Visual Data mining SAS/SPECTRAVIEW Software

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Visual Data mining SAS/SPECTRAVIEW Software"

Transcription

1 Visual Data mining SAS/SPECTRAVIEW Software :HOFRPH Annie Postic / Bengt Bengtsson SAS Institute

2 Introduction SAS/SPECTRAVIEW software Advanced Visualization Technology! Data Mining Turning data into profits!,qwurgxfwlrq

3 Introduction Business Challenges Data Mining Solution Importance of Data Visualization Advanced Visualization Technology SAS/SPECTRAVIEW software Business Example,QWURGXFWLRQ

4 Introduction Turn large quantities of data into meaningful information Turn information into profits Gain a competitive advantage! 7KH&KDOOHQJHV

5 Business Drivers Customer Retention 10 times more expensive to acquire new customers than to keep the customers we currently have. Profiling/Segmentation What are the Traits of Our Most Profitable customers? %XVLQHVV'ULYHUV

6 Business Drivers Cross-Selling How can I sell additional products/services to customers based on what they have already purchased? Fraud Detection What are the characteristics of a fraudulent transaction? %XVLQHVV'ULYHUV

7 The SAS Solution The Data Mining Solution SAS Institute defines data mining as : «The process of selecting, exploring, and modeling large amounts of data to uncover previously unknown patterns for a business advantage» 7KH6$66ROXWLRQ

8 The SAS Solution The Data Mining Solution These data stockpiles mainly contain customer data, but the data's hidden value--the potential to predict business trends and customer behavior--has largely gone untapped. 7KH6$66ROXWLRQ

9 The Data Mining Process SEMMA Sample -extract portion of data Explore -search for patterns/trends Modify -reduce # of variables Model -analyze data Assess -determine status and repeat 'DWD0LQLQJ3URFHVV

10 The Data Mining Process SEMMA Sample -extract portion of data Explore -search for patterns/trends Modify -reduce # of variables Model -analyze data Assess -determine status and repeat 'DWD0LQLQJ3URFHVV

11 Data Exploration Data Visualization Software......is one of the most versatile tools for data mining exploration. It enables you to visually interpret complex patterns in multidimensional data. By viewing data summarized in multiple graphical forms and dimensions, you can uncover trends and spot outliers intuitively and immediately. 'DWD([SORUDWLRQ

12 Data Exploration Data Visualization Software......In the data mining process, visualization tools help you explore data before modeling--and verify the results of other data mining techniques. Visualization tools are particularly useful for detecting patterns found in only small areas of the overall data. 'DWD([SORUDWLRQ

13 Data Exploration SAS/SPECTRAVIEW software Advanced Visualization Technology Interactive Data Exploration 3D Animation and Color Coding Integrated component of the SAS System 'DWD([SORUDWLRQ

14 Data Exploration SAS/SPECTRAVIEW software Explore up to 5 variables at one time using... Cutting planes Point Clouds Volume Rendering 'DWD([SORUDWLRQ

15 Data Exploration SAS/SPECTRAVIEW 6.12 Enhancements Categorization - easy to read in data Visual Subsetting - easy to capture data 3D Probe - easy to pin-point values Navigation Tools - easy to manipulate data 'DWD([SORUDWLRQ

16 Example Health sector Business Problem High costs for lengthy hospital stays and difficulties to allocate beds Business Solution Better understand the length of stay to be able to predict the number of occuped bed ([DPSOH

17 Example The Process examine characteristics of lengthy hospital stay The Tool explore data using SAS/SPECTRAVIEW ([DPSOH

18 Example Patient Data from an Hospital Characteristics Hospital Length of Stay Country, City of residence, Age, Origin, Sex etc 90,000+ observations Modified data for confidentiality reasons ([DPSOH

19 Example Examine Data Response Variable Average Length of Stay Independent Variables Age Origin Country City of residence ([DPSOH

20 Example Color Coding - Response Variable Average Length of stay > 20 days as Yellow days as Red < 10 days as Green ([DPSOH

21 All Countries, All Ages by Origin Average Length of Stay Origin = Europe AVG Stay 95 + Age Groups 0-11 Countries

22 All Countries, All Ages by Origin Average Length of Stay Origin = Africa AVG Stay 95 + Age Groups 0-11 Countries

23 Example Narrow in on individual countries Color Coding - Response Variable Average Length of stay > 10 days as Red < 10 days as Green See if age group is a key attribute in our modeling process %XVLQHVV&DVH

