMPLEXITY METRIC FOR ANALOGY BASED EFFORT ESTIMATION 1 VANDANA BHATTACHERJEE 2 PRABHAT KUMAR MAHANTI 3 SANJAY KUMAR 1 Department of Cs & E, Birla Institute Of Technology, Ranchi 2 Department of Csas,

More information

Measuring Software Functionality Using Function Point Method Based On Design Documentation

Measuring Software Functionality Using Function Point Method Based On Design Documentation www.ijcsi.org 124 Measuring Software Functionality Using Function Point Method Based On Design Documentation Anie Rose Irawati 1 and Khabib Mustofa 2 1 Department of Computer Science, University of Lampung

More information

An Evaluation of Neural Networks Approaches used for Software Effort Estimation

An Evaluation of Neural Networks Approaches used for Software Effort Estimation Proc. of Int. Conf. on Multimedia Processing, Communication and Info. Tech., MPCIT An Evaluation of Neural Networks Approaches used for Software Effort Estimation B.V. Ajay Prakash 1, D.V.Ashoka 2, V.N.

More information

Software Development: Tools and Processes. Lecture - 16: Estimation

Software Development: Tools and Processes. Lecture - 16: Estimation Software Development: Tools and Processes Lecture - 16: Estimation Estimating methods analogy method direct estimating method Delphi technique PERT-type rolling window Constructivist Cost Model (CoCoMo)

More information

A Concise Neural Network Model for Estimating Software Effort

A Concise Neural Network Model for Estimating Software Effort A Concise Neural Network Model for Estimating Software Effort Ch. Satyananda Reddy, KVSVN Raju DENSE Research Group Department of Computer Science and Systems Engineering, College of Engineering, Andhra

More information

SOFTWARE EFFORT ESTIMATION USING RADIAL BASIS FUNCTION NEURAL NETWORKS Ana Maria Bautista, Angel Castellanos, Tomas San Feliu

SOFTWARE EFFORT ESTIMATION USING RADIAL BASIS FUNCTION NEURAL NETWORKS Ana Maria Bautista, Angel Castellanos, Tomas San Feliu International Journal Information Theories and Applications, Vol. 21, Number 4, 2014 319 SOFTWARE EFFORT ESTIMATION USING RADIAL BASIS FUNCTION NEURAL NETWORKS Ana Maria Bautista, Angel Castellanos, Tomas

More information

ALGORITHM OF SELECTING COST ESTIMATION METHODS FOR ERP SOFTWARE IMPLEMENTATION

ALGORITHM OF SELECTING COST ESTIMATION METHODS FOR ERP SOFTWARE IMPLEMENTATION ERP, implementation, cost estimation Przemysław Plecka *, Krzysztof Bzdyra ** ALGORITHM OF SELECTING COST ESTIMATION METHODS FOR ERP SOFTWARE IMPLEMENTATION Abstract The article discusses the problem of

More information

STATISTICA Formula Guide: Logistic Regression. Table of Contents

STATISTICA Formula Guide: Logistic Regression. Table of Contents : Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

More information

An Empirical Approach for Estimation of the Software Development Effort

An Empirical Approach for Estimation of the Software Development Effort , pp. 97-110 http://dx.doi.org/10.14257/ijmue.2015.10.2.09 An Empirical Approach for Estimation of the Software Development Effort Amit Kumar Jakhar and Kumar Rajnish Department of Computer Science & Engineering,

More information

METHODS OF EFFORT ESTIMATION IN SOFTWARE ENGINEERING

METHODS OF EFFORT ESTIMATION IN SOFTWARE ENGINEERING I International Symposium Engineering Management And Competitiveness 2011 (EMC2011) June 24-25, 2011, Zrenjanin, Serbia METHODS OF EFFORT ESTIMATION IN SOFTWARE ENGINEERING Jovan Živadinović, Ph.D * High

