# Midterm 1 Practice Problems

Size: px
Start display at page:

Transcription

1 Midterm 1 Practice Problems 1. Calculate the present value of each cashflow using a discount rate of 7%. Which do you most prefer most? Show and explain all supporting calculations! Cashflow A: receive \$60 today and then receive \$60 in four years. Cashflow B: receive \$12 every year, forever, starting today. Cashflow C: pay \$50 every year for five years, with the first payment being next year, and then subsequently receive \$30 every year for 20 years. Cashflow D: receive \$9 every other year, forever, with the first payment being next year. 2. Consider a project costing \$1m each year from year 1 to year T. Then starting in year T+1, the project will generate a profit of \$700k each year, forever. a) Write a formula for the present value of this project with a discount rate of r. b) Write a formula in terms of r for the value of T at which you break even (ignoring the issue of whether T is an integer). 3. Suppose you had \$10,000 to invest for one year. You are deciding between a savings account with a 2% annual interest rate compounded daily (alternative A) and one with a 2% annual interest rate compounded monthly (alternative B). You are about to invest in the alternative A, but then you realize that since that bank is in downtown Chicago, you ll need to spend an extra \$1 for parking when opening the account. Alternative B does not have this cost (it s a bank in Evanston). Should you change your decision or stick with alternative A? Show and explain all supporting calculations! 4. What is the effective annual interest rate in each situation? a. A savings account with 4% annual interest rate compounded daily (assume a year consists of 365 days)? b. A savings account with 4% annual interest rate compounded monthly? 5. Consider the following cashflow stream and a bank account paying 3% annual interest. What is the present value? Is the account value ever negative? Year Cashflow Which of the following cashflows do you most prefer using a discount rate of 10%? Using a discount rate of 1%? Show and explain all supporting calculations! Cashflow A: receive \$10 every year, forever, with the first payment next year Cashflow B: receive \$19 every other year, forever, with the first payment being next year

2 Cashflow C: pay \$5 every year for 20 years, with the first payment being today, and then subsequently receive \$30 every year for 20 years. Cashflow D: receive \$70 today and then receive \$50 in five years. 7. Irene Engels recently graduated with an MBA. In August 2007, she borrowed \$50,000, and she borrowed another \$50,000 in August Her student loan has an annual interest rate of 2% compounded monthly. Irene doesn t make any payments on her student debt until she starts a lucrative Wall St. job. Then starting in September 2009 she makes a payment of \$1000 every month. Now bonus time is coming near. For January 2010 she plans to make another \$1000 payment (her 5 th ) and also apply her bonus to the debt. How big must her bonus be so that she will have completely paid-off the debt at the end of this January? 8. You are analyzing the value of the company Twitter using a 15% discount rate. You expect its cashflows over the next 4 years to be as shown below and you estimate its NPV as \$1B. Explain. Year Cashflow 0-20M 1-10M M 4 40M 9. A bank offers a savings account with a 3% annual interest rate, compounded monthly. 9.1 What is the effective annual interest rate? 9.2 Stu wants to open a savings account and make one deposit now that will enable him to withdraw \$700 to go on vacation 5 months from now and \$2000 for a deposit on a rental apartment when he starts working in 20 months from now. How much money does Stu need to deposit now? 10. If the discount rate is 12%, what is the present value of receiving \$1000 per year at the end of each of the next 8 years? 11. Using a discount rate of 5%, what is the net present value of the following cashflow stream? Year Cashflow You bought a \$200k condo. You got a 15-year fixed-rate mortgage and made a 20% down payment.

3 a) What is your monthly payment? b) Would the monthly payment be bigger or smaller with a 30-year mortgage at the same interest rate? 13. Consider the following cashflow stream and a bank account paying 10% annual interest. Today the account has \$9. Year Cashflow What is the largest amount ever in the account? 14. Calculate the PV of the following cashflows using a 7% discount rate. a) 30 payments of 100 starting 5 years from today b) you pay 10/yr for 3 years with the first payment being today, and then starting a year from today you will receive \$6/yr for 6 years. 15. Suppose that a construction project costs \$10m (in present value) if you start it today. What are the savings (in present value) of delaying it by 3 years. Assume a 10% discount rate and that the price remains the same. 16. A 1% monthly rate of return is equivalent to what annual rate (compounded yearly)? 17. You ve taken out a 30-year mortgage for 120k with a 4.2% rate. a) What s your minimum monthly payment? b) You ve paid \$700/mo for one and a half years. You re now trying to refinance. What s the principal remaining on your mortgage? 18. You and two friends are considering buying a house in Chicagoland to live here together after you graduate. You can get a 15-year fixed-rate mortgage with a mortgage rate of 5% if you make a 20% down payment on the house. You will split the monthly mortgage payment equally among the three of you. Each of the three of you can afford to contribute up to \$1,000 per month towards the mortgage payment. You each have \$10,000 available towards the down payment. How expensive a house can you afford to buy? 19. For all the parts to this problem, let the annual discount rate be 5%. a) Find the present value of the following cashflow: receive \$10 every year for 30 years with the first payment being 10 years from now. b) Find the present value of the following cashflow: receive \$10m now and the same amount a year from today and pay \$3m a year forever with the first payment being a year from today. c) Consider the following two cashflows. For cashflow A, you receive \$10 every year for 5 years with the first payment being today. For cashflow B, you receive x

