Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation"

Transcription

1 Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation February 2013 The information contained in this document is derived from selected public sources. Ballard does not guarantee the accuracy or completeness of the information and nothing shall be construed as a representation of such a guarantee. Ballard accepts no responsibility for any liability arising from use of this document or its contents. Nothing in this document constitutes or should be construed to constitute investment advice. Any opinions presented are subject to change without notice.

2 TABLE OF CONTENTS Biomass-to-Fuel-Cell Power Systems... 2 Feedstock Options... 3 Technology Overview... 3 Emissions and Efficiency Comparison... 5 Case Study: Remote Community... 5 Conclusion... 7 Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation 1

3 Biomass-to-Fuel-Cell Power Systems One of the challenges in siting large scale fuel cell generators is finding a source of low cost hydrogen; hydrogen derived from biomass has the potential to be both an economical and renewable source of fuel for distributed power generation applications. A biomass-to-fuel-cell system offers a renewable source of low emission electricity and heat with flexible feedstock options. Biomass is a fully renewable energy source that is considered greenhouse gas (CO2) neutral and thus can reduce greenhouse gas emissions associated with the generation of power. Biomass - including forestry and agricultural resources, industrial processing residues, municipal solid waste and urban wood residues - is often considered a waste product. Using a gasifier to processes this biomass can create a hydrogen rich syngas which is then purified as a low cost fuel for Ballard s proton exchange membrane (PEM) ClearGen distributed generation system, creating clean energy from this waste. Biomass-to-fuel-cell systems are highly scalable from 200kW to multi-megawatts, offering the ability to size a system to efficiently process the amount of biomass provided. The amount of generally available biomass is not insubstantial. According to a report from Pike Research, worldwide biomass power generation capacity will grow to at least 86 gigawatts (GW) by 2021, from 58 GW in Large scale biomass-to-fuel-cell distributed generation systems can reduce site waste significantly, diverting it from landfills, and potentially reducing the waste streams of neighboring facilities or communities. With a reliable supply of biomass, this system can be used to generate base load, peak power or even emergency power for critical operations in case of power disruptions for durations longer than a few hours. 2 The business case for biomass-to-fuel-cell systems is strongest in regions with high electricity prices and ready access to low cost biomass sources. For instance, the system is a cost competitive alternative today in remote communities relying on diesel generators. Product cost reduction paths will improve opportunities in markets with high industrial electricity rates or financial subsidies for renewable energy sources. 1 Pike Research (2012, January 10). Global Investment in Biomass Power Generation Will Total $104 Billion Through Retrieved July 18, 2012, from 2 Shorter durations or intermittencies can be overcome more cost effectively via batteries. Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation 2

4 FEEDSTOCK OPTIONS Biomass availability for electricity generation varies by region, according to the availability of low cost sources. Biomass that is available locally decreases the need to transport the fuel long distances, improving energy efficiency and reducing the cost of the power produced. Organic waste feedstock options are widely varied, including: Agricultural and forest residues (e.g. wood chips, sawdust) Miscanthus grasses Mixed paper waste Corn stover Trees and tree trimmings, specifically fines, barks, needles, and leaves Animal bedding (straw) Construction wood waste The feedstock is typically processed into small pieces, less than one-quarter inch in diameter. One key advantage of biomass-to-fuel-cell system is that it can handle higher moisture content (up to 45%) than most conventional gasifiers, reducing the need to dry feedstock. The system is robust against trace amounts of common contaminates (including sand, concrete and ammonia) which can often be diluted by pre-mixing cleaner material in with that which is contaminated, or eliminated through low-tech, easy to source sorting machines. However, the system is unable to process certain materials including metals, glass and PVC plastics. TECHNOLOGY OVERVIEW Ballard has established partnerships with developers of biomass gasification technology to demonstrate a complete, industry leading waste to energy renewable power generation system. Figure 1 demonstrates the processes involved in transforming biomass into power with a fuel cell system. The system can be divided into four main components: a) Biomass Handling b) Pyrolysis Gasifier c) Purification d) PEM Fuel Cell System Figure 1: Schematic of a biomass-to-fuel-cell power system Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation 3

5 In the biomass handling subsystem, the raw biomass feedstock is prepared by grinding it into pieces less than one-quarter inch in size. No drying is necessary if the biomass is below 45 percent moisture content. The system is estimated to consume approximately 15 dry tonnes per day of biomass per megawatt of electricity output. This prepared feedstock is then fed into a pyrolysis gasifier, which generates a hydrogenrich gas stream. The gas mixture produced contains approximately 65% hydrogen, 30% carbon dioxide, and 5% other components. This hydrogen rich syngas is then processed through a purification process, to eliminate contaminants from the hydrogen. Separation can be done either through pressure swing absorption (PSA), water gas shift (WGS) or preferential oxidation (PrOx). The result is a high-purity hydrogen stream, which is used to power the fuel cell system, generating clean power and heat. The fuel cell module is connected to a DC/AC inverter to provide high quality power at 50Hz or 60Hz that can be exported to the grid. Additionally, the hydrogen is of high enough quality to provide fuel for fuel cell vehicle fleets. Total biomass-to-fuel-cell system electrical efficiency is approximately percent. This can be increased to as much as percent total efficiency when the waste heat from the fuel cell system is captured and used to heat onsite facilities in cogeneration applications. The system is completely scalable to match biomass availability and energy needs, ranging in power outputs from 200kW to multi-megawatts. A sample system layout with all the major sub systems is shown in Figure 2 for reference. With modular components, layout of the system is highly flexible and can be modified to suit the requirements at the site. The total required footprint for a 200kW plant, including the feedstock system, is approximately 80 x 100. Figure 2: Sample biomass-to-fuel-cell system layout Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation 4