24 All Origins, All Ages by Coutries Average Length of Stay

25 All Origins, All Ages by Coutries Average Length of Stay AVG Stay Origin 0-11 Age Groups 95 +

26 All Origins, All Ages by Coutries Average Length of Stay AVG Stay Origin 0-11 Age Groups 95 +

27 Findings Identify some exceptionnal long lengths for young people coming from certain countries Long lengths of stay occur at a higher age group but American people have different behaviour African people stay longer and are younger than European people whatever their living country is Very few americans living in France going to hospital No long stays for americans older than 70 years European people between 30 and 40 years old coming from France have exceptional long stays )LQGLQJV

28 Findings Standard statistical analysis < 50 years of Age => 50 years of Age France Italy N=408 Mean= 9 days N=871 Mean= 8 days N=712 Mean=12.3 days N=408 Mean=13.4 days Switzerland N=5034 N=4473 Mean= 8 days Mean=13.4 days ÖVery similar lengths )LQGLQJV

29 Conclusion Extract data to Model and continue with the Data Mining Process Handle americans separatly Use decision trees to find other determining characteristics (I.e. Medical History, Family background,...) Model the length using influent characteristic Assess these characteristics for our length forecasting process &RQFOXVLRQ

30 Further Analysis Other Visualization methods Point Clouds Isosurfaces Cutting Planes )XUWKHU$QDO\VLV

31 Further Analysis Point cloud PC sales studies By date, store and brand BRAND DATE STORE

32 Further Analysis Point cloud PC sales studies By date, store and brand BRAND DATE STORE

33 Further Analysis Volume Pollution study By longitude, latitude, level and time period

34 Further Analysis Isosurface Pollution study By longitude, latitude, level and time period

35 Conclusion Visualization of the data helps us to Better understand data Spot patterns and trends not evident in just the numbers Discover new relationships Save time analyzing your data Reveal a subset of attributes to be most productive in the modeling phase of the data mining process Intuitive tools for the business professional &RQFOXVLRQ

36 Thank you for your attention

Data Mining for Fun and Profit

Data Mining for Fun and Profit Data Mining for Fun and Profit Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. - Ian H. Witten, Data Mining: Practical Machine Learning Tools

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Exploration is a process of discovery. In the database exploration process, an analyst executes a sequence of transformations over a collection of data structures to discover useful

More information

STATISTICA. Financial Institutions. Case Study: Credit Scoring. and

STATISTICA. Financial Institutions. Case Study: Credit Scoring. and Financial Institutions and STATISTICA Case Study: Credit Scoring STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table of Contents INTRODUCTION: WHAT

More information

Get to Know the IBM SPSS Product Portfolio

Get to Know the IBM SPSS Product Portfolio IBM Software Business Analytics Product portfolio Get to Know the IBM SPSS Product Portfolio Offering integrated analytical capabilities that help organizations use data to drive improved outcomes 123

More information

SAP BusinessObjects Predictive Analysis. Transforming the Future with Insight Today

SAP BusinessObjects Predictive Analysis. Transforming the Future with Insight Today SAP BusinessObjects Predictive Analysis Transforming the Future with Insight Today What if.... You could identify hidden revenue opportunities within your customer base through predictive analytics?....

More information

Data Mining from A to Z: Better Insights, New Opportunities WHITE PAPER

Data Mining from A to Z: Better Insights, New Opportunities WHITE PAPER Data Mining from A to Z: Better Insights, New Opportunities WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 How Do Predictive Analytics and Data Mining Work?.... 2 The Data Mining Process....