4 dollars every year forever with the first payment being today. What is the value of x in order for cashflow B to have the same present value as cashflow A? 20. Today, you re in charge of the nation s finances. Suppose that projected 2015 shortfall is \$418 billion and projected 2030 shortfall is \$1,345 billion. In present value terms, how large is the difference of the two budget shortfalls? Assume a 3% discount rate. 21. Suppose that you borrowed \$20k for 36 months to buy a car last year at an annual interest rate of 5% compounded monthly. a) What is the amount of monthly payment? b) Calculate the effective annual interest rate for both the car loan and for a rate of 6% compounded quarterly. Which is larger? c) You made monthly payments for the last 12 months. But you still have to make 24 more payments. What is the present value of the remaining payments? 22. Suppose that you consider some mortgage options. The price of home is \$200k. Calculate your monthly payments for each option: - Option A: 20% down payment at 15-year fixed annual rate of 4% - Option B: 15% down payment at 30-year fixed annual rate of 4.5% - Option C: 10% down payment at 30-year fixed annual rate of 6% 23. Suppose that an account has \$6m now. The money is invested and obtains a return of 2%. Your business projections are that in year one you take out \$2m, in year two you take out \$0.7m, in year three you add \$1m to the account, and in year four you add \$4m to the account. Calculate the amount of money in the account a year from now, two years from now, three years from now, and four years from now. 24. Consider a 30-year mortgage with a 5% interest rate and a 20% down payment. If you can afford a \$1000 monthly payment, how expensive a house can you buy? 25. Suppose you decide to buy a \$200,000 condo. You make a 10% down payment and take out a 30-year fixed-rate mortgage at 6%. a) What is your monthly payment? b) Suppose in three years the rate for a 15-year fixed rate mortgage is 5%. What would your new monthly payment be if you decided to refinance then? 26. For all the parts to this problem, let the annual discount rate be 3%. a) Find the present value of the following cashflow: receive \$13,240 every year for 20 years with the first payment being 45 years from now. b) Consider the following cashflow: receive x dollars now and the same amount in a year from today, and pay \$300k a year forever with the first payment being a year from today. What is the value of x in order for the present value of the cash flow to be 0?

5 27. Consider a stimulus program that intends to spend \$300 billion every year, for three years. Assuming a 3% discount rate, a) what is the present value of the program? b) how much would the present value increase if the \$300 billion were spent at the beginning of each year rather than at the end? 28. You are running a small business. At the beginning of the month you have \$1000. At the end of the first week you have revenues of \$2200 and expenses of \$1000 for that week. In the second week your revenues are \$2000 and your expenses are \$700. In the third week your revenues are \$2100 and your expenses are \$1100. In the fourth week, your revenues are \$2200 and your expenses are \$3000 (they are higher as you need to pay the rent). You have a checking account earning 1% annually compounded weekly. a) How much money do you have at the end of the four weeks? b) What is the minimum balance of the account over those four weeks? Does it ever drop below \$1000? 29. What is the effective annual interest rate of a) a car loan with a 5% annual interest rate compounded monthly? b) a credit card with a 24.7% annual interest rate compounded monthly? 30. The price of home is \$250k. Calculate your monthly payment if you get a mortgage with a 20% down payment at 15-year fixed annual rate of 3%. 31. Five years ago you bought a home and took out a 30 year mortgage for 150k at 6%. Suppose you ve made monthly payments of \$1200. (This may be higher than the minimum monthly payment.) a) What is the remaining principal today? b) What is the monthly payment if you would refinance the mortgage with a new 15-year mortgage at 3%? 32. Consider a 30-year mortgage with a 5% interest rate and a 20% down payment. If you can afford a \$1000 monthly payment, how expensive a house can you buy? How large is the down payment? Solutions 1. PV of A = 60+60*1.07^-4 = \$ PV of B = 12+12/0.07= \$ PV of C = -50/0.07*(1-1.07^-5)+30/0.07*(1-1.07^-20)*1.07^-5 = \$21.59