6 EMISSIONS AND EFFICIENCY COMPARISON The biomass-to-fuel-cell system is the best solution for high efficiency, low emission power production. Figures 3 and 4 below compare the biomass-to-fuel-cell system with diesel generation and conventional biomass gasification systems utilizing a gas fired engine for power production. The biomass-to-fuel-cell system offers comparable overall efficiency with greatly reduced nitrous oxides, typically produced during the combustion process. Figure 3: Comparison of system efficiency Figure 4: Comparison of NOx emissions CASE STUDY: REMOTE COMMUNITY The use of biomass as the fuel for these systems may be a very good choice for remote communities, such as those in which forestry activities are significant and wood resources are abundant. A biomass-to-fuel-cell system allows communities to substantially reduce reliance on diesel generators, providing a more economical levelized cost of energy and reducing harmful greenhouse gas emissions. The economics of a biomass-to-fuel-cell power system installed at a remote community are analyzed in the following case study. The technology is compared to a diesel generator, on the basis of capital cost, operating cost and, ultimately, total cost of ownership over a 20 year period. The payback period for the biomass-to-fuel-cell power solution relative to the incumbent KEY CASE STUDY ASSUMPTIONS: technology is computed. System size 500 kwe net For the purposes of this hypothetical Availability 95% case study, both the diesel generator and biomass-to-fuel-cell system are Product lifetime 20 years sized to produce 500 kilowatts net, Diesel fuel costs US$1.50/L each operating at an efficiency of 35 percent. The biomass-to-fuel-cell Biomass feedstock costs US$30/tonne power plant cost is estimated at US$4.5 million, including pyrolysis Discount rate 10% Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation 5

7 gasification, gas purification and installation. The diesel generator cost is estimated at US$100,000 including installation. The cost of the biomass feedstock, fully prepared for use in the pyrolysis system is estimated to be US$30 per tonne, while the diesel is priced at a cost of US$1.50 per litre, delivered. Figure 5 shows the cumulative cash flow of a 500kW biomass-to-fuel-cell power system compared to a standard diesel generator. Results show that the biomass-to-fuel-cell power system payback is achieved in approximately three years, with an IRR of 34%. Biomass to Fuel Cell Power vs Diesel Generator $30,000 Cumulative Cash Flow (US$ '000) $25,000 $20,000 $15,000 $10,000 $5,000 $0 -$5,000 Payback achieved in ~3 years Years IRR: 34% NPV: US$5 million Figure 5: Cumulative Cash Flow The current levelized cost for a biomass-to-fuel-cell power system is approximately US$0.20 per kilowatt hour, making it competitive as an alternative to diesel generators in remote communities. In some regions, where biomass sources are plentiful, the cost of biomass is low enough to drive an even shorter payback period. There are also opportunities to further improve on this business case through the additional savings associated with waste heat utilization. Heat generated by the plant can be captured and used as an energy source for buildings or district heating systems, providing further emissions reduction benefits through offsetting combustion of natural gas or cost reduction in the case of electrical heat. And, an additional potential revenue stream can be realized through the sale of biochar, a by-product of the pyrolysis system used as a soil supplement. Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation 6

8 CONCLUSION A compelling value proposition for distributed power generation is the conversion of waste biomass to energy. A biomass-to-fuel-cell system offers a renewable source of low emission electricity and heat with flexible feedstock options. The system will process biomass using pyrolysis gasification to create hydrogen rich syngas which can be purified for use with Ballard s ClearGen PEM fuel cell system. Ballard is now pursuing further installation opportunities to develop biomass to energy systems based on ClearGen fuel cell technology. The system is cost competitive in remote communities today, as a clean, quiet and efficient alternative to diesel generators. Future cost reduction paths will enable the solution to be sited wherever relatively high electricity prices and low cost biomass are available. Biomass-to-Fuel-Cell Power For Renewable Distributed Power Generation 7

A Discussion of PEM Fuel Cell Systems and Distributed Generation

A Discussion of PEM Fuel Cell Systems and Distributed Generation A Discussion of PEM Fuel Cell Systems and Distributed Generation Jeffrey D. Glandt, M. Eng. Principal Engineer, Solutions Engineering May 2011 The information contained in this document is derived from

More information

Shaw Renewables specialise in the design, installation and maintenance of low carbon bioenergy systems.

Shaw Renewables specialise in the design, installation and maintenance of low carbon bioenergy systems. Shaw Renewables specialise in the design, installation and maintenance of low carbon bioenergy systems. Thermal energy: Biomass Boilers Heat Networks Biomass CHP Electrical energy: Anaerobic Digestion

More information

Advantages of biomass gasification technologies

Advantages of biomass gasification technologies Biomass Gasification Biomass gasification, or producing gas from biomass, involves burning biomass under restricted air supply for the generation of producer gas. Producer gas is a mixture of gases: 18%

More information

Fuel Cell Systems for Telecom Backup Power

Fuel Cell Systems for Telecom Backup Power Fuel Cell Systems for Telecom Backup Power Shanna Knights Manager, Research January 28, 2014 Smarter Solutions for a Clean Energy Future Ballard - Who We Are Ballard is the global leader in clean energy