More information

Prediction of Stock Performance Using Analytical Techniques

Prediction of Stock Performance Using Analytical Techniques 136 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 Prediction of Stock Performance Using Analytical Techniques Carol Hargreaves Institute of Systems Science National University

More information

Estimating Size and Effort

Estimating Size and Effort Estimating Size and Effort Dr. James A. Bednar jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar Dr. David Robertson dr@inf.ed.ac.uk http://www.inf.ed.ac.uk/ssp/members/dave.htm SAPM Spring 2007:

More information

Software Cost Estimation using Function Point with Non Algorithmic Approach

Software Cost Estimation using Function Point with Non Algorithmic Approach Global Journal of omputer Science and Technology Software & Data Engineering Volume 13 Issue 8 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

A New Approach in Software Cost Estimation with Hybrid of Bee Colony and Chaos Optimizations Algorithms

A New Approach in Software Cost Estimation with Hybrid of Bee Colony and Chaos Optimizations Algorithms A New Approach in Software Cost Estimation with Hybrid of Bee Colony and Chaos Optimizations Algorithms Farhad Soleimanian Gharehchopogh 1 and Zahra Asheghi Dizaji 2 1 Department of Computer Engineering,

More information

Comparison and Analysis of Different Software Cost Estimation Methods

Comparison and Analysis of Different Software Cost Estimation Methods Comparison and Analysis of Different Software Cost Estimation Methods Sweta Kumari Computer Science & Engineering Birla Institute of Technology Ranchi India Shashank Pushkar Computer Science &Engineering

More information

FUNCTION POINT ANALYSIS: Sizing The Software Deliverable. BEYOND FUNCTION POINTS So you ve got the count, Now what?

FUNCTION POINT ANALYSIS: Sizing The Software Deliverable. BEYOND FUNCTION POINTS So you ve got the count, Now what? FUNCTION POINT ANALYSIS: Sizing The Software Deliverable BEYOND FUNCTION POINTS So you ve got the count, Now what? 2008 Course Objectives The primary webinar objectives are to: Review function point methodology

More information

A Comparative Evaluation of Effort Estimation Methods in the Software Life Cycle

A Comparative Evaluation of Effort Estimation Methods in the Software Life Cycle DOI 10.2298/CSIS110316068P A Comparative Evaluation of Effort Estimation Methods in the Software Life Cycle Jovan Popović 1 and Dragan Bojić 1 1 Faculty of Electrical Engineering, University of Belgrade,

More information

EXTENDED ANGEL: KNOWLEDGE-BASED APPROACH FOR LOC AND EFFORT ESTIMATION FOR MULTIMEDIA PROJECTS IN MEDICAL DOMAIN

EXTENDED ANGEL: KNOWLEDGE-BASED APPROACH FOR LOC AND EFFORT ESTIMATION FOR MULTIMEDIA PROJECTS IN MEDICAL DOMAIN EXTENDED ANGEL: KNOWLEDGE-BASED APPROACH FOR LOC AND EFFORT ESTIMATION FOR MULTIMEDIA PROJECTS IN MEDICAL DOMAIN Sridhar S Associate Professor, Department of Information Science and Technology, Anna University,

More information

Derived Data in Classifying an EO

Derived Data in Classifying an EO itip Guidance from the Functional Sizing Standards Committee on topics important to you Derived Data in Classifying an EO itip # 07 (Version 1.0 08/08/2014) itips provide guidance on topics important to

More information

FUNCTION POINT ANAYSIS DETERMINING THE SIZE OF ERP IMPLEMENTATION PROJECTS By Paulo Gurevitz Cunha

FUNCTION POINT ANAYSIS DETERMINING THE SIZE OF ERP IMPLEMENTATION PROJECTS By Paulo Gurevitz Cunha FUNCTION POINT ANAYSIS DETERMINING THE SIZE OF ERP IMPLEMENTATION PROJECTS By Paulo Gurevitz Cunha Introduction In general, when we receive a request to implement a package, the first question that comes