6 PV of D = 9/(1.07^2-1)*1.07 = \$66.46 The PV of cashflow B is largest and thus most preferred. 2. PV=\$-1m*(1-(1+r) -T )/r + \$700k*(1+r) -T /r PV=0 implies (\$700k+\$1m)(1+r) -T = \$1m so T = log 1.7 / log (1+r) 3. FV of alternative A: \$9999*(1+0.02/365)^365=\$10, FV of alternative B: 10,000*(1+0.02/12)^12=\$10, Since the FV of B is greater than the FV of A, you should change your decision and go with alternative B. 4a. (1+0.04/365)^365-1= = 4.08% 4b. (1+0.04/12)^12-1= = 4.07% 5. Present value equals 8+2*1.03^-1 + 4*1.03^-2 15*1.03^ *1.03^-4 = If the account value is ever negative, then it will be at the end of year 3. The present value up cashflows through year 3 is 8+2*1.03^-1 + 4*1.03^-2 15*1.03^-3= Since this is negative, the account will be negative at the end of year The present value of cashflow A is 10/r, or 100 when r= 10% and 1000 when r=1%. The two period interest rate is s=(1+r)^2-1, or 21% when r=10% and 2.01% when r=1%. The present value of cashflow B is (1+r)*19/s where the 1+r factor accounts for the fact that the first payment is in one year (half of a two year period). Thus the present value is when r=10% and 955 when r=1%. The present value of cashflow C is -5-5/r*(1- (1+r)^-19)+(1+r)^-19*(30/r*(1-(1+r)^-20), or when r=10% and 357 when r=1%. The present value of cashflow D is 70+50*(1+r)^-5, or 101 when r=10% and 118 when r=1%. Thus when r=10% then cashflow D is preferred and when r=1% then cashflow A is preferred. 7. Let r=0.02/12 be the monthly interest rate. The future value of the debt at the end of August 2009 is 50000*(1+r)^ *(1+r)^12 = 103,048. The present value at the end of August 2009 of the future payments is 1000/r*(1-(1+r)^-5) = Thus the value of the debt at the end of August 2009 is 103, =98,073. Thus the future value of the debt at the end of January 2010 is 98,073*(1+r)^5=\$98,893. A bonus this big would allow her to pay off the debt. 8. Clearly the present value of the cashflows over the next 4 years is less than \$1B. So to have a present value of \$1B the cashflows after year 4 must be pretty big. Another way of saying the same thing is that the value of Twitter, X, at the end of year 4 must be quite high. We can actually calculate X. The future value X at year 4 is X=(1B-20M)*1.15^4 10M*1.15^3+12M*1.15^1+40M = 1.753B. 9.1 Answer: Since the annual interest rate a = 3%, compounded in m =12 periods, then the effective annual interest rate i is

7 (1 + a /m) m -1 = (1 + 3% /12) 12-1 = 3.04%. 9.2 Answer: For future value y1 = \$700 received in n1 = 5 months later, the present value is y1 *(1 + a/n1) n1 = 700 *(1 + 3%/12) -5 = For future value y2 = \$2000 received in n2 = 20 months later, the present value is y2 *(1 + a/n2) n2 = 2000 *(1 + 3%/12) -20 = Thus the money Stu needs to deposit now is = Answer: PV=1000 * (1/0.12) * (1 1/(1.12^8)) = \$ Answer: NPV = (1.05) (1.05) (1.05) (1.05) -5 = a. principal = 80% 200k = 160k. Payment = 160k r/(1-(1+r)^-180). Here r is the monthly interest rate, the annual rate divided by b. smaller a b m % 17a b. 114, The maximum monthly payment is \$3000. Suppose you pay 180 months to pay off the debt. PV = A[1-1/(1+r)^n]/r = \$379, This is the maximum principal you can pay. So the total cost of the house is \$379,365.73/(1-0.2) = \$ and the down payment is \$ * 20% = \$94, > \$30,000. So the most expensive house you can afford is \$30,000 / 20% = \$150, a. 10/.05*(1-(1.05)^-30)/1.05^9 = \$ b. 10m+10m/1.05-3m/.05 = -\$40.48m