More information

Basics. Energy from the sun, via photosynthesis in plants

Basics. Energy from the sun, via photosynthesis in plants Biomass Basics Energy from the sun, via photosynthesis in plants This is the same energy we use as food This is the same energy that made fossil fuels; fossil fuels are concentrated over time by the heat

More information

Western Nevada County Biomass Utilization Feasibility Project. Frequently Asked Questions

Western Nevada County Biomass Utilization Feasibility Project. Frequently Asked Questions Western Nevada County Biomass Utilization Feasibility Project Frequently Asked Questions Q: What is woody biomass and where does it come from? A: Woody biomass for the Nevada County project will primarily

More information

Biomass Gasification 101

Biomass Gasification 101 Biomass Gasification 101 Steve Jenkins CH2M HILL Engineers, Inc. Tampa, Florida Edmonton, Alberta June 4, 2012 Topics What are pyrolysis and gasification? Historical uses for pyrolysis and gasification

More information

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

Assignment 8: Comparison of gasification, pyrolysis and combustion

Assignment 8: Comparison of gasification, pyrolysis and combustion AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted

More information

THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies

THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies RTP CONVERTS BIOMASS TO PYROLYSIS OIL FAST. Less than two seconds. That s all the time it takes to convert

More information

CHP T: W:

CHP T: W: Earthmill CHP T: 01937 581011 W: www.earthmill.co.uk E: info@earthmill.co.uk As we have proven with our wind turbine partners, we will carefully consider power, performance and reliability in order to

More information

A Green Idea. Reclaiming Urban Wood Waste And Urban Forest Debris. For Fuel/Combustion & Renewable Energy

A Green Idea. Reclaiming Urban Wood Waste And Urban Forest Debris. For Fuel/Combustion & Renewable Energy A Green Idea Reclaiming Urban Wood Waste And Urban Forest Debris For Fuel/Combustion & Renewable Energy Presentation Edward Kalebich Chief Operating Officer Robbins Community Power Facility located Chicago

More information

Development of BIOMASS Supply and Demand in the PRIMES Energy Model

Development of BIOMASS Supply and Demand in the PRIMES Energy Model Development of BIOMASS Supply and Demand in the PRIMES Energy Model 1. Introduction The work performed so far has involved the following tasks: 1. Specification of the biomass module 2. Development of

More information

Biomass Issues. John Christopher Madole Associates, Inc. presentation to the Minnesota Department of Commerce September 12, 2007

Biomass Issues. John Christopher Madole Associates, Inc. presentation to the Minnesota Department of Commerce September 12, 2007 Biomass Issues John Christopher Madole Associates, Inc. presentation to the Minnesota Department of Commerce September 12, 2007 Biomass Issues Feedstocks-- Harvesting, Transporation & Storage Process Technology

More information

Gasification: An Old Technology for a New Use

Gasification: An Old Technology for a New Use Gasification: An Old Technology for a New Use Sponsored by: Joel Tallaksen, Biomass Coordinator West Central Research & Outreach Center, University of Minnesota Fueling the Future: The Role of Woody and

More information

Renewable Energy from Biomass. Opportunities in London and Area? Eric Rosen

Renewable Energy from Biomass. Opportunities in London and Area? Eric Rosen Renewable Energy from Biomass Opportunities in London and Area? Eric Rosen KMW ENERGY INC. LONDON, ONTARIO Tel: (519) 686-1771 www.kmwenergy.com Company Background Long History in designing bioenergy systems.

More information

Click to edit Master title style Rice Husk to Electricity

Click to edit Master title style Rice Husk to Electricity Click to edit Master title style Rice Husk to Electricity Click to edit Master title style Power Generation from 100% Biomass in Cambodia A proposal for SOMA Group prepared through the ORIX Global Leaders

More information

This fact sheet provides an overview of options for managing solid

This fact sheet provides an overview of options for managing solid What Is Integrated Solid Waste Management? This fact sheet provides an overview of options for managing solid waste, identifies the important issues you should consider when planning for solid waste management,

More information

Gasification is a reactive process, which use the organic matter (biomass) energy or fossil

Gasification is a reactive process, which use the organic matter (biomass) energy or fossil 1. What Is Gasification Gasification is a reactive process, which use the organic matter (biomass) energy or fossil energy (coal, peat) and convert them into hydrogen, carbon monoxide, methane, other hydrocarbons

More information

Biomass Gasification

Biomass Gasification Biomass Gasification Table of Contents A Report by NexantThinking s Process Evaluation/Research Planning (PERP) Program PERP Report 2013S11 Published November 2013 www.nexantthinking.com Section Page 1

More information

Performance monitoring of a downdraft system Johansson biomass gasifier TM

Performance monitoring of a downdraft system Johansson biomass gasifier TM Performance monitoring of a downdraft system Johansson biomass gasifier TM N. S. Mamphweli and E. L. Meyer University of Fort Hare, Institute of Technology Private bagx1314, Alice, 5, South Africa E-mail:

More information

GENERATION TECHNOLOGY ASSESSMENT

GENERATION TECHNOLOGY ASSESSMENT SPO PLANNING ANALYSIS GENERATION TECHNOLOGY ASSESSMENT Technology Cost & Performance Milestone 2 Public Technical Conference OCTOBER 30, 2014 NOTE: ALL IRP MATERIALS ARE PRELIMINARY & SUBJECT TO CHANGE