More information

Data quality in Accounting Information Systems

Data quality in Accounting Information Systems Data quality in Accounting Information Systems Comparing Several Data Mining Techniques Erjon Zoto Department of Statistics and Applied Informatics Faculty of Economy, University of Tirana Tirana, Albania

More information

Applying Reverse Engineering Techniques to Verify the Estimation of Software Code Size using COSMIC Full Function Point

Applying Reverse Engineering Techniques to Verify the Estimation of Software Code Size using COSMIC Full Function Point Applying Reverse Engineering Techniques to Verify the Estimation of Software Code Size using COSMIC Full Function Point DOWMING YEH, YI-HONG CHEN, CHIH-YING YANG Department of Software Engineering National

More information

SOFTWARE EFFORT ESTIMATION APPROACHES A REVIEW

SOFTWARE EFFORT ESTIMATION APPROACHES A REVIEW SOFTWARE EFFORT ESTIMATION APPROACHES A REVIEW S.K. MOHANTY 1 & A.K. BISOI 2 1 WIPRO Technologies Limited, INDIA 2 School of Computer Engineering, KIIT University, INDIA Abstract: - Software estimation

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN 1743-3517

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,  ISSN 1743-3517 A Neural Network Approach to Software Project Effort Estimation C. W. Dawson School of Mathematics and Computing, University of Derby, Kedleston Road, Derby, DE22 1GB, UK Abstract One of the major problems

More information

International Journal of Software and Web Sciences (IJSWS)

International Journal of Software and Web Sciences (IJSWS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Software and Web Sciences (IJSWS)

More information

PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING

PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING PMI PMBOK & ESTIMATING 03-23-05 Christine Green, PMI PMBOK and Estimating EDS, Delivery

More information

Artificial Neural Network and Non-Linear Regression: A Comparative Study

Artificial Neural Network and Non-Linear Regression: A Comparative Study International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Artificial Neural Network and Non-Linear Regression: A Comparative Study Shraddha Srivastava 1, *, K.C.

More information

EPL603 Topics in Software Engineering

EPL603 Topics in Software Engineering Lecture 10 Technical Software Metrics Efi Papatheocharous Visiting Lecturer efi.papatheocharous@cs.ucy.ac.cy Office FST-B107, Tel. ext. 2740 EPL603 Topics in Software Engineering Topics covered Quality

More information

A Fresh Look at Cost Estimation, Process Models and Risk Analysis

A Fresh Look at Cost Estimation, Process Models and Risk Analysis A Fresh Look at Cost Estimation, Process Models and Risk Analysis Frank Padberg Fakultät für Informatik Universität Karlsruhe, Germany padberg@ira.uka.de Abstract Reliable cost estimation is indispensable

More information

Effort and Cost Allocation in Medium to Large Software Development Projects

Effort and Cost Allocation in Medium to Large Software Development Projects Effort and Cost Allocation in Medium to Large Software Development Projects KASSEM SALEH Department of Information Sciences Kuwait University KUWAIT saleh.kassem@yahoo.com Abstract: - The proper allocation

More information

A Fuzzy Decision Tree to Estimate Development Effort for Web Applications

A Fuzzy Decision Tree to Estimate Development Effort for Web Applications A Fuzzy Decision Tree to Estimate Development Effort for Web Applications Ali Idri Department of Software Engineering ENSIAS, Mohammed Vth Souissi University BP. 713, Madinat Al Irfane, Rabat, Morocco

More information

Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach

Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach 2006 ISMA Conference 1 Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach Priya Lobo CFPS Satyam Computer Services Ltd. 69, Railway Parallel Road, Kumarapark West, Bangalore 560020,