8 19c /.05*(1-1.05^-4)=x+x/.05 => x = \$ b/1.03^4-1345b/1.03^19 = \$396 billion 21a. 20k*0.05/12/(1-(1+0.05/12)^-36) = \$ b. for car loan: (1+.05/12)^12 1 = 5.12% For 6% compounded quarterly: (1+.06/4)^4 1 = 6.14% 21c /(.05/12)*(1-(1+.05/12)^-24)/(1+.05/12)^12 = \$12,998 (or \$13,663 for PV at year 12) 22. Option A: *.04/12/(1-(1+.04/12)^-180) = \$ Option B: *.045/12/(1-(1+.045/12)^-360) = \$ Option C: *.06/12/(1-(1+0.06/12)^-360) = \$ Just after the interest payment and before the external transaction Year 1 \$6.12m Year 2 \$4.2024m Year 3 \$3.5724m Year 4 \$4.6639m Just after the external transaction Year 1 \$4.12m Year 2 \$3.5024m Year 3 \$4.5724m Year 4 \$8.6639m = x*0.05/12/(1-(1+.05/12)^-360) => x = You can afford at most x/0.8 = \$232,850 25a. =PMT(0.06/12,12*30, *0.9)=\$1, b. outstanding \$172, mo payment \$1, a) A: 1.03^-44 * PV(3%,20,-13240)= \$53, b) A: x+x*1.03^-1 = \$300k/0.03. So, x=300k/0.03 / ( ^-1) = \$5,073, a) A: PV(3%,3,-300b)= \$848.58b b) A: PV(3%,2,-300b)+300b=\$874.04b. Difference to part a is \$25.46b 28. A: Week 0: Week 1: (week 0)*(1+1%/52) = \$2, Week 2: (week 1)*(1+1%/52) = \$3, Week 3: (week 2)*(1+1%/52) = \$4, Week 4: (week 3)*(1+1%/52) = \$3,702.15

9 a) A: \$ b) A: no. 29. a) A: (1+5%/12)^12-1 = 5.12% b) A: (1+24.7%/12)^12-1 = 27.70% 30. A: PMT(3%/12,15*12,-250k*0.8) = \$1, a) A: (150k PV(6%/12,5*12,-1200)) * (1+6%/12)^(5*12) = \$118, b) A: PMT(3%/12,15*12, ) = \$ A: PV(5%/12,30*12,-1000)/0.8 = \$232, Hence the down payment is 20% of that or \$46,

### 1. If you wish to accumulate \$140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?

Chapter 2 - Sample Problems 1. If you wish to accumulate \$140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will \$247,000 grow to be in

### FIN 3000. Chapter 6. Annuities. Liuren Wu

FIN 3000 Chapter 6 Annuities Liuren Wu Overview 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams Learning objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate

### Chapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams

Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present

### Chapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.

Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values

### Discounted Cash Flow Valuation

6 Formulas Discounted Cash Flow Valuation McGraw-Hill/Irwin Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing

### DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS

Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need \$500 one

### Future Value. Basic TVM Concepts. Chapter 2 Time Value of Money. \$500 cash flow. On a time line for 3 years: \$100. FV 15%, 10 yr.

Chapter Time Value of Money Future Value Present Value Annuities Effective Annual Rate Uneven Cash Flows Growing Annuities Loan Amortization Summary and Conclusions Basic TVM Concepts Interest rate: abbreviated

### Chapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1

Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation

### Problem Set: Annuities and Perpetuities (Solutions Below)

Problem Set: Annuities and Perpetuities (Solutions Below) 1. If you plan to save \$300 annually for 10 years and the discount rate is 15%, what is the future value? 2. If you want to buy a boat in 6 years

### Loans Practice. Math 107 Worksheet #23

Math 107 Worksheet #23 Loans Practice M P r ( 1 + r) n ( 1 + r) n =, M = the monthly payment; P = the original loan amount; r = the monthly interest rate; n = number of payments 1 For each of the following,

### Appendix C- 1. Time Value of Money. Appendix C- 2. Financial Accounting, Fifth Edition

C- 1 Time Value of Money C- 2 Financial Accounting, Fifth Edition Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount. 3. Solve for future

### International Financial Strategies Time Value of Money

International Financial Strategies 1 Future Value and Compounding Future value = cash value of the investment at some point in the future Investing for single period: FV. Future Value PV. Present Value

### Chapter F: Finance. Section F.1-F.4

Chapter F: Finance Section F.1-F.4 F.1 Simple Interest Suppose a sum of money P, called the principal or present value, is invested for t years at an annual simple interest rate of r, where r is given

### MGT201 Lecture No. 07

MGT201 Lecture No. 07 Learning Objectives: After going through this lecture, you would be able to have an understanding of the following concepts. Discounted Cash Flows (DCF Analysis) Annuities Perpetuity

### Appendix. Time Value of Money. Financial Accounting, IFRS Edition Weygandt Kimmel Kieso. Appendix C- 1

C Time Value of Money C- 1 Financial Accounting, IFRS Edition Weygandt Kimmel Kieso C- 2 Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount.

