GEOS 4430 Lecture Notes: Well Testing

Size: px
Start display at page:

Download "GEOS 4430 Lecture Notes: Well Testing"

Transcription

1 GEOS 4430 Lecture Notes: Well Testing Dr. T. Brikowski Fall file:well hydraulics.tex,v (1.32), printed November 11, 2013

2 Motivation aquifers (and oil/gas reservoirs) primarily valuable when tapped by wells typical well construction typical issues: how much pumping possible (well yield), contamination risks/cleanup, etc. all of these require quantitative analysis, and that usually takes the form of analytic solutions to the radial flow equation

3 Introduction Well hydraulics is a crucial topic in hydrology, since wells are a hydrologist s primary means of studying the subsurface Lots of complicated math and analysis, the bottom line is that flow to/from a well in an extensive aquifer is radial, and can be approximated by analytic solutions to flow equation in radial coordinates. radial coordinates greatly simplify the geometry of well problems (Fig. 1) in such systems a cone of depression or drawdown cone is formed, the geometry of which depends on aquifer conditions (Fig. 2)

4 Geometry of Radial Flow Figure 1: Geometry of radial flow to a well, after Freeze and Cherry (1979, Fig. 8.4).

5 Representative Drawdown Cones Figure 2: Representative drawdown cones, after Freeze and Cherry (1979, Fig. 8.6). See Wikipedia animation for boundary effects.

6 Flow equation in radial coordinates Recall the transient, 2-D flow equation (the second form uses vector-calculus notation) ( 2 h x 2 ) + 2 h y 2 = S T h t 2 h = S T h t Equation (1) can be converted to cylindrical coordinates simply by substituting the proper form of : (1) 2 r = 2 r r r (2)

7 Flow equation in radial coordinates (cont.) the extra 1 r term accounts for the decreasing cross-sectional area of radial flow toward a well (Fig. 3). Using (2) (1) becomes: 2 h r r h r = S T h t in the case of recharge, or leakage from an adjacent aquifer, an additional term appears: (3) 2 h r r h r + R T = S T h t (4)

8 Cross-Sectional Area in Radial Flow dr (r+dr)*dθ r dθ θ r*d θ Figure 3: Cross-sectional area changes in radial flow. Water flowing toward a well at the origin passes through steadily decreasing cross-sectional area. Arc length decreases from (r + dr)dθ to rdθ over a distance dr.

9 K Ranges Figure 4: Relative ranges of hydraulic conductivity (after BLM Hydrology Manual, 1987?).

10 T Ranges Figure 5: Relative ranges of transmissivity and well yield (after BLM Hydrology Manual, 1987?). The irrigation-domestic boundary lies at m2 sec.

11 Effect of Scale on Measured K Figure 6: Effect of tested volume (i.e. heterogeneity) on measured K (Bradbury and Muldoon, 1990).

12 Theim Equation:Steady Confined Flow, No Leakage simplest analytic solution to (3), for steady confined flow, no leakage Assumptions: constant pump rate, fully-penetrating well, impermeable bottom boundary in aquifer, Darcy s Law applies, flow is strictly horizontal, steady-state (potentiometric surface is unchanging), isotropic homogeneous aquifer then an exact (analytic) solution to (3) can be obtained by rearranging to separate the variables in this differential equation, and to determine h(r) by adding up all the dh dr, i.e. integrating directly

13 Theim Equation:Steady Confined Flow, No Leakage (cont.) for steady flow in homogeneous confined aquifer we can start with Darcy s Law (eqns to 5.44, Fetter, 2001) h(r) Q = (2πrb)K dh dr h w dh = Q 2πT r r w dr r = 2πrT dh dr dh = Q 1 2πT r dr h(r) = h w + Q ( r 2πT ln r w where h(r) is the head at distance r from the well, h w is head at the well, Q is the pumping rate (for a discharging well, i.e. water is removed from the aquifer), and r w is the well radius. More generally this equation applies for any two points r 1 and r 2 away from the well. ) (5)

14 Theim: Obtaining Aquifer Parameters when two observation wells are available, (5) can be written as follows, then solved for transmissivity T, or for hydraulic conductivity K for unconfined flow (N.B. Q, h and T or K must have consistent units) h 2 = h 1 + Q 2πT ln T = K = Q 2π(h 2 h 1 ) ln Q π(h 2 2 h2 1 ) ln ( r2 r 1 ( r2 r 1 ( r2 (6) is derived from unconfined version of Darcy s Law, see Fetter (eqns ) Advantages: T (or K) determination quite accurate (compared to transient methods) r 1 ) ) ) (6)