More information

INCORPORATING VITAL FACTORS IN AGILE ESTIMATION THROUGH ALGORITHMIC METHOD

INCORPORATING VITAL FACTORS IN AGILE ESTIMATION THROUGH ALGORITHMIC METHOD International Journal of Computer Science and Applications, 2009 Technomathematics Research Foundation Vol. 6, No. 1, pp. 85 97 INCORPORATING VITAL FACTORS IN AGILE ESTIMATION THROUGH ALGORITHMIC METHOD

More information

Optimal Resource Allocation for the Quality Control Process

Optimal Resource Allocation for the Quality Control Process Optimal Resource Allocation for the Quality Control Process Pankaj Jalote Department of Computer Sc. & Engg. Indian Institute of Technology Kanpur Kanpur, INDIA - 208016 jalote@cse.iitk.ac.in Bijendra

More information

Counting Infrastructure Software

Counting Infrastructure Software Counting Infrastructure Software Dr. Anthony L Rollo, SMS Ltd, Christine Green EDS Many function point counters and managers of software counts believe that only whole applications may be sized using the

More information

The software maintenance project effort estimation model based on function points

The software maintenance project effort estimation model based on function points JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71 85 (DOI: 10.1002/smr.269) Research The software maintenance project effort estimation

More information

A New Approach For Estimating Software Effort Using RBFN Network

A New Approach For Estimating Software Effort Using RBFN Network IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 008 37 A New Approach For Estimating Software Using RBFN Network Ch. Satyananda Reddy, P. Sankara Rao, KVSVN Raju,

More information

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Journal of Computer Science 2 (2): 118-123, 2006 ISSN 1549-3636 2006 Science Publications Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Alaa F. Sheta Computers

More information

Using Entity-Relationship Diagrams To Count Data Functions Ian Brown, CFPS Booz Allen Hamilton 8283 Greensboro Dr. McLean, VA 22102 USA

Using Entity-Relationship Diagrams To Count Data Functions Ian Brown, CFPS Booz Allen Hamilton 8283 Greensboro Dr. McLean, VA 22102 USA Using Entity-Relationship Diagrams To Count Data Functions Ian Brown, CFPS Booz Allen Hamilton 8283 Greensboro Dr. McLean, VA 22102 USA Contents What Is an Entity-Relationship (E-R) Diagram? E-R Vocabulary

More information

Calibrating Function Point Backfiring Conversion Ratios Using Neuro-Fuzzy Technique

Calibrating Function Point Backfiring Conversion Ratios Using Neuro-Fuzzy Technique Western University Scholarship@Western Electrical and Computer Engineering Publications Electrical and Computer Engineering 12-2008 Calibrating Function Point Backfiring Conversion Ratios Using Neuro-Fuzzy

More information

Effort Drivers in Maintenance Outsourcing - An Experiment Using Taguchi s Methodology

Effort Drivers in Maintenance Outsourcing - An Experiment Using Taguchi s Methodology Effort Drivers in Maintenance Outsourcing - An Experiment Using Taguchi s Methodology Baru S. Rao N. L. Sarda Syntel, Department of Computer Science & Unit No. 112, SDF IV Engineering, Seepz, Andheri (East),

More information

Scott Knott Test Based Effective Software Effort Estimation through a Multiple Comparison Algorithms

Scott Knott Test Based Effective Software Effort Estimation through a Multiple Comparison Algorithms Scott Knott Test Based Effective Software Effort Estimation through a Multiple Comparison Algorithms N.Padma priya 1, D.Vidyabharathi 2 PG scholar, Department of CSE, SONA College of Technology, Salem,

More information

Training Software Development Project Managers with a Software Project Simulator

Training Software Development Project Managers with a Software Project Simulator Master of Science Thesis Proposal Department of Computer Science and Engineering Arizona State University Training Software Development Project Managers with a Software Project Simulator Prepared by Derek