More information

Predictive Claims Processing

Predictive Claims Processing Predictive s Processing Transforming the Insurance s Life Cycle Using Analytics WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Fraud Management.... 2 Recovery Optimization.... 3 Settlement

More information

PRODUCTIVITY IN FOCUS PERFORMANCE MANAGEMENT SOFTWARE FOR MAILROOM AND SCANNING OPERATIONS

PRODUCTIVITY IN FOCUS PERFORMANCE MANAGEMENT SOFTWARE FOR MAILROOM AND SCANNING OPERATIONS PRODUCTIVITY IN FOCUS PERFORMANCE MANAGEMENT SOFTWARE FOR MAILROOM AND SCANNING OPERATIONS Machine Productivity Track equipment productivity by active run time and total wall clock time. Compare machine

More information

Customer Analytics. Turn Big Data into Big Value

Customer Analytics. Turn Big Data into Big Value Turn Big Data into Big Value All Your Data Integrated in Just One Place BIRT Analytics lets you capture the value of Big Data that speeds right by most enterprises. It analyzes massive volumes of data

More information

Topic Maps Visualization

Topic Maps Visualization Topic Maps Visualization Bénédicte Le Grand, Laboratoire d'informatique de Paris 6 Introduction Topic maps provide a bridge between the domains of knowledge representation and information management. Topics

More information

Healthcare Measurement Analysis Using Data mining Techniques

Healthcare Measurement Analysis Using Data mining Techniques www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik

More information

20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns

20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns 20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns John Aogon and Patrick J. Ogao Telecommunications operators in developing countries are faced with a problem of knowing

More information

MINING YOUR DATA FOR HEALTH CARE QUALITY IMPROVEMENT

MINING YOUR DATA FOR HEALTH CARE QUALITY IMPROVEMENT MINING YOUR DATA FOR HEALTH CARE QUALITY IMPROVEMENT Greg Rogers - SAS Institute, Inc., Cary, NC. Ellen Joyner - SAS Institute, Inc., Cary, NC. ABSTRACT Quality improvement in the health care industry

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014 RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer

More information

Chapter 2 Literature Review

Chapter 2 Literature Review Chapter 2 Literature Review 2.1 Data Mining The amount of data continues to grow at an enormous rate even though the data stores are already vast. The primary challenge is how to make the database a competitive

More information

Cloud Self Service Mobile Business Intelligence MAKE INFORMED DECISIONS WITH BIG DATA ANALYTICS, CLOUD BI, & SELF SERVICE MOBILITY OPTIONS

Cloud Self Service Mobile Business Intelligence MAKE INFORMED DECISIONS WITH BIG DATA ANALYTICS, CLOUD BI, & SELF SERVICE MOBILITY OPTIONS Cloud Self Service Mobile Business Intelligence MAKE INFORMED DECISIONS WITH BIG DATA ANALYTICS, CLOUD BI, & SELF SERVICE MOBILITY OPTIONS VISUALIZE DATA, DISCOVER TRENDS, SHARE FINDINGS Analysis extracts

More information

Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics

Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics WHITEPAPER Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics Successful companies today both listen and understand what customers

More information

Text Analytics Beginner s Guide. Extracting Meaning from Unstructured Data

Text Analytics Beginner s Guide. Extracting Meaning from Unstructured Data Text Analytics Beginner s Guide Extracting Meaning from Unstructured Data Contents Text Analytics 3 Use Cases 7 Terms 9 Trends 14 Scenario 15 Resources 24 2 2013 Angoss Software Corporation. All rights

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

Data Mining Solutions for the Business Environment

Data Mining Solutions for the Business Environment Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania ruxandra_stefania.petre@yahoo.com Over

More information

BioVisualization: Enhancing Clinical Data Mining

BioVisualization: Enhancing Clinical Data Mining BioVisualization: Enhancing Clinical Data Mining Even as many clinicians struggle to give up their pen and paper charts and spreadsheets, some innovators are already shifting health care information technology

More information

Data Visualization Techniques and Practices Introduction to GIS Technology

Data Visualization Techniques and Practices Introduction to GIS Technology Data Visualization Techniques and Practices Introduction to GIS Technology Michael Greene Advanced Analytics & Modeling, Deloitte Consulting LLP March 16 th, 2010 Antitrust Notice The Casualty Actuarial

More information

Cleaned Data. Recommendations

Cleaned Data. Recommendations Call Center Data Analysis Megaputer Case Study in Text Mining Merete Hvalshagen www.megaputer.com Megaputer Intelligence, Inc. 120 West Seventh Street, Suite 10 Bloomington, IN 47404, USA +1 812-0-0110

More information

2015 Workshops for Professors

2015 Workshops for Professors SAS Education Grow with us Offered by the SAS Global Academic Program Supporting teaching, learning and research in higher education 2015 Workshops for Professors 1 Workshops for Professors As the market

More information

5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2

5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2 Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on

More information

Big Data: Rethinking Text Visualization

Big Data: Rethinking Text Visualization Big Data: Rethinking Text Visualization Dr. Anton Heijs anton.heijs@treparel.com Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important

More information

Introduction. A. Bellaachia Page: 1

Introduction. A. Bellaachia Page: 1 Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.