15 Theim: Obtaining Aquifer Parameters (cont.) Disadvantages: need 2 observation wells, can t get storativity S, may require very long term pumping to reach steady-state

16 Theis Equation: Transient-Confined-No Leakage Assumptions: as in Theim equation (except transient), and that no limit on water supply in aquifer (i.e. aquifer is of infinite extent in all directions) in this case, the solution of (1) is more difficult. Thirty years after Theim equation was derived, Theis published the following solution s(r,t) = Q 4πT u e u u du (7) u = r 2 S 4tT where s(r,t) = h(r,t) h(r,0) is the drawdown at distance r from the well. (8)

17 Theis Equation: Transient-Confined-No Leakage (cont.) The integral in (7) is often written as the well function W (u) = e u u u du (9) Values are tabulated in many hydrology references (e.g. Table 4.4.1, Todd and Mays, 2005)

18 Theis: Obtaining Aquifer Parameters type-curve fitting: Theis solution (popular before the advent of computers) Theis devised a graphical solution method for obtaining S&T from (7), known as the Theis solution method. This method obtains values for u, given measurements of s vs. t. From this, S&T can be determined. given (7) written using the well function s(r,t) = Q W (u) (10) 4πT and (8) rearranged r 2 t = 4T S u (11)

19 Theis: Obtaining Aquifer Parameters (cont.) solve these simultaneously for S and T QW (u) T = 4πs S = 4Tu r 2 t need values for u and W (u) to solve these. Determining u and W (u): take the log of both sides of eqns. (10) (11): (12a) (12b) ( ) Q log s = log + log[w (u)] (13a) 4πT ( ) ( ) r 2 4T log = log + log u (13b) t S

20 Theis: Obtaining Aquifer Parameters (cont.) solve (13) simultaneously by plotting W (u) vs. (Fig. 7) and t s vs. (or just t for a single observation well) at same scale r 2 on log log paper (one curve per sheet, Fig. 8) and curve matching (sliding the papers around until the curves exactly overlie one another, keep the axis lines on each sheet parallel to the axes on the other! Fig. 9) 1 u then a pin pushed through the papers will show the values of s and t 1 corresponding to the selected W r 2 (u) vs.. This is u called choosing a match point. once the curves are matched, the match point can be chosen u anywhere on the diagrams, since it fixes the ratios ) and W (u), which arise in (12) s 1 the plot W (u) vs. is called a type curve, since its form u depends only on the type of aquifer involved (e.g. confined, no-leakage) ( r 2 t modern software solves (12) directly using numerical methods. Results often graphically compared to type curve for familiarity.

21 Type Curve, Confined No-Leakage Figure 7: Type curve for confined flow, no leakage, after Fetter (Fig. 5.6, 2001).

22 Confined No-Leakage Data Figure 8: Observed drawdowns for confined flow, no leakage, after Fetter (Fig. 5.7, 2001).

23 Curve Matching (Theis Soln) Figure 9: Type curve matching, Theis Method, indicating W (u) s = 1 and 1/u t = After Fetter (Fig. 5.8, 2001). 2.4,

24 Multi-Observation Wells Figure 10: Cone of depression with multiple observation wells, setting for distance-drawdown solution Driscoll (Fig. 9.23, 1986).

25 Distance-Drawdown Solution Figure 11: Distance-drawdown solution. Slope is determined by s over one log cycle on the distance scale. Fit line can be used to predict drawdown beyond observation wells Driscoll (e.g. point at 300 ft, Fig. 9.23, 1986).

26 Semi-confined (Leaky) Aquifers, Transient Flow Introduction: more complicated class of problems: Non-ideal aquifers Theis solution assumes all pumped water comes from aquifer storage (ideal aquifer) additional water can enter such systems via leakage from lower-permeability bounding materials or surface water bodies. This lowers the drawdown vs. time curve below the classic Theis curve (Fig. 12) Assumptions: as in Theis solution, plus vertical-only flow in the aquitard (i.e. leakage only moves vertically), no drawdown in unpumped aquifer, no contribution from storage in aquitard

27 Variation in Drawdown vs. Time Barrier Theis Drawdown (ft) 10 1 Leaky Time (min) Figure 12: Comparison of drawdown vs. time curves for confined aquifers. Ideal (Theis), leaky, and barrier cases.