More information

Web Data Mining: A Case Study. Abstract. Introduction

Web Data Mining: A Case Study. Abstract. Introduction Web Data Mining: A Case Study Samia Jones Galveston College, Galveston, TX 77550 Omprakash K. Gupta Prairie View A&M, Prairie View, TX 77446 okgupta@pvamu.edu Abstract With an enormous amount of data stored

More information

Regression Using Support Vector Machines: Basic Foundations

Regression Using Support Vector Machines: Basic Foundations Regression Using Support Vector Machines: Basic Foundations Technical Report December 2004 Aly Farag and Refaat M Mohamed Computer Vision and Image Processing Laboratory Electrical and Computer Engineering

More information

The Limits of CBR in Software Project Estimation

The Limits of CBR in Software Project Estimation Presented at 1998 German Workshop on Case-Based Reasoning The Limits of CBR in Software Project Estimation Sarah Jane Delany 1, Pádraig Cunningham 2 and Wolfgang Wilke 3 1 Dublin Institute of Technology,

More information

Improving Software Project Management Skills Using a Software Project Simulator

Improving Software Project Management Skills Using a Software Project Simulator Improving Software Project Management Skills Using a Software Project Simulator Derek Merrill and James S. Collofello Department of Computer Science and Engineering Arizona State University Tempe, AZ 85287-5406

More information

SIZE & ESTIMATION OF DATA WAREHOUSE SYSTEMS

SIZE & ESTIMATION OF DATA WAREHOUSE SYSTEMS SIZE & ESTIMATION OF DATA WAREHOUSE SYSTEMS Luca Santillo (luca.santillo@gmail.com) Abstract Data Warehouse Systems are a special context for the application of functional software metrics. The use of

More information

Module 11. Software Project Planning. Version 2 CSE IIT, Kharagpur

Module 11. Software Project Planning. Version 2 CSE IIT, Kharagpur Module 11 Software Project Planning Lesson 27 Project Planning and Project Estimation Techniques Specific Instructional Objectives At the end of this lesson the student would be able to: Identify the job

More information

Software Project Management Matrics. Complied by Heng Sovannarith heng_sovannarith@yahoo.com

Software Project Management Matrics. Complied by Heng Sovannarith heng_sovannarith@yahoo.com Software Project Management Matrics Complied by Heng Sovannarith heng_sovannarith@yahoo.com Introduction Hardware is declining while software is increasing. Software Crisis: Schedule and cost estimates

More information

A Case Study Research on Software Cost Estimation Using Experts Estimates, Wideband Delphi, and Planning Poker Technique

A Case Study Research on Software Cost Estimation Using Experts Estimates, Wideband Delphi, and Planning Poker Technique , pp. 173-182 http://dx.doi.org/10.14257/ijseia.2014.8.11.16 A Case Study Research on Software Cost Estimation Using Experts Estimates, Wideband Delphi, and Planning Poker Technique Taghi Javdani Gandomani

More information

Measurement Information Model

Measurement Information Model mcgarry02.qxd 9/7/01 1:27 PM Page 13 2 Information Model This chapter describes one of the fundamental measurement concepts of Practical Software, the Information Model. The Information Model provides

More information

Pragmatic Peer Review Project Contextual Software Cost Estimation A Novel Approach

Pragmatic Peer Review Project Contextual Software Cost Estimation A Novel Approach www.ijcsi.org 692 Pragmatic Peer Review Project Contextual Software Cost Estimation A Novel Approach Manoj Kumar Panda HEAD OF THE DEPT,CE,IT & MCA NUVA COLLEGE OF ENGINEERING & TECH NAGPUR, MAHARASHTRA,INDIA

More information

Industry Environment and Concepts for Forecasting 1

Industry Environment and Concepts for Forecasting 1 Table of Contents Industry Environment and Concepts for Forecasting 1 Forecasting Methods Overview...2 Multilevel Forecasting...3 Demand Forecasting...4 Integrating Information...5 Simplifying the Forecast...6