More information

Use of Data Mining in Banking

Use of Data Mining in Banking Use of Data Mining in Banking Kazi Imran Moin*, Dr. Qazi Baseer Ahmed** *(Department of Computer Science, College of Computer Science & Information Technology, Latur, (M.S), India ** (Department of Commerce

More information

IBM Cognos Insight. Independently explore, visualize, model and share insights without IT assistance. Highlights. IBM Software Business Analytics

IBM Cognos Insight. Independently explore, visualize, model and share insights without IT assistance. Highlights. IBM Software Business Analytics Independently explore, visualize, model and share insights without IT assistance Highlights Explore, analyze, visualize and share your insights independently, without relying on IT for assistance. Work

More information

Data Mining Applications in Higher Education

Data Mining Applications in Higher Education Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2

More information

KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES

KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within

More information

The Case for a New CRM Solution

The Case for a New CRM Solution The Case for a New CRM Solution Customer Relationship Management software has gone well beyond being a good to have capability. Senior management is now generally quite clear that this genre of software

More information

PolyLens: Software for Map-based Visualization and Analysis of Genome-scale Polymorphism Data

PolyLens: Software for Map-based Visualization and Analysis of Genome-scale Polymorphism Data PolyLens: Software for Map-based Visualization and Analysis of Genome-scale Polymorphism Data Ryhan Pathan Department of Electrical Engineering and Computer Science University of Tennessee Knoxville Knoxville,

More information

SCALABLE SYSTEMS LIFE SCIENCE & HEALTHCARE PRACTICES

SCALABLE SYSTEMS LIFE SCIENCE & HEALTHCARE PRACTICES SCALABLE SYSTEMS LIFE SCIENCE & HEALTHCARE PRACTICES Improve Your DNA Data, Numbers & Analytics IntelliPayer Scalable Systems IntelliPayer solution is a next generation healthcare payer solution framework

More information

A fast, powerful data mining workbench designed for small to midsize organizations

A fast, powerful data mining workbench designed for small to midsize organizations FACT SHEET SAS Desktop Data Mining for Midsize Business A fast, powerful data mining workbench designed for small to midsize organizations What does SAS Desktop Data Mining for Midsize Business do? Business

More information

Marketing Advanced Analytics. Predicting customer churn. Whitepaper

Marketing Advanced Analytics. Predicting customer churn. Whitepaper Marketing Advanced Analytics Predicting customer churn Whitepaper Churn prediction The challenge of predicting customers churn It is between five and fifteen times more expensive for a company to gain

More information

DATA MINING TECHNIQUES AND APPLICATIONS

DATA MINING TECHNIQUES AND APPLICATIONS DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,

More information

Foundations of Business Intelligence: Databases and Information Management

Foundations of Business Intelligence: Databases and Information Management Foundations of Business Intelligence: Databases and Information Management Content Problems of managing data resources in a traditional file environment Capabilities and value of a database management

More information

Navigating Big Data business analytics

Navigating Big Data business analytics mwd a d v i s o r s Navigating Big Data business analytics Helena Schwenk A special report prepared for Actuate May 2013 This report is the third in a series and focuses principally on explaining what

More information

Business Intelligence Data Detectives. The Truth is in There

Business Intelligence Data Detectives. The Truth is in There Business Intelligence Data Detectives The Truth is in There Welcome Jason Hernandez Director, Information Management Y&L Consulting, Inc. @jasonuhernandez Clint Campbell Solutions Architect Y&L Consulting,

More information

Business intelligence for business users

Business intelligence for business users IBM Software Business Analytics Business intelligence Business intelligence for business users 2 R and SPSS software: Everyone wins Contents 2 Overview 3 Business users are faced with a number of analytics

More information

Business Intelligence for Healthcare Benefits

Business Intelligence for Healthcare Benefits Business Intelligence for Healthcare Benefits A whitepaper with technical details on the value of using advanced data analytics to reduce the cost of healthcare benefits for self-insured companies. Business