More information

Stirling DK Introduction. March 2012

Stirling DK Introduction. March 2012 Stirling DK Introduction March 2012 Introduction to Stirling DK Stirling DK (SDK) is a provider of Stirling engines and integrated combined heat and power (CHP) solutions based on Stirling engines fuelled

More information

Case Study 1. Lahti Gasification Facility, Finland

Case Study 1. Lahti Gasification Facility, Finland Case Study 1 Lahti Gasification Facility, Finland Case Study for Zero Waste South Australia RICARDO-AEA/R/ED58135 Issue Number 1 Date 02/07/2013 Disclaimer: This case study has been prepared by Ricardo-AEA

More information

A d v a n t a g e s a n d L i m i t a t i o n s o f B i o m a s s C o - c o m b u s t i o n i n F o s s i l F i r e d P o w e r P l a n t s

A d v a n t a g e s a n d L i m i t a t i o n s o f B i o m a s s C o - c o m b u s t i o n i n F o s s i l F i r e d P o w e r P l a n t s A d v a n t a g e s a n d L i m i t a t i o n s o f B i o m a s s C o - c o m b u s t i o n i n F o s s i l F i r e d P o w e r P l a n t s March 2008 2 1 Introduction The aim of the European Commission

More information

Biomass CHP gasification of wood biomass Eko village Kempele, Finland

Biomass CHP gasification of wood biomass Eko village Kempele, Finland Biomass CHP gasification of wood biomass Eko village Kempele, Finland Radoslav Irgl COGENERA, Artim d.o.o. info@cogenera.si What is biomass gasification? Thermal decomposition of biomass: Thermal process

More information

Han-Sup Han Humboldt State University Arcata, California

Han-Sup Han Humboldt State University Arcata, California Biomass Research & Development Initiative (BRDI - Department of Energy) Waste to Wisdom (W2W): Utilizing forest residues for the production of bioenergy and biobased products Han-Sup Han Humboldt State

More information

Half the cost Half the carbon

Half the cost Half the carbon Half the cost Half the carbon the world s most efficient micro-chp What is BlueGEN? The most efficient small-scale electricity generator BlueGEN uses natural gas from the grid to generate electricity within

More information

POLICY ACTIONS INVESTING IN INNOVATION

POLICY ACTIONS INVESTING IN INNOVATION The BC Energy Plan ALTERNATIVE ENERGY Government will work with other agencies to maximize opportunities to develop, deploy and export British Columbia clean and alternative energy technologies. POLICY

More information

Energy Strategic Plan Los Angeles Community College District Community College League Conference

Energy Strategic Plan Los Angeles Community College District Community College League Conference Energy Strategic Plan Los Angeles Community College District Community College League Conference Larry Eisenberg Executive Director, Facilities Planning and Development November 16,2006 West Los Angeles

More information

Bioenergy: A Part of Yukon s Energy Future. Fernando Preto CanmetENERGY, Natural Resources Canada

Bioenergy: A Part of Yukon s Energy Future. Fernando Preto CanmetENERGY, Natural Resources Canada Bioenergy: A Part of Yukon s Energy Future Fernando Preto CanmetENERGY, Natural Resources Canada Yukon Energy Charrette March, 2011, Whitehorse Introduction: CanmetENERGY Biomass Conversion Laboratories

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS RTP TM /ADVANCED CYCLE VS. COMBUSTION STEAM CYCLES OR WHY NOT SIMPLY COMBUST? For decades, the only commercial option available for the production

More information

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES Filippo Turra Product Manager Cooling Technology INTRODUCTION

More information

Waste a source of energy. Regional Solid Waste Management Plan Review: Engaging solutions for tomorrow. Incineration. Incineration

Waste a source of energy. Regional Solid Waste Management Plan Review: Engaging solutions for tomorrow. Incineration. Incineration Waste a source of energy Regional Solid Waste Management Plan Review: Engaging solutions for tomorrow Garbage School 301: Waste to Energy All organic materials contains energy Plant or animal based Plastics

More information

Program Plan. Revised and Updated. August 1, 2011

Program Plan. Revised and Updated. August 1, 2011 Program Plan Revised and Updated August 1, 2011 Mission NC GreenPower (NCGP) is a statewide program designed to improve the quality of the environment by encouraging the development of renewable energy

More information

The small energy plant will produce electrical and heat energy efficiently in an enclosed process building.

The small energy plant will produce electrical and heat energy efficiently in an enclosed process building. Biomass-to-Energy Frequently Asked Questions What is biomass? Biomass is woody raw material such as trees, branches, sawmill and furniture off-cuts, scrap dimensional lumber and plywood, all chipped and

More information

Woody Charcoal Gasifier Engine for Power Generation

Woody Charcoal Gasifier Engine for Power Generation Woody Charcoal Gasifier Engine for Power Generation Presentation for the International Seminar on Green Bio-Energy Development for Wood Industrial Sector and Environmental Conservation January 8, 2008,

More information

THE FUTURE OF ENERGY STM PRODUCTS. Leading the Way. Heat Powered Units Waste Not. Generate More. Fuel Fired Units Electricity On-Site

THE FUTURE OF ENERGY STM PRODUCTS. Leading the Way. Heat Powered Units Waste Not. Generate More. Fuel Fired Units Electricity On-Site STM POWER THE FUTURE OF ENERGY WWW. STMPOWER.COM THE FUTURE OF ENERGY STM Power, the world s leading developer of external combustion engine technology, harnesses energy from virtually any heat source,