More information

Diagnosis of Students Online Learning Portfolios

Diagnosis of Students Online Learning Portfolios Diagnosis of Students Online Learning Portfolios Chien-Ming Chen 1, Chao-Yi Li 2, Te-Yi Chan 3, Bin-Shyan Jong 4, and Tsong-Wuu Lin 5 Abstract - Online learning is different from the instruction provided

More information

Method for Estimating the Complexity of Designing Business Information Systems

Method for Estimating the Complexity of Designing Business Information Systems JIOS, VOL. 32, NO. 2 (2008) SUBMITTED 06/08; ACCEPTED 11/08 UDC 007.5:004.02 Original Scientific Paper Method for Estimating the Complexity of Designing Business Information Systems Patrizia Poš i University

More information

A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data

A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data Athanasius Zakhary, Neamat El Gayar Faculty of Computers and Information Cairo University, Giza, Egypt

More information

The Challenge of Productivity Measurement

The Challenge of Productivity Measurement Proceedings: Pacific Northwest Software Quality Conference, 2006 The Challenge of Productivity Measurement David N. Card Q-Labs, Inc dca@q-labs.com Biography- David N. Card is a fellow of Q-Labs, a subsidiary

More information

Factors Influencing Design Quality and Assurance in Software Development: An Empirical Study

Factors Influencing Design Quality and Assurance in Software Development: An Empirical Study Factors Influencing Design Quality and Assurance in Software Development: An Empirical Study Cristina Valdaliso Rutgers/NJIT University, Newark, NJ Valdaliso@earthlink.net Osama Eljabiri New Jersey Institute

More information

Towards applying Data Mining Techniques for Talent Mangement

Towards applying Data Mining Techniques for Talent Mangement 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Towards applying Data Mining Techniques for Talent Mangement Hamidah Jantan 1,

More information

Finally, Article 4, Creating the Project Plan describes how to use your insight into project cost and schedule to create a complete project plan.

Finally, Article 4, Creating the Project Plan describes how to use your insight into project cost and schedule to create a complete project plan. Project Cost Adjustments This article describes how to make adjustments to a cost estimate for environmental factors, schedule strategies and software reuse. Author: William Roetzheim Co-Founder, Cost

More information

Bootstrapping Big Data

Bootstrapping Big Data Bootstrapping Big Data Ariel Kleiner Ameet Talwalkar Purnamrita Sarkar Michael I. Jordan Computer Science Division University of California, Berkeley {akleiner, ameet, psarkar, jordan}@eecs.berkeley.edu

More information

Improving proposal evaluation process with the help of vendor performance feedback and stochastic optimal control

Improving proposal evaluation process with the help of vendor performance feedback and stochastic optimal control Improving proposal evaluation process with the help of vendor performance feedback and stochastic optimal control Sam Adhikari ABSTRACT Proposal evaluation process involves determining the best value in

More information

Investigating effort prediction of web-based applications using CBR on the ISBSG dataset

Investigating effort prediction of web-based applications using CBR on the ISBSG dataset Investigating prediction of web-based applications using CBR on the ISBSG dataset Sukumar Letchmunan Marc Roper Murray Wood Dept. Computer and Information Sciences University of Strathclyde Glasgow, U.K.

More information

Project Planning Objectives. Project Estimation. Resources. Software Project Estimation

Project Planning Objectives. Project Estimation. Resources. Software Project Estimation Project Planning Objectives Project Estimation Providing a framework that allows managers to make responsible estimates of the resources and time required to build a software product. Determining the scope

More information

Towards a Methodology to Estimate Cost of Object- Oriented Software Development Projects

Towards a Methodology to Estimate Cost of Object- Oriented Software Development Projects UDC 65.01 Towards a Methodology to Estimate Cost of Object- Oriented Software Development Projects Radoslav M. Rakovic Energoprojekt-Entel Co.Ltd., Bulevar Mihaila Pupina 12, 11070 Belgrade, Serbia and