More information

Winning with an Intuitive Business Intelligence Solution for Midsize Companies

Winning with an Intuitive Business Intelligence Solution for Midsize Companies SAP Product Brief SAP s for Small Businesses and Midsize Companies SAP BusinessObjects Business Intelligence, Edge Edition Objectives Winning with an Intuitive Business Intelligence for Midsize Companies

More information

The Quality Data Warehouse: Solving Problems for the Enterprise

The Quality Data Warehouse: Solving Problems for the Enterprise The Quality Data Warehouse: Solving Problems for the Enterprise Bradley W. Klenz, SAS Institute Inc., Cary NC Donna O. Fulenwider, SAS Institute Inc., Cary NC ABSTRACT Enterprise quality improvement is

More information

Course 103402 MIS. Foundations of Business Intelligence

Course 103402 MIS. Foundations of Business Intelligence Oman College of Management and Technology Course 103402 MIS Topic 5 Foundations of Business Intelligence CS/MIS Department Organizing Data in a Traditional File Environment File organization concepts Database:

More information

WebFOCUS InfoDiscovery

WebFOCUS InfoDiscovery Information Builders helps organizations transform data into business value. Our business intelligence, integration, and data integrity solutions enable smarter decision-making, strengthen customer relationships,

More information

Better planning and forecasting with IBM Predictive Analytics

Better planning and forecasting with IBM Predictive Analytics IBM Software Business Analytics SPSS Predictive Analytics Better planning and forecasting with IBM Predictive Analytics Using IBM Cognos TM1 with IBM SPSS Predictive Analytics to build better plans and

More information

Analytics: The real-world use of big data

Analytics: The real-world use of big data Findings from the research collaboration of IBM Institute for Business Value and Saïd Business School, University of Oxford Analytics: The real-world use of big data How innovative enterprises extract

More information

Confidently Anticipate and Drive Better Business Outcomes

Confidently Anticipate and Drive Better Business Outcomes SAP Brief Analytics s from SAP SAP Predictive Analytics Objectives Confidently Anticipate and Drive Better Business Outcomes See the future more clearly with predictive analytics See the future more clearly

More information

OFFLINE NETWORK INTRUSION DETECTION: MINING TCPDUMP DATA TO IDENTIFY SUSPICIOUS ACTIVITY KRISTIN R. NAUTA AND FRANK LIEBLE.

OFFLINE NETWORK INTRUSION DETECTION: MINING TCPDUMP DATA TO IDENTIFY SUSPICIOUS ACTIVITY KRISTIN R. NAUTA AND FRANK LIEBLE. OFFLINE NETWORK INTRUSION DETECTION: MINING TCPDUMP DATA TO IDENTIFY SUSPICIOUS ACTIVITY KRISTIN R. NAUTA AND FRANK LIEBLE Abstract With the boom in electronic commerce and the increasing global interconnectedness

More information

Overview Applications of Data Mining In Health Care: The Case Study of Arusha Region

Overview Applications of Data Mining In Health Care: The Case Study of Arusha Region International Journal of Computational Engineering Research Vol, 03 Issue, 8 Overview Applications of Data Mining In Health Care: The Case Study of Arusha Region 1, Salim Diwani, 2, Suzan Mishol, 3, Daniel

More information

Data Mining 5. Cluster Analysis

Data Mining 5. Cluster Analysis Data Mining 5. Cluster Analysis 5.2 Fall 2009 Instructor: Dr. Masoud Yaghini Outline Data Structures Interval-Valued (Numeric) Variables Binary Variables Categorical Variables Ordinal Variables Variables

More information

Discovering, Not Finding. Practical Data Mining for Practitioners: Level II. Advanced Data Mining for Researchers : Level III

Discovering, Not Finding. Practical Data Mining for Practitioners: Level II. Advanced Data Mining for Researchers : Level III www.cognitro.com/training Predicitve DATA EMPOWERING DECISIONS Data Mining & Predicitve Training (DMPA) is a set of multi-level intensive courses and workshops developed by Cognitro team. it is designed

More information

Manage student performance in real time

Manage student performance in real time Manage student performance in real time Predict better academic outcomes with IBM Predictive Analytics for Student Performance Highlights Primary and secondary school districts nationwide are looking for