### Present Value and Annuities. Chapter 3 Cont d

Present Value and Annuities Chapter 3 Cont d Present Value Helps us answer the question: What s the value in today s dollars of a sum of money to be received in the future? It lets us strip away the effects

### TIME VALUE OF MONEY (TVM)

TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate

### Compounding Quarterly, Monthly, and Daily

126 Compounding Quarterly, Monthly, and Daily So far, you have been compounding interest annually, which means the interest is added once per year. However, you will want to add the interest quarterly,

### Chapter 5 Time Value of Money 2: Analyzing Annuity Cash Flows

1. Future Value of Multiple Cash Flows 2. Future Value of an Annuity 3. Present Value of an Annuity 4. Perpetuities 5. Other Compounding Periods 6. Effective Annual Rates (EAR) 7. Amortized Loans Chapter

### The Time Value of Money

The Time Value of Money Future Value - Amount to which an investment will grow after earning interest. Compound Interest - Interest earned on interest. Simple Interest - Interest earned only on the original

### Chapter 6. Time Value of Money Concepts. Simple Interest 6-1. Interest amount = P i n. Assume you invest \$1,000 at 6% simple interest for 3 years.

6-1 Chapter 6 Time Value of Money Concepts 6-2 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in

### Discounted Cash Flow Valuation

Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute

### 10. Time Value of Money 2: Inflation, Real Returns, Annuities, and Amortized Loans

10. Time Value of Money 2: Inflation, Real Returns, Annuities, and Amortized Loans Introduction This chapter continues the discussion on the time value of money. In this chapter, you will learn how inflation

### The Time Value of Money

The Time Value of Money Time Value Terminology 0 1 2 3 4 PV FV Future value (FV) is the amount an investment is worth after one or more periods. Present value (PV) is the current value of one or more future

### Finding the Payment \$20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = \$488.26

Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive \$5,000 per month in retirement.

### How to calculate present values

How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance

### REVIEW MATERIALS FOR REAL ESTATE ANALYSIS

REVIEW MATERIALS FOR REAL ESTATE ANALYSIS 1997, Roy T. Black REAE 5311, Fall 2005 University of Texas at Arlington J. Andrew Hansz, Ph.D., CFA CONTENTS ITEM ANNUAL COMPOUND INTEREST TABLES AT 10% MATERIALS

### Key Concepts and Skills. Chapter Outline. Basic Definitions. Future Values. Future Values: General Formula 1-1. Chapter 4

Key Concepts and Skills Chapter 4 Introduction to Valuation: The Time Value of Money Be able to compute the future value of an investment made today Be able to compute the present value of cash to be received

### Chapter 2 Applying Time Value Concepts

Chapter 2 Applying Time Value Concepts Chapter Overview Albert Einstein, the renowned physicist whose theories of relativity formed the theoretical base for the utilization of atomic energy, called the

### Business 2019. Fundamentals of Finance, Chapter 6 Solution to Selected Problems

Business 209 Fundamentals of Finance, Chapter 6 Solution to Selected Problems 8. Calculating Annuity Values You want to have \$50,000 in your savings account five years from now, and you re prepared to

### Topics Covered. Ch. 4 - The Time Value of Money. The Time Value of Money Compounding and Discounting Single Sums

Ch. 4 - The Time Value of Money Topics Covered Future Values Present Values Multiple Cash Flows Perpetuities and Annuities Effective Annual Interest Rate For now, we will omit the section 4.5 on inflation

### How to Calculate Present Values

How to Calculate Present Values Michael Frantz, 2010-09-22 Present Value What is the Present Value The Present Value is the value today of tomorrow s cash flows. It is based on the fact that a Euro tomorrow

### Solutions to Time value of money practice problems

Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if \$2,500 is deposited today and the account earns 4% interest,

### Introduction to Real Estate Investment Appraisal

Introduction to Real Estate Investment Appraisal Maths of Finance Present and Future Values Pat McAllister INVESTMENT APPRAISAL: INTEREST Interest is a reward or rent paid to a lender or investor who has

### Exercise 1 for Time Value of Money

Exercise 1 for Time Value of Money MULTIPLE CHOICE 1. Which of the following statements is CORRECT? a. A time line is not meaningful unless all cash flows occur annually. b. Time lines are useful for visualizing

### Compound Interest Formula

Mathematics of Finance Interest is the rental fee charged by a lender to a business or individual for the use of money. charged is determined by Principle, rate and time Interest Formula I = Prt \$100 At