More information

Biomass Combined Heat and Power An Overview of Small Scale Systems

Biomass Combined Heat and Power An Overview of Small Scale Systems Biomass Combined Heat and Power An Overview of Small Scale Systems Presentation to CleanTech Boston June, 2011 Robert Wilson and Roberto Pellizzari etapartners LLC 8 Hollis Street Groton. Massachusetts

More information

Evaluating cogeneration for your facility: A look at the potential energy-efficiency, economic and environmental benefits

Evaluating cogeneration for your facility: A look at the potential energy-efficiency, economic and environmental benefits Power topic #7018 Technical information from Cummins Power Generation Inc. Evaluating cogeneration for your facility: A look at the potential energy-efficiency, economic and environmental benefits > White

More information

Introduction to Waste Treatment Technologies. Contents. Household waste

Introduction to Waste Treatment Technologies. Contents. Household waste Contents Introduction to waste treatment technologies 3 Section 1: The treatment of recyclable waste 4 Bulking facilities 5 Materials Reclamation Facility (MRF) 6 Reuse and recycling centres 8 Composting

More information

Biogas Utilization Through Combined Heat & Power Systems. Jan Buijk (416)

Biogas Utilization Through Combined Heat & Power Systems. Jan Buijk (416) Biogas Utilization Through Combined Heat & Power Systems Jan Buijk buijkjan@ddace.com (416) 804-2203 GE s Jenbacher gas engines Most important applications Generator sets: On-site power generation Cogeneration:

More information

Thermo Conversions Gasification (TCG) Technology

Thermo Conversions Gasification (TCG) Technology Biomass Syngas Flame at Sunrise in Colorado Thermo Conversions Gasification (TCG) Technology TCG Global, LLC 8310 S. Valley Hwy Suite 285, Englewood CO 80112 (303) 867-4247 www.tcgenergy.com TCG Global,

More information

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology The IGCC Process: From Coal To Clean Electric Power Outlook on Integrated Gasification Combined Cycle (IGCC) Technology Testimony of Edward Lowe Gas Turbine-Combined Cycle Product Line Manager General

More information

Biomass gasification methods

Biomass gasification methods Lecture 8 Biomass gasification methods Thermochemical conversion method Principle Gasifiers Operationtypes-Applications The thermo-chemical decomposition of hydrocarbons from biomass in a reducing (oxygen

More information

Consider How can you collect solar energy for use in your school? What are other alternatives?

Consider How can you collect solar energy for use in your school? What are other alternatives? 5 a 5 Energy Sources a - Energy from the sun Purpose To explore sourcing our energy from the sun Key concepts Solar energy is a natural and renewable resource Heat energy from the sun can be used to heat

More information

Chip Energy s BIOMASS FURNACE. A 20 shipping container with a look inside to the Biomass Furnace s air compressor, water tank, gasifier and hopper

Chip Energy s BIOMASS FURNACE. A 20 shipping container with a look inside to the Biomass Furnace s air compressor, water tank, gasifier and hopper Chip Energy s BIOMASS FURNACE A 20 shipping container with a look inside to the Biomass Furnace s air compressor, water tank, gasifier and hopper 1 Scenario: The winter months in your area of the country

More information

COMPARISON OF ELECTRICITY GENERATION COSTS

COMPARISON OF ELECTRICITY GENERATION COSTS Tarjanne Risto, Kivistö Aija COMPARISON OF ELECTRICITY GENERATION COSTS LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANTA UNIVERSITY OF TECHNOLOGY TEKNILLINEN TIEDEKUNTA ENERGIA- JA YMPÄRISTÖTEKNIIKAN OSASTO

More information

Fuel cell microchp: Greener and cheaper energy for all

Fuel cell microchp: Greener and cheaper energy for all Fuel cell microchp: Greener and cheaper energy for all Paddy Thompson General Manager Business Development Ceramic Fuel Cells Ltd. May 2013 1 What does our generation mix look like today? 2 Will the lights

More information

Producing Raw Material for the Biomass Energy Markets. Jerry Morey

Producing Raw Material for the Biomass Energy Markets. Jerry Morey Producing Raw Material for the Biomass Energy Markets Presented by Jerry Morey President Bandit Industries, Inc. Cumulative new NA wood biomass demand 2007-15 Source: RISI Wood Biomass Market Report 70000

More information

From Biomass. NREL Leads the Way. to Biofuels

From Biomass. NREL Leads the Way. to Biofuels From Biomass NREL Leads the Way to Biofuels The Wide World of Biofuels Fuel Source Benefits Maturity Grain/Sugar Ethanol Biodiesel Corn, sorghum, and sugarcane Vegetable oils, fats, and greases Produces

More information

Turning Waste into Green Energy

Turning Waste into Green Energy CNSX: XZX Corporate Presentation November 2013 Turning Waste into Green Energy 1 Forward Looking Information Statement The contents of this presentation contain statements that may constitute forward-looking

More information

CO-FIRING BIOMASS: REGULATORY AND OPERATIONAL ISSUES

CO-FIRING BIOMASS: REGULATORY AND OPERATIONAL ISSUES CO-FIRING BIOMASS: REGULATORY AND OPERATIONAL ISSUES BRANDON BELL, P.E. KBR POWER & INDUSTRIAL McIlvaine Hot Topic Hour December 13, 2012 Common Examples of Biomass Examples Wood Wood Chips Forest Residues