More information

CUSTOMER Presentation of SAP Predictive Analytics

CUSTOMER Presentation of SAP Predictive Analytics SAP Predictive Analytics 2.0 2015-02-09 CUSTOMER Presentation of SAP Predictive Analytics Content 1 SAP Predictive Analytics Overview....3 2 Deployment Configurations....4 3 SAP Predictive Analytics Desktop

More information

Data Mart/Warehouse: Progress and Vision

Data Mart/Warehouse: Progress and Vision Data Mart/Warehouse: Progress and Vision Institutional Research and Planning University Information Systems What is data warehousing? A data warehouse: is a single place that contains complete, accurate

More information

Using Data Mining to Detect Insurance Fraud

Using Data Mining to Detect Insurance Fraud IBM SPSS Modeler Using Data Mining to Detect Insurance Fraud Improve accuracy and minimize loss Highlights: combines powerful analytical techniques with existing fraud detection and prevention efforts

More information

Statistics 215b 11/20/03 D.R. Brillinger. A field in search of a definition a vague concept

Statistics 215b 11/20/03 D.R. Brillinger. A field in search of a definition a vague concept Statistics 215b 11/20/03 D.R. Brillinger Data mining A field in search of a definition a vague concept D. Hand, H. Mannila and P. Smyth (2001). Principles of Data Mining. MIT Press, Cambridge. Some definitions/descriptions

More information

3D Data Visualization / Casey Reas

3D Data Visualization / Casey Reas 3D Data Visualization / Casey Reas Large scale data visualization offers the ability to see many data points at once. By providing more of the raw data for the viewer to consume, visualization hopes to

More information

A Tool for Exploratory Visualization of Bus Mobility and Ridership: A case study of Lisbon, Portugal

A Tool for Exploratory Visualization of Bus Mobility and Ridership: A case study of Lisbon, Portugal A Tool for Exploratory Visualization of Bus Mobility and Ridership: A case study of Lisbon, Portugal Chalermpong Somdulyawat chalermpong_s@cmu.ac.th Piyawat Pongjitpak piyawat_p@cmu.ac.th Santi Phithakkitnukoon

More information

Using Analytics to detect and prevent Healthcare fraud. Copyright 2010 SAS Institute Inc. All rights reserved.

Using Analytics to detect and prevent Healthcare fraud. Copyright 2010 SAS Institute Inc. All rights reserved. Using Analytics to detect and prevent Healthcare fraud Copyright 2010 SAS Institute Inc. All rights reserved. Agenda Introductions International Fraud Trends Overview of the use of Analytics in Healthcare

More information

NICE MULTI-CHANNEL INTERACTION ANALYTICS

NICE MULTI-CHANNEL INTERACTION ANALYTICS NICE MULTI-CHANNEL INTERACTION ANALYTICS Revealing Customer Intent in Contact Center Communications CUSTOMER INTERACTIONS: The LIVE Voice of the Customer Every day, customer service departments handle

More information

IT Service Level Management 2.1 User s Guide SAS

IT Service Level Management 2.1 User s Guide SAS IT Service Level Management 2.1 User s Guide SAS The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006. SAS IT Service Level Management 2.1: User s Guide. Cary, NC:

More information

Telecom: Effective Customer Marketing

Telecom: Effective Customer Marketing Telecom: Effective Customer Marketing 80 percent of the telecommunications services companies listed on the S&P 500 use SPSS technology Telecommunications companies face increasing competition for customers,

More information

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents:

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents: Table of contents: Access Data for Analysis Data file types Format assumptions Data from Excel Information links Add multiple data tables Create & Interpret Visualizations Table Pie Chart Cross Table Treemap

More information

Why are Organizations Interested?

Why are Organizations Interested? SAS Text Analytics Mary-Elizabeth ( M-E ) Eddlestone SAS Customer Loyalty M-E.Eddlestone@sas.com +1 (607) 256-7929 Why are Organizations Interested? Text Analytics 2009: User Perspectives on Solutions

More information

Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland

Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data

More information

Use Data Mining Techniques to Assist Institutions in Achieving Enrollment Goals: A Case Study

Use Data Mining Techniques to Assist Institutions in Achieving Enrollment Goals: A Case Study Use Data Mining Techniques to Assist Institutions in Achieving Enrollment Goals: A Case Study Tongshan Chang The University of California Office of the President CAIR Conference in Pasadena 11/13/2008