28 Leaky Confined Aquifer Type Curve Figure 13: Type curves for leaky confined (artesian) aquifer, after Fetter (Fig. 5.11, 2001)

29 Impermeable barriers the principal effect is to reduce the water available for removal from the aquifer (i.e. storage reduced at some distance from well), increasing drawdown rate when the drawdown cone intersects the barrier (Fig. 14) analytic solutions are available for this case (using image well theory, Ferris, 1959), allowing estimation of the distance to the boundary/barrier as well as the standard aquifer parameters

30 Image Well Geometry Figure 14: Image well configuration for aquifer with barrier. After Freeze and Cherry (1979, Fig. 8.15).

31 Single-Well Tests: Introduction Use recovery data (Fig. 15) plot h o h vs. log ( t t t 1 ), where h o is the head in the well prior to pumping, t is the time since pumping started, t 1 is the duration of pumping Note: for Theis or Jacob method: pumping rate must be constant. Recovery data can be used if pumping rate varied considerably during the test. Well losses often important, so drawdown in the pumping well often not useful during pumping.

32 Recovery Data Figure 15: Drawdown and recovery data. After Freeze and Cherry (1979, Fig. 8.14).

33 Slug (Injection) Tests useful for low to moderate permeability materials a volume of water (or metal bar called a slug ) is added to the well, and relaxation of the water levels to the regional water table is observed vs. time type curve solutions are available (Cooper-Papodopulos-Bredehoeft), plotting the data as the relative slug height (ratio of current over initial slug height) vs. t r 2 c, where r c is the well casing radius for partially-penetrating wells or simple settings, the Hvorslev method is very popular approach, Eqn. 14. In this case a plot of relative slug height vs. log t is used (Fig. 16) K = r 2 ln ( L R ) 2 L t 37 (14)

34 Slug (Injection) Tests (cont.) where r is the well casing radius, L is the length of the screened interval, R is the radius of the casing plus gravel pack, t 37 is the time required for water level to recover to 37% of the initial change (method can use withdrawal or injection)

35 Hvorslev Method Figure 16: Hvorslev slug test analysis procedure (todd-mays-2005), after Fetter (Fig. 5.22, 2001).

36 Pump Test Sequence Figure 17: Pump test sequence, after online notes. Surging is done to remove fines from and stablize gravel pack, step drawdown to measure well efficiency and observe non-linear effects (1 hr each), constant rate test at about 120% of target rate (24 hr at least), subsequent recovery is often the most stable data.

37 Multi-Well Testing Summary All these methods utilize data from one or more observation wells. Storage parameters can only be obtained from multi-well tests. Confined aquifers steady-state: Theim solution transient: Theis solution (curve matching) or Jacob straight-line method (ignores early data) Leaky confined Hantush ( Cooper ) curve matching Hantush-Jacob straight-line (ignores late data, same basic idea as Jacob straight line) Unconfined: dual curve match

38 Single-Well Testing Summary slug/withdrawal tests type-curve matching (Cooper-Papodopulos-Bredehoeft) straight-line approximation (Hvorslev method) indirect tests: point dilution, specific capacity

39 Well-Testing Summary Table Method Theim Theis Jacob Straight-Line Hantush- Jacob Hantush Inflection Point Unconfined Ideal Transient Confined Leaky Comments Steady state hard to reach in field Uses well function W (u) Emphasizes late time (aquifer) data Uses leaky well-function W (u, r B ) Jacob straight line for time before leakage appears Combined type curves for decompression and gravity drainage

40 References Bradbury, K. R. and M. A. Muldoon (1990). Hydraulic conductivity determinations in unlithified glacial and fluvial materials. Special Technical Pub. ASTM, pp Dawson, K. J. and J. D. Istok (1991). Aquifer Testing. ISBN Chelsea, MI: Lewis, p Driscoll, F. G. (1986). Groundwater and Wells. St. Paul, Minn : Johnson Division. Ferris, J. G. (1959). Groundwater Hydrology. In: ed. by C. O. Wisler & E. F. Brater. New York: John Wiley. Fetter, C. W. (2001). Applied Hydrogeology. 4th. Upper Saddle River, NJ: Prentice Hall, p isbn: url: com/catalog/academic/product/0,1144, ,00.html. Freeze, R. A. and J. A. Cherry (1979). Groundwater. Englewood Cliffs, NJ: Prentice-Hall, p Hantush, M. S. (1964). Hydraulics of wells. In: Advances in Hydroscience 1. Ed. by V.T. Chow, pp Kruseman, G. P. and N. A. de Ridder (1991). Analysis and Evaluation of Pumping Test Data. Publi. 47. Wageningen, The Netherlands: International Inst. Land Reclam. and Improvement, p. 377.