More information

Deducing software process improvement areas from a COCOMO II-based productivity measurement

Deducing software process improvement areas from a COCOMO II-based productivity measurement Deducing software process improvement areas from a COCOMO II-based productivity measurement Lotte De Rore, Monique Snoeck, Geert Poels, Guido Dedene Abstract At the SMEF2006 conference, we presented our

More information

Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

More information

Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

More information

A Survey of Software Test Estimation Techniques

A Survey of Software Test Estimation Techniques Journal of Software Engineering and Applications, 2013, 6, 47-52 http://dx.doi.org/10.4236/jsea.2013.610a006 Published Online October 2013 (http://www.scirp.org/journal/jsea) 47 Kamala Ramasubramani Jayakumar

More information

DATA MINING, DIRTY DATA, AND COSTS (Research-in-Progress)

DATA MINING, DIRTY DATA, AND COSTS (Research-in-Progress) DATA MINING, DIRTY DATA, AND COSTS (Research-in-Progress) Leo Pipino University of Massachusetts Lowell Leo_Pipino@UML.edu David Kopcso Babson College Kopcso@Babson.edu Abstract: A series of simulations

More information

A Project Estimator Tool: for Software Estimation using Neuro-Fuzzy

A Project Estimator Tool: for Software Estimation using Neuro-Fuzzy A Project Estimator Tool: for Software Estimation using Neuro-Fuzzy Anita Verma 1,Sachin Patel 2 and Ajay Jaiswal 3 1,2 RGPV,Bhopal University, Patel College of Science and Technology, Indore(M.P.),India

More information

Algorithmic Techniques for Estimation: Function Points

Algorithmic Techniques for Estimation: Function Points Algorithmic Techniques for Estimation: Function Points Initiate Plan Execute & Monitor Close Assess Feasibility Formalize Goals Define Schedule Define Costs Monitor Goals, Cost and Schedule Collect Outputs

More information

FUNCTION POINT ESTIMATION METHODS: A COMPARATIVE OVERVIEW

FUNCTION POINT ESTIMATION METHODS: A COMPARATIVE OVERVIEW FUNCTION POINT ESTIMATION METHODS: A COMPARATIVE OVERVIEW Roberto Meli, Luca Santillo Data Processing Organization, http://web.tin.it/dpo E-Mail: roberto.meli@iol.it - luca.santillo@iol.it ABSTRACT The

More information

Performance Management for Inter-organization Information Systems Performance: Using the Balanced Scorecard and the Fuzzy Analytic Hierarchy Process

Performance Management for Inter-organization Information Systems Performance: Using the Balanced Scorecard and the Fuzzy Analytic Hierarchy Process Performance Management for Inter-organization Information Systems Performance: Using the Balanced Scorecard and the Fuzzy Analytic Hierarchy Process Y. H. Liang Department of Information Management, I-SHOU

More information

Software Architecture and Engineering Project Cost Management Peter Müller

Software Architecture and Engineering Project Cost Management Peter Müller Software Architecture and Engineering Project Cost Management Peter Müller Chair of Programming Methodology Spring Semester 2012 12. Project Cost Management Overview 2 12. Project Cost Management 12.1

More information

International Journal of Computer Trends and Technology (IJCTT) volume 4 Issue 8 August 2013

International Journal of Computer Trends and Technology (IJCTT) volume 4 Issue 8 August 2013 A Short-Term Traffic Prediction On A Distributed Network Using Multiple Regression Equation Ms.Sharmi.S 1 Research Scholar, MS University,Thirunelvelli Dr.M.Punithavalli Director, SREC,Coimbatore. Abstract:

More information

Keywords : Soft computing; Effort prediction; Neural Network; Fuzzy logic, MRE. MMRE, Prediction.

Keywords : Soft computing; Effort prediction; Neural Network; Fuzzy logic, MRE. MMRE, Prediction. Volume 3, Issue 5, May 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Neural Network and

More information