More information

REAL-TIME & HISTORICAL FEATURES OF THE BLUEARGUS SOFTWARE SUITE

REAL-TIME & HISTORICAL FEATURES OF THE BLUEARGUS SOFTWARE SUITE REAL-TIME & HISTORICAL FEATURES OF THE BLUEARGUS SOFTWARE SUITE DATA DRIVEN Optimized for travel-time data and dashboardbased visualization, BlueARGUS is the most comprehensive database manipulation software

More information

CONTEMPORARY DECISION SUPPORT AND KNOWLEDGE MANAGEMENT TECHNOLOGIES

CONTEMPORARY DECISION SUPPORT AND KNOWLEDGE MANAGEMENT TECHNOLOGIES I International Symposium Engineering Management And Competitiveness 2011 (EMC2011) June 24-25, 2011, Zrenjanin, Serbia CONTEMPORARY DECISION SUPPORT AND KNOWLEDGE MANAGEMENT TECHNOLOGIES Slavoljub Milovanovic

More information

Foundations of Business Intelligence: Databases and Information Management

Foundations of Business Intelligence: Databases and Information Management Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 Copyright 2011 Pearson Education, Inc. Student Learning Objectives How does a relational database organize data,

More information

Business Analytics C_12 / 16.12.2014

Business Analytics C_12 / 16.12.2014 C_12 / 16.12.2014 Business Analytics Analytics = science of analysis analysis of data: methods and software tools. Business analytics = applications and techniques for gathering, storing, analyzing and

More information

Developing Business Intelligence and Data Visualization Applications with Web Maps

Developing Business Intelligence and Data Visualization Applications with Web Maps Developing Business Intelligence and Data Visualization Applications with Web Maps Introduction Business Intelligence (BI) means different things to different organizations and users. BI often refers to

More information

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing

More information

UNLEASH THE POWER OF YOUR DATA

UNLEASH THE POWER OF YOUR DATA BANKING 3.0 UNLEASH THE POWER OF YOUR DATA BUSINESS INTELLIGENCE ANALYTICS CDW FINANCIAL SERVICES 66% of banking and capital markets executives have changed the way they approach big decision-making as

More information

Adobe Insight, powered by Omniture

Adobe Insight, powered by Omniture Adobe Insight, powered by Omniture Accelerating government intelligence to the speed of thought 1 Challenges that analysts face 2 Analysis tools and functionality 3 Adobe Insight 4 Summary Never before

More information

4 steps for improving healthcare productivity. Using data visualization

4 steps for improving healthcare productivity. Using data visualization steps for improving healthcare productivity Using data visualization p Introduction In our real-world example hospital, it s the job of the Chief Nursing Executive (CNE) to manage overall patient care

More information

Technology-Driven Demand and e- Customer Relationship Management e-crm

Technology-Driven Demand and e- Customer Relationship Management e-crm E-Banking and Payment System Technology-Driven Demand and e- Customer Relationship Management e-crm Sittikorn Direksoonthorn Assumption University 1/2004 E-Banking and Payment System Quick Win Agenda Data

More information

Chapter 6 - Enhancing Business Intelligence Using Information Systems

Chapter 6 - Enhancing Business Intelligence Using Information Systems Chapter 6 - Enhancing Business Intelligence Using Information Systems Managers need high-quality and timely information to support decision making Copyright 2014 Pearson Education, Inc. 1 Chapter 6 Learning

More information

BI forward: A full view of your business

BI forward: A full view of your business IBM Software Business Analytics Business Intelligence BI forward: A full view of your business 2 BI forward: A full view of your business Contents 2 Introduction 3 BI for today and the future 4 Predictive

More information

1 Log visualization at CNES (Part II)

1 Log visualization at CNES (Part II) 1 Log visualization at CNES (Part II) 1.1 Background For almost 2 years now, CNES has set up a team dedicated to "log analysis". Its role is multiple: This team is responsible for analyzing the logs after

More information

Effective Visualization Techniques for Data Discovery and Analysis

Effective Visualization Techniques for Data Discovery and Analysis WHITE PAPER Effective Visualization Techniques for Data Discovery and Analysis Chuck Pirrello, SAS Institute, Cary, NC Table of Contents Abstract... 1 Introduction... 1 Visual Analytics... 1 Static Graphs...