### F V P V = F V = P (1 + r) n. n 1. FV n = C (1 + r) i. i=0. = C 1 r. (1 + r) n 1 ]

1 Week 2 1.1 Recap Week 1 P V = F V (1 + r) n F V = P (1 + r) n 1.2 FV of Annuity: oncept 1.2.1 Multiple Payments: Annuities Multiple payments over time. A special case of multiple payments: annuities

### Homework 5 Solutions

Homework 5 Solutions Chapter 4C Investment Plans. Use the savings plan formula to answer the following questions. 30. You put \$200 per month in an investment plan that pays an APR of 4.5%. How much money

### Applying Time Value Concepts

Applying Time Value Concepts C H A P T E R 3 based on the value of two packs of cigarettes per day and a modest rate of return? Let s assume that Lou will save an amount equivalent to the cost of two packs

### Lesson 1. Key Financial Concepts INTRODUCTION

Key Financial Concepts INTRODUCTION Welcome to Financial Management! One of the most important components of every business operation is financial decision making. Business decisions at all levels have

### TIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest!

TIME VALUE OF MONEY Return of vs. Return on Investment: We EXPECT to get more than we invest! Invest \$1,000 it becomes \$1,050 \$1,000 return of \$50 return on Factors to consider when assessing Return on

### Section 5.1 - Compound Interest

Section 5.1 - Compound Interest Simple Interest Formulas If I denotes the interest on a principal P (in dollars) at an interest rate of r (as a decimal) per year for t years, then we have: Interest: Accumulated

### Time Value of Money. Background

Time Value of Money (Text reference: Chapter 4) Topics Background One period case - single cash flow Multi-period case - single cash flow Multi-period case - compounding periods Multi-period case - multiple

### 4 Annuities and Loans

4 Annuities and Loans 4.1 Introduction In previous section, we discussed different methods for crediting interest, and we claimed that compound interest is the correct way to credit interest. This section

### Chapter 3 Present Value

Chapter 3 Present Value MULTIPLE CHOICE 1. Which of the following cannot be calculated? a. Present value of an annuity. b. Future value of an annuity. c. Present value of a perpetuity. d. Future value

### Oklahoma State University Spears School of Business. Time Value of Money

Oklahoma State University Spears School of Business Time Value of Money Slide 2 Time Value of Money Which would you rather receive as a sign-in bonus for your new job? 1. \$15,000 cash upon signing the

### Problems on Time value of money January 22, 2015

Investment Planning Problems on Time value of money January 22, 2015 Vandana Srivastava SENSEX closing value on Tuesday: closing value on Wednesday: opening value on Thursday: Top news of any financial

### Practice Problems. Use the following information extracted from present and future value tables to answer question 1 to 4.

PROBLEM 1 MULTIPLE CHOICE Practice Problems Use the following information extracted from present and future value tables to answer question 1 to 4. Type of Table Number of Periods Interest Rate Factor

### HOW TO CALCULATE PRESENT VALUES

Chapter 2 HOW TO CALCULATE PRESENT VALUES Brealey, Myers, and Allen Principles of Corporate Finance 11th Edition McGraw-Hill/Irwin Copyright 2014 by The McGraw-Hill Companies, Inc. All rights reserved.

### Chapter The Time Value of Money

Chapter The Time Value of Money PPT 9-2 Chapter 9 - Outline Time Value of Money Future Value and Present Value Annuities Time-Value-of-Money Formulas Adjusting for Non-Annual Compounding Compound Interest

### NPV calculation. Academic Resource Center

NPV calculation Academic Resource Center 1 NPV calculation PV calculation a. Constant Annuity b. Growth Annuity c. Constant Perpetuity d. Growth Perpetuity NPV calculation a. Cash flow happens at year

### How To Read The Book \"Financial Planning\"

Time Value of Money Reading 5 IFT Notes for the 2015 Level 1 CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The Future Value

### EXAM 2 OVERVIEW. Binay Adhikari

EXAM 2 OVERVIEW Binay Adhikari FEDERAL RESERVE & MARKET ACTIVITY (BS38) Definition 4.1 Discount Rate The discount rate is the periodic percentage return subtracted from the future cash flow for computing

### Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued

6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute

### How To Calculate The Value Of A Project

Chapter 02 How to Calculate Present Values Multiple Choice Questions 1. The present value of \$100 expected in two years from today at a discount rate of 6% is: A. \$116.64 B. \$108.00 C. \$100.00 D. \$89.00

### CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY

CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: \$5,000.08 = \$400 So after 10 years you will have: \$400 10 = \$4,000 in interest. The total balance will be