41 References (cont.) Lohman, S. W. (1979). Ground-water hydraulics. Vol Prof. Paper. Washington, D.C.: U.S. Geol. Survey, p. 70. Todd, D. K. and L. W. Mays (2005). Groundwater Hydrology. 3rd. Hoboken, NJ: John Wiley & Sons, p isbn: url: http: // Walton, W. C. (1984). Practical aspects of groundwater modeling. Nat. Water Well Assn., p. 566.

PUMPING TEST for Groundwater Aquifers Analysis and Evaluation By: Eng. Deeb Abdel-Ghafour

PUMPING TEST for Groundwater Aquifers Analysis and Evaluation By: Eng. Deeb Abdel-Ghafour PUMPING TEST for Groundwater Aquifers Analysis and Evaluation By: Eng. Deeb Abdel-Ghafour Ramallah December, 2005 Course Description Hydrogeologists try to determine the most reliable values for the hydraulic

More information

An EXCEL Tool for Teaching Theis Method of Estimating Aquifer Parameters

An EXCEL Tool for Teaching Theis Method of Estimating Aquifer Parameters ASEE-NMWSC2013-0011 An EXCEL Tool for Teaching Theis Method of Estimating Aquifer Parameters Navaratnam Leelaruban1, G. Padmanabhan2 Graduate student, Department of Civil Engineering, North Dakota State

More information

Principles of groundwater flow

Principles of groundwater flow Principles of groundwater flow Hydraulic head is the elevation to which water will naturally rise in a well (a.k.a. static level). Any well that is not being pumped will do for this, but a well that is

More information

ALL GROUND-WATER HYDROLOGY WORK IS MODELING. A Model is a representation of a system.

ALL GROUND-WATER HYDROLOGY WORK IS MODELING. A Model is a representation of a system. ALL GROUND-WATER HYDROLOGY WORK IS MODELING A Model is a representation of a system. Modeling begins when one formulates a concept of a hydrologic system, continues with application of, for example, Darcy's

More information

Selected Analytical Methods for Well and Aquifer Evaluation

Selected Analytical Methods for Well and Aquifer Evaluation BULLETIN 49 STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION Selected Analytical Methods for Well and Aquifer Evaluation by WILLIAM C. WALTON ILLINOIS STATE WATER SURVEY URBANA 1962 STATE OF

More information

Groundwater flow systems theory: an unexpected outcome of

Groundwater flow systems theory: an unexpected outcome of Groundwater flow systems theory: an unexpected outcome of early cable tool drilling in the Turner Valley oil field K. Udo Weyer WDA Consultants Inc. weyer@wda-consultants.com Introduction The Theory of

More information

EVALUATION OF WELL TESTS USING RADIAL COMPOSITE MODEL AND DIETZ SHAPE FACTOR FOR IRREGULAR DRAINAGE AREA. Hana Baarová 1

EVALUATION OF WELL TESTS USING RADIAL COMPOSITE MODEL AND DIETZ SHAPE FACTOR FOR IRREGULAR DRAINAGE AREA. Hana Baarová 1 The International Journal of TRANSPORT & LOGISTICS Medzinárodný časopis DOPRAVA A LOGISTIKA Mimoriadne číslo 8/2010 ISSN 1451 107X EVALUATION OF WELL TESTS USING RADIAL COMPOSITE MODEL AND DIETZ SHAPE

More information

GEOS 4430 Lecture Notes: Darcy s Law

GEOS 4430 Lecture Notes: Darcy s Law GEOS 4430 Lecture Notes: Darcy s Law Dr. T. Brikowski Fall 2013 0 file:darcy law.tex,v (1.24), printed October 15, 2013 Introduction Motivation: hydrology generally driven by the need for accurate predictions

More information

Aquifer Simulation Model for Use on Disk Supported Small Computer Systems

Aquifer Simulation Model for Use on Disk Supported Small Computer Systems ISWS-73-CIR 114 Circular 114 STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION Aquifer Simulation Model for Use on Disk Supported Small Computer Systems by T. A. PRICKETT and C. G. LONNQUIST ILLINOIS

More information

CHAPTER: 6 FLOW OF WATER THROUGH SOILS

CHAPTER: 6 FLOW OF WATER THROUGH SOILS CHAPTER: 6 FLOW OF WATER THROUGH SOILS CONTENTS: Introduction, hydraulic head and water flow, Darcy s equation, laboratory determination of coefficient of permeability, field determination of coefficient