More information

The cost of energy is an important concern for businesses, institutions, and

The cost of energy is an important concern for businesses, institutions, and Introduction: The cost of energy is an important concern for businesses, institutions, and people. The volatility of the fuel oil and natural market has reintroduced the desire to move away from dependency

More information

The Development of the 500MW Co-firing facility at Drax Power Station

The Development of the 500MW Co-firing facility at Drax Power Station The Development of the 500MW Co-firing facility at Drax Power Station Nigel Burdett - Head Of Environment November 2010 Drax: Unique Asset in UK Generation Mix Drax Power Station is owned by Drax Group

More information

Biomass Supply Chains in South Hampshire

Biomass Supply Chains in South Hampshire Biomass Supply Chains in South Hampshire 1 Executive Summary This report provides an analysis of how biomass supply chains could be developed within the area covered by the Partnership for Urban South

More information

DataSheets. Bio-Fuel Technology Pages 2-3. Grinding & Drying Technology Pages 4-5

DataSheets. Bio-Fuel Technology Pages 2-3. Grinding & Drying Technology Pages 4-5 DataSheets Bio-Fuel Technology Pages 2-3 Grinding & Drying Technology Pages 4-5 TM Clean Burning Bio-Fuel Powder From Wood and Energy Crops Innovative Bio-Fuel Technology The innovative and patented KDS

More information

PEAK DISTRICT NATIONAL PARK AUTHORITY ENVIRONMENTAL MANAGEMENT ANNUAL PERFORMANCE REPORT 2013/2014

PEAK DISTRICT NATIONAL PARK AUTHORITY ENVIRONMENTAL MANAGEMENT ANNUAL PERFORMANCE REPORT 2013/2014 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 2016/17 Carbon emissions (kgco2) Page 1 PEAK DISTRICT NATIONAL PARK AUTHORITY ENVIRONMENTAL MANAGEMENT ANNUAL PERFORMANCE REPORT 2013/2014 1. INTRODUCTION

More information

Solar Power in China. By Zhou Fengqing

Solar Power in China. By Zhou Fengqing Solar Power in China By Zhou Fengqing Overview Adjust Chinese power structure Feasibility of solar power in China Solar energy as national policies Legislations of solar energy Adjust Chinese Power Structure

More information

New, Improved, and Emerging Technologies

New, Improved, and Emerging Technologies New, Improved, and Emerging Technologies Tom Miles T R Miles, Technical Consultants, Inc. tmiles@trmiles.com www.trmiles.com Barriers to Biomass Project Development 2014 Alaska Wood Energy Conference Fairbanks,

More information

Integrated waste management system for the reuse of used frying oils to produce biodiesel for municipality fleet of Oeiras

Integrated waste management system for the reuse of used frying oils to produce biodiesel for municipality fleet of Oeiras LIFE ENVIRONMENT Programme Integrated waste management system for the reuse of used frying oils to produce biodiesel for municipality fleet of Oeiras Project co-funded by the LIFE Environment programme

More information

MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE. Tomáš Rohal, Business Development CEEI 10-Oct-2013

MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE. Tomáš Rohal, Business Development CEEI 10-Oct-2013 MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE Tomáš Rohal, Business Development CEEI 10-Oct-2013 1 Who We Are Central Europe Engineering & Investment (CEEI) offers the state-of-the-art

More information

British Columbia s Clean Energy Vision

British Columbia s Clean Energy Vision British Columbia s Clean Energy Vision Innovative Technologies and Green Energy Solutions National Environmental Conference Brunei Darussalam July 1, 2010 Profile of British Columbia Overview British

More information

Energise your waste! EU legislation pushes for a reliable alternative to landfilling for residual waste. 13 th September 2011, Birmingham

Energise your waste! EU legislation pushes for a reliable alternative to landfilling for residual waste. 13 th September 2011, Birmingham Energise your waste! EU legislation pushes for a reliable alternative to landfilling for residual waste 13 th September 2011, Birmingham Recycling & Waste Management (RWM) Exhibition Dr.ir. Johan De Greef

More information

FEED-IN TARIFF (FiT) IN MALAYSIA www.seda.gov.my

FEED-IN TARIFF (FiT) IN MALAYSIA www.seda.gov.my IN MALAYSIA www.seda.gov.my 1 Introduction to Feed-in Tariff Mechanism Feed-in Tariff mechanism oblige energy utilities to buy renewable energy from producers, at a mandated price. By guaranteeing access

More information

City of Bath Maine. A Small Landfill s Preliminary Evaluation of Carbon Credits and Renewable Energy Projects. December 11, 2008

City of Bath Maine. A Small Landfill s Preliminary Evaluation of Carbon Credits and Renewable Energy Projects. December 11, 2008 City of Bath Maine A Small Landfill s Preliminary Evaluation of Carbon Credits and Renewable Energy Projects December 11, 2008 Presented by Michael Booth P.E. Presentation Background Bath s Approach to

More information

Green Energy in Europe - Potentials and Prospects

Green Energy in Europe - Potentials and Prospects Green Energy in Europe - Potentials and Prospects Gerfried Jungmeier, JOANNEUM RESEARCH, Austria Tel: +43 (0) 316 876 1313 Fax: +43 (0) 316 876 1320 e-mail: gerfried.jungmeier@joanneum.at www.joanneum.at

More information

Biomass Boiler House Best Practices. Irene Coyle & Fernando Preto CanmetENERGY

Biomass Boiler House Best Practices. Irene Coyle & Fernando Preto CanmetENERGY Biomass Boiler House Best Practices Irene Coyle & Fernando Preto CanmetENERGY Growing the Margins London, Ontario March 2010 The Biomass & Renewables Group of Industrial Innovation Group (IIG) of CanmetENERGY