### Fin 3312 Sample Exam 1 Questions

Fin 3312 Sample Exam 1 Questions Here are some representative type questions. This review is intended to give you an idea of the types of questions that may appear on the exam, and how the questions might

Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value

### Chapter 4. Time Value of Money. Learning Goals. Learning Goals (cont.)

Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value

### How To Use Excel To Compute Compound Interest

Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout

### Paying off a debt. Ethan D. Bolker Maura B. Mast. December 4, 2007

Paying off a debt Ethan D. Bolker Maura B. Mast December 4, 2007 Plan Lecture notes Can you afford a mortgage? There s a \$250,000 condominium you want to buy. You ve managed to scrape together \$50,000

### Mathematics. Rosella Castellano. Rome, University of Tor Vergata

and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings

### 5.5 The Opportunity Cost of Capital

Problems 161 The correct discount rate for a cash flow is the expected return available in the market on other investments of comparable risk and term. If the interest on an investment is taxed at rate

### Bank: The bank's deposit pays 8 % per year with annual compounding. Bond: The price of the bond is \$75. You will receive \$100 five years later.

ü 4.4 lternative Discounted Cash Flow Decision Rules ü Three Decision Rules (1) Net Present Value (2) Future Value (3) Internal Rate of Return, IRR ü (3) Internal Rate of Return, IRR Internal Rate of Return

### Time Value Conepts & Applications. Prof. Raad Jassim

Time Value Conepts & Applications Prof. Raad Jassim Chapter Outline Introduction to Valuation: The Time Value of Money 1 2 3 4 5 6 7 8 Future Value and Compounding Present Value and Discounting More on

### 1 Interest rates, and risk-free investments

Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 (\$) in an account that offers a fixed (never to change over time)

### Topics Covered. Compounding and Discounting Single Sums. Ch. 4 - The Time Value of Money. The Time Value of Money

Ch. 4 - The Time Value of Money Topics Covered Future Values Present Values Multiple Cash Flows Perpetuities and Annuities Effective Annual Interest Rate For now, we will omit the section 4.5 on inflation

### Regular Annuities: Determining Present Value

8.6 Regular Annuities: Determining Present Value GOAL Find the present value when payments or deposits are made at regular intervals. LEARN ABOUT the Math Harry has money in an account that pays 9%/a compounded

### FINA 351 Managerial Finance, Ch.4-5, Time-Value-of-Money (TVM), Notes

FINA 351 Managerial Finance, Ch.4-5, Time-Value-of-Money (TVM), Notes The concept of time-value-of-money is important to know, not only for this class, but for your own financial planning. It is a critical

### This is Time Value of Money: Multiple Flows, chapter 7 from the book Finance for Managers (index.html) (v. 0.1).

This is Time Value of Money: Multiple Flows, chapter 7 from the book Finance for Managers (index.html) (v. 0.1). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### CHAPTER 9 Time Value Analysis

Copyright 2008 by the Foundation of the American College of Healthcare Executives 6/11/07 Version 9-1 CHAPTER 9 Time Value Analysis Future and present values Lump sums Annuities Uneven cash flow streams

### A = P (1 + r / n) n t

Finance Formulas for College Algebra (LCU - Fall 2013) ---------------------------------------------------------------------------------------------------------------------------------- Formula 1: Amount

### Chapter 4. The Time Value of Money

Chapter 4 The Time Value of Money 1 Learning Outcomes Chapter 4 Identify various types of cash flow patterns Compute the future value and the present value of different cash flow streams Compute the return

### Statistical Models for Forecasting and Planning

Part 5 Statistical Models for Forecasting and Planning Chapter 16 Financial Calculations: Interest, Annuities and NPV chapter 16 Financial Calculations: Interest, Annuities and NPV Outcomes Financial information

### Discounted Cash Flow Valuation

BUAD 100x Foundations of Finance Discounted Cash Flow Valuation September 28, 2009 Review Introduction to corporate finance What is corporate finance? What is a corporation? What decision do managers make?

### Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam

Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The

### TIME VALUE OF MONEY. In following we will introduce one of the most important and powerful concepts you will learn in your study of finance;

In following we will introduce one of the most important and powerful concepts you will learn in your study of finance; the time value of money. It is generally acknowledged that money has a time value.