More information

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM Thanh-Nghi Do College of Information Technology, Cantho University 1 Ly Tu Trong Street, Ninh Kieu District Cantho City, Vietnam

More information

Visualization methods for patent data

Visualization methods for patent data Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes

More information

The US Bridge Portal -Visualization Analytics Applications for the National Bridge Inventory (NBI) Database

The US Bridge Portal -Visualization Analytics Applications for the National Bridge Inventory (NBI) Database The US Bridge Portal -Visualization Analytics Applications for the National Bridge Inventory (NBI) Database Matija Radovic #1, Dr. Offei Adarkwa #2 1 Civil and Environmental Engineering Department, University

More information

BROWSING LARGE ONLINE DATA WITH QUERY PREVIEWS

BROWSING LARGE ONLINE DATA WITH QUERY PREVIEWS BROWSING LARGE ONLINE DATA WITH QUERY PREVIEWS Egemen Tanin * egemen@cs.umd.edu Catherine Plaisant plaisant@cs.umd.edu Ben Shneiderman * ben@cs.umd.edu Human-Computer Interaction Laboratory and Department

More information

Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives

Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives Describe how the problems of managing data resources in a traditional file environment are solved

More information

Maximising value through business insight. Business Intelligence White Paper

Maximising value through business insight. Business Intelligence White Paper Maximising value through business insight Business Intelligence White Paper October 2015 CONTENTS Reports were tedious. Earlier it would take days for manual collation. Now all this is available at the

More information

Data Mining for Successful Healthcare Organizations

Data Mining for Successful Healthcare Organizations Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge

More information

USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS

USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS Koua, E.L. International Institute for Geo-Information Science and Earth Observation (ITC).

More information

Microsoft Dynamics NAV

Microsoft Dynamics NAV Microsoft Dynamics NAV 2015 Microsoft Dynamics NAV Maximising value through business insight Business Intelligence White Paper December 2014 CONTENTS Reports were tedious. Earlier it would take days for

More information

Data Visualization. White Paper

Data Visualization. White Paper 2 White Paper written by Interactive, multidimensional, and animated data-representation tools can help improve business processes and the bottom line. David Adams Accenture David Adams is a senior manager

More information

Session 10 : E-business models, Big Data, Data Mining, Cloud Computing

Session 10 : E-business models, Big Data, Data Mining, Cloud Computing INFORMATION STRATEGY Session 10 : E-business models, Big Data, Data Mining, Cloud Computing Tharaka Tennekoon B.Sc (Hons) Computing, MBA (PIM - USJ) POST GRADUATE DIPLOMA IN BUSINESS AND FINANCE 2014 Internet

More information

Visualization of Multidimensional Data Using Modifications of the Grand Tour

Visualization of Multidimensional Data Using Modifications of the Grand Tour Visualization of Multidimensional Data Using Modifications of the Grand Tour Moon Yul Huh and Kiyeol Kim Abstract Current implementations of Asimov s Grand Tour (for example in XLISP-STAT by Tierney, 1990,

More information

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers 60 Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative

More information

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

More information

Achieve Better Insight and Prediction with Data Mining

Achieve Better Insight and Prediction with Data Mining Clementine 11.1 Specifications Achieve Better Insight and Prediction with Data Mining Data mining provides organizations with a clearer view of current conditions and deeper insight into future events.

More information

KnowledgeSEEKER POWERFUL SEGMENTATION, STRATEGY DESIGN AND VISUALIZATION SOFTWARE

KnowledgeSEEKER POWERFUL SEGMENTATION, STRATEGY DESIGN AND VISUALIZATION SOFTWARE POWERFUL SEGMENTATION, STRATEGY DESIGN AND VISUALIZATION SOFTWARE Most Effective Modeling Application Designed to Address Business Challenges Applying a predictive strategy to reach a desired business

More information

Foundations of Business Intelligence: Databases and Information Management

Foundations of Business Intelligence: Databases and Information Management Chapter 6 Foundations of Business Intelligence: Databases and Information Management 6.1 2010 by Prentice Hall LEARNING OBJECTIVES Describe how the problems of managing data resources in a traditional

More information

Database Marketing, Business Intelligence and Knowledge Discovery

Database Marketing, Business Intelligence and Knowledge Discovery Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski

More information