More information

Biomass Gasification Technology for producing Electricity,Thermal Heat and Gas

Biomass Gasification Technology for producing Electricity,Thermal Heat and Gas Biomass Gasification Technology for producing Electricity,Thermal Heat and Gas Content of Presentation Company Profile Gasification Process Gasification Technology Syn-Gas Types of Technologies Types of

More information

Canadian German Partnering Program Meet with German Bioenergy Companies in Canada. November 22-25, 2011. Guelph, ON

Canadian German Partnering Program Meet with German Bioenergy Companies in Canada. November 22-25, 2011. Guelph, ON Canadian German Partnering Program Meet with German Bioenergy Companies in Canada November 22-25, 2011. Guelph, ON Juergen Ullrich MD Ulmo We make energy for our children s generation We create VALUE

More information

The chemistry of air pollution

The chemistry of air pollution The chemistry of air pollution Contents Air is very important as it provides oxygen and other gases that are essential to all life on Earth. It consists of a mixture of invisible gases that surround the

More information

CANADIAN GAS ASSOCIATION

CANADIAN GAS ASSOCIATION CANADIAN GAS ASSOCIATION 2017 PRE-BUDGET SUBMISSION REDUCING EMISSIONS, PROVIDING AFFORDABLE ENERGY, DRIVING INNOVATION, AND GROWING THE ECONOMY Reducing Emissions, Providing Affordable Energy, Driving

More information

Growing your greenhouse business faster with gas engines.

Growing your greenhouse business faster with gas engines. Growing your greenhouse business faster with gas engines. Our combined heat and power engines can increase the efficiency and profitability of your greenhouses. Because it s not just your plants that need

More information

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues Process Technology Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues The INEOS Bio process technology produces carbon-neutral bioethanol

More information

CO2 Capture Technologies. 7 8 September, 2011 Abu Dhabi, UAE

CO2 Capture Technologies. 7 8 September, 2011 Abu Dhabi, UAE UNFCCC Technical workshop on modalities and procedures for carbon dioxide capture and storage in geological formations as clean development mechanism project activity CO2 Capture Technologies 7 8 September,

More information

Case Study 3. Cynar Plastics to Diesel

Case Study 3. Cynar Plastics to Diesel Case Study 3 Cynar Plastics to Diesel Report for ZWSA Ricardo-AEA/R/ED58135 Issue Number 1 Date 02/07/2013 Disclaimer: This case study has been prepared by Ricardo-AEA Ltd for the exclusive use of Zero

More information

6 CONSIDERATION OF ALTERNATIVES

6 CONSIDERATION OF ALTERNATIVES 6 CONSIDERATION OF ALTERNATIVES 6.1.1 Schedule 4 of the Town and Country Planning (Environmental Impact Assessment) (Scotland) Regulations 2011 sets out the information for inclusion in Environmental Statements

More information

California Energy Commission California Perspective on Biofuels and Energy

California Energy Commission California Perspective on Biofuels and Energy California Energy Commission California Perspective on Biofuels and Energy USDA/USDOE Biomass Research and Development Technical Advisory Committee Meeting November 19, 2015 Emeryville, California Tim

More information

Biomass Renewable Energy from Plants and Animals

Biomass Renewable Energy from Plants and Animals Renewable Biomass Biomass Basics Biomass Renewable Energy from Plants and Animals Biomass is organic material made from plants and animals. Biomass contains stored energy from the sun. Plants absorb the

More information

Waste to Energy. Patrick Grange. Copyright CIBSE MNW Region 1. Rural, Business and Renewable Energy Consultants

Waste to Energy. Patrick Grange. Copyright CIBSE MNW Region 1. Rural, Business and Renewable Energy Consultants Waste to Energy CIBSE Presentation Patrick Grange Rural, Business and Renewable Energy Consultants Copyright CIBSE MNW Region 1 Agenda CMS UK Background to Renewables Energy from Waste CHP Units How we

More information

Self-Direction of Public Purpose Charges for Renewable Power Purchases, Renewable Tags or On-Site Generation From Renewable Resources

Self-Direction of Public Purpose Charges for Renewable Power Purchases, Renewable Tags or On-Site Generation From Renewable Resources Self-Direction of Public Purpose Charges for Renewable Power Purchases, Renewable Tags or On-Site Generation From Renewable Resources Statutory Requirements Expenditures for electricity from renewable

More information

Thermo-Chemical Biomass Conversion for the Provision of Heat, Electricity and Fuels

Thermo-Chemical Biomass Conversion for the Provision of Heat, Electricity and Fuels Thermo-Chemical Biomass Conversion for the Provision of Heat, Electricity and Fuels Univ. Prof. Dr. Hermann Hofbauer Vienna University of Technology, Austria Outline of the Presentation Overview about

More information

Biomass A Vision, Opportunities and Project Development

Biomass A Vision, Opportunities and Project Development Biomass A Vision, Opportunities and Project Development Indiana Office of Energy Development Wednesday, July 20, 2011 Bingham McHale LLP Biomass The Simple View Problem: Solution: Strategy: GHG emissions

More information

The new eco up! Page 02. Gas engines as interface to alternative energies Page 02. Natural gas and biomethane are cutting-edge fuels Page 04