### Time Value of Money. 15.511 Corporate Accounting Summer 2004. Professor S. P. Kothari Sloan School of Management Massachusetts Institute of Technology

Time Value of Money 15.511 Corporate Accounting Summer 2004 Professor S. P. Kothari Sloan School of Management Massachusetts Institute of Technology July 2, 2004 1 LIABILITIES: Current Liabilities Obligations

### Interest Rates: Loans, Credit Cards, and Annuties. Interest Rates: Loans, Credit Cards, and Annuties 1/43

Interest Rates: Loans, Credit Cards, and Annuties Interest Rates: Loans, Credit Cards, and Annuties 1/43 Last Time Last time we discussed compound interest and saw that money can grow very large given

### Solutions to Problems: Chapter 5

Solutions to Problems: Chapter 5 P5-1. Using a time line LG 1; Basic a, b, and c d. Financial managers rely more on present value than future value because they typically make decisions before the start

### 5 More on Annuities and Loans

5 More on Annuities and Loans 5.1 Introduction This section introduces Annuities. Much of the mathematics of annuities is similar to that of loans. Indeed, we will see that a loan and an annuity are just

### Chapter 6 APPENDIX B. The Yield Curve and the Law of One Price. Valuing a Coupon Bond with Zero-Coupon Prices

196 Part Interest Rates and Valuing Cash Flows Chapter 6 APPENDIX B The Yield Curve and the Law of One Price Thus far, we have focused on the relationship between the price of an individual bond and its

### CALCULATOR TUTORIAL. Because most students that use Understanding Healthcare Financial Management will be conducting time

CALCULATOR TUTORIAL INTRODUCTION Because most students that use Understanding Healthcare Financial Management will be conducting time value analyses on spreadsheets, most of the text discussion focuses

### 2. TIME VALUE OF MONEY

2. TIME VALUE OF MONEY Objectives: After reading this chapter, you should be able to 1. Understand the concepts of time value of money, compounding, and discounting. 2. alculate the present value and future

### Bond Valuation. What is a bond?

Lecture: III 1 What is a bond? Bond Valuation When a corporation wishes to borrow money from the public on a long-term basis, it usually does so by issuing or selling debt securities called bonds. A bond

### Using the Finance Menu of the TI-83/84/Plus calculators KEY

Using the Finance Menu of the TI-83/84/Plus calculators KEY To get to the FINANCE menu On the TI-83 press 2 nd x -1 On the TI-83, TI-83 Plus, TI-84, or TI-84 Plus press APPS and then select 1:FINANCE The

### Chapter 4. The Time Value of Money

Chapter 4 The Time Value of Money 4-2 Topics Covered Future Values and Compound Interest Present Values Multiple Cash Flows Perpetuities and Annuities Inflation and Time Value Effective Annual Interest

### Chapter 4: Time Value of Money

FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. \$100 (1.10)

### Topics Covered. Compounding and Discounting Single Sums. Ch. 4 - The Time Value of Money. The Time Value of Money

Ch. 4 - The Time Value of Money Topics Covered Future Values Present Values Multiple Cash Flows Perpetuities and Annuities Effective Annual Interest Rate Inflation & Time Value The Time Value of Money

### Chapter 8. Present Value Mathematics for Real Estate

Chapter 8 Present Value Mathematics for Real Estate Real estate deals almost always involve cash amounts at different points in time. Examples: Buy a property now, sell it later. Sign a lease now, pay

### CHAPTER 5. Interest Rates. Chapter Synopsis

CHAPTER 5 Interest Rates Chapter Synopsis 5.1 Interest Rate Quotes and Adjustments Interest rates can compound more than once per year, such as monthly or semiannually. An annual percentage rate (APR)

### Introduction (I) Present Value Concepts. Introduction (II) Introduction (III)

Introduction (I) Present Value Concepts Philip A. Viton February 19, 2014 Many projects lead to impacts that occur at different times. We will refer to those impacts as constituting an (inter)temporal

### FinQuiz Notes 2 0 1 4

Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.

### Part 9. The Basics of Corporate Finance

Part 9. The Basics of Corporate Finance The essence of business is to raise money from investors to fund projects that will return more money to the investors. To do this, there are three financial questions

### Chapter 5 Discounted Cash Flow Valuation

Chapter Discounted Cash Flow Valuation Compounding Periods Other Than Annual Let s examine monthly compounding problems. Future Value Suppose you invest \$9,000 today and get an interest rate of 9 percent

### Chapter 3. Understanding The Time Value of Money. Prentice-Hall, Inc. 1

Chapter 3 Understanding The Time Value of Money Prentice-Hall, Inc. 1 Time Value of Money A dollar received today is worth more than a dollar received in the future. The sooner your money can earn interest,

### HP 12C Calculations. 2. If you are given the following set of cash flows and discount rates, can you calculate the PV? (pg.

HP 12C Calculations This handout has examples for calculations on the HP12C: 1. Present Value (PV) 2. Present Value with cash flows and discount rate constant over time 3. Present Value with uneven cash