The new eco up! Page 02. Gas engines as interface to alternative energies Page 02. Natural gas and biomethane are cutting-edge fuels Page 04 Volkswagen EcoFuel the new eco up! The new eco up! Page 02 Gas engines as interface to alternative energies Page 02 Two decades of Volkswagen with natural gas Page 03 Natural gas and biomethane are cutting-edge

More information

Biomass in China. Kejun JIANG Energy Research Institute, China

Biomass in China. Kejun JIANG Energy Research Institute, China Biomass in China Kejun JIANG Kjiang@eri.org.cn Energy Research Institute, China 1 ERI, China Content Biomass supply Biomass Utilization Policies Future scenarios 2 Biomass supply China s main biomass resources

More information

Module 7 Forms of energy generation

Module 7 Forms of energy generation INTRODUCTION In rich countries like Australia, our standard of living is dependent on easily available energy. Every time you catch a bus, turn on a light or watch television energy is being used up. Over

More information

Energy from digester gas. Optimised biogas utilisation

Energy from digester gas. Optimised biogas utilisation Energy from digester gas Optimised biogas utilisation The complete solution The complete solution Our company ENER-G designs, installs and operates biogas combined heat and power (CHP) systems for a variety

More information

Personal Power Stations: The Australian Market for Micro-Combined Heat and Power to 2021

Personal Power Stations: The Australian Market for Micro-Combined Heat and Power to 2021 Personal Power Stations: The Australian Market for Micro-Combined Heat and Power to 2021 A Private Report for Strategic Research Clients 1.0 Overview Personal power plant technology could cost effectively

More information

Renewable Gas Vision for a Sustainable Gas Network. A paper by National Grid

Renewable Gas Vision for a Sustainable Gas Network. A paper by National Grid Renewable Gas Vision for a Sustainable Gas Network A paper by National Grid Executive Summary Renewable Gas also known as biomethane, is pipeline quality gas derived from biomass that is fully interchangeable

More information

Biochar An Economic Challenge. Christoph Steiner, Gerald Marinitsch BIOCHAR.org,

Biochar An Economic Challenge. Christoph Steiner, Gerald Marinitsch BIOCHAR.org, Biochar An Economic Challenge Christoph Steiner, Gerald Marinitsch BIOCHAR.org, www.stirling.dk Biochar production costs and values Biochar costs feedstock availability and costs technology labor requirement

More information

methane and compost production from organic resources Morten Brøgger Kristensen Chief Technology Officer

methane and compost production from organic resources Morten Brøgger Kristensen Chief Technology Officer Aikan Technology methane and compost production from organic resources Morten Brøgger Kristensen Chief Technology Officer Aikan is innovated from experience Solum has been operating the Danish Aikan plant

More information

10 Nuclear Power Reactors Figure 10.1

10 Nuclear Power Reactors Figure 10.1 10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of

More information

Co-firing biomass with fossil fuels technological and economic evaluation based on Austrian experiences

Co-firing biomass with fossil fuels technological and economic evaluation based on Austrian experiences Co-firing biomass with fossil fuels technological and economic evaluation based on Austrian experiences Dr. Ingwald Obernberger BIOS Sandgasse 47, A-8010 A Graz,, Austria TEL.: +43 (316) 481300; FAX: +43

More information

Briefing Paper: What are Conversion Technologies? November 2011 Primary Author: Bob Barrows

Briefing Paper: What are Conversion Technologies? November 2011 Primary Author: Bob Barrows Briefing Paper: What are Conversion Technologies? November 2011 Primary Author: Bob Barrows What are conversion technologies? The term conversion technology encompasses a broad range of technologies used

More information

Micro-Turbine Combined Heat & Power Generators (CHP) Cold Climate Applications 2014 Polar Technology Conference Richard S.

Micro-Turbine Combined Heat & Power Generators (CHP) Cold Climate Applications 2014 Polar Technology Conference Richard S. Micro-Turbine Combined Heat & Power Generators (CHP) Cold Climate Applications 2014 Polar Technology Conference Richard S. Armstrong, PE DISTRIBUTED CO-GENERATION DEFINED Electricity and Heat production

More information

Groupwork CCS. Bio-Energy with CCS (BECCS) Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster»)

Groupwork CCS. Bio-Energy with CCS (BECCS) Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster») Groupwork CCS Bio-Energy with CCS (BECCS) group 5 02.05.2015 1 Content What is BECCS? Stakeholder Analysis Resources on Global scale SWOT analysis Climate BECCS Technology Conclusions Outlook group 5 02.05.2015

More information

University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008

University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008 University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008 Contents Welcome and Introduction Chapter 1: Data centre energy recap Chapter 2: Co-generation Chapter 3: CTC case study

More information

BIOMASS GASIFICATION : CHALLENGES AND THEIR SOLUTIONS BY - J. MUKHERJEE

BIOMASS GASIFICATION : CHALLENGES AND THEIR SOLUTIONS BY - J. MUKHERJEE BIOMASS GASIFICATION : CHALLENGES AND THEIR SOLUTIONS BY - J. MUKHERJEE Background of GP Energy GP Energy is in the field of Biomass Gasification Since 1987 when MNRE was not born. It is the first in India

More information

CEFC financing first for major Western Australian waste-to-gas project

CEFC financing first for major Western Australian waste-to-gas project CEFC financing first for major Western Australian waste-to-gas project Up to $50 million CEFC co-finance to convert municipal, commercial and industrial waste into energy using world-leading Australian

More information