More information

3D-Groundwater Modeling with PMWIN

3D-Groundwater Modeling with PMWIN Wen-Hsing Chiang 3D-Groundwater Modeling with PMWIN A Simulation System for Modeling Groundwater Flow and Transport Processes Second Edition With 242 Figures and 23 Tables 4y Springer Contents 1 Introduction

More information

Selected Methods for Pumping Test Analysis

Selected Methods for Pumping Test Analysis REPORT OF INVESTIGATION 25 STATE OF ILLINOIS OTTO KERNER, Governor DEPARTMENT OF REGISTRATION AND EDUCATION WILLIAM SYLVESTER WHITE, Director Selected Methods for Pumping Test Analysis by JACK BRUIN and

More information

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by:

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by: Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com A weir is basically an obstruction in an open channel

More information

Gas Well Deliverability Testing

Gas Well Deliverability Testing Gas Well Deliverability Testing What is deliverability testing? The "deliverability" of a gas well can be defined as the well's capacity to produce against the restrictions of the well bore and the system

More information

LAPLACE'S EQUATION OF CONTINUITY

LAPLACE'S EQUATION OF CONTINUITY LAPLACE'S EQUATION OF CONTINUITY y z Steady-State Flow around an impervious Sheet Pile Wall Consider water flow at Point A: v = Discharge Velocity in Direction Figure 5.11. Das FGE (2005). v z = Discharge

More information

Airlift Testing In Exploration Coreholes

Airlift Testing In Exploration Coreholes Abstract Airlift Testing In Exploration Coreholes Roger Howell, SRK Consulting, Denver 7175 W. Jefferson Avenue, Suite 3000 Lakewood, CO 80235 USA Keywords: Testing in exploration drillholes, airlifting,

More information

A n. P w Figure 1: Schematic of the hydraulic radius

A n. P w Figure 1: Schematic of the hydraulic radius BEE 473 Watershed Engineering Fall 2004 OPEN CHANNELS The following provide the basic equations and relationships used in open channel design. Although a variety of flow conditions can exist in a channel

More information

Why Transmissivity Values from Specific Capacity Tests Appear Unreliable. Rich Soule Justin Blum Steve Robertson

Why Transmissivity Values from Specific Capacity Tests Appear Unreliable. Rich Soule Justin Blum Steve Robertson Why Transmissivity Values from Specific Capacity Tests Appear Unreliable Rich Soule Justin Blum Steve Robertson Wellhead Protection in Minnesota State Wellhead Protection Rule specifies the use of groundwater

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #2: Aquifers, Porosity, and Darcy s Law. Lake (Exposed Water Table)

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #2: Aquifers, Porosity, and Darcy s Law. Lake (Exposed Water Table) 1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #2: Aquifers, Porosity, and Darcy s Law Precipitation Infiltration Lake (Exposed Water Table) River Water table Saturated zone - Aquifer

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Appendix 4-C. Open Channel Theory

Appendix 4-C. Open Channel Theory 4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

Modelling the Discharge Rate and the Ground Settlement produced by the Tunnel Boring

Modelling the Discharge Rate and the Ground Settlement produced by the Tunnel Boring Modelling the Discharge Rate and the Ground Settlement produced by the Tunnel Boring Giona Preisig*, Antonio Dematteis, Riccardo Torri, Nathalie Monin, Ellen Milnes, Pierre Perrochet *Center for Hydrogeology

More information

Cash Flow and Accounts Receivable Management for Dialysis

Cash Flow and Accounts Receivable Management for Dialysis Dialysis & Transplantation, Volume 13, Number 4, April 1984, p. 201 Cash Flow and Accounts Receivable Management for Dialysis John A. Sargent, PhD, President; Albert Grutze, Systems Manager, Quantitative

More information

or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:

or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost: Chapter 9 Lecture Notes 1 Economics 35: Intermediate Microeconomics Notes and Sample Questions Chapter 9: Profit Maximization Profit Maximization The basic assumption here is that firms are profit maximizing.

More information

For Water to Move a driving force is needed

For Water to Move a driving force is needed RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

Aquifer Performance Test Report. Prepared for Butte County Department of Water and Resource Conservation April 26, 2013

Aquifer Performance Test Report. Prepared for Butte County Department of Water and Resource Conservation April 26, 2013 Aquifer Performance Test Report Prepared for Butte County Department of Water and Resource Conservation April 26, 2013 Table of Contents List of Figures... iii List of Tables... vi List of Abbreviations...

More information

Design of a Universal Robot End-effector for Straight-line Pick-up Motion

Design of a Universal Robot End-effector for Straight-line Pick-up Motion Session Design of a Universal Robot End-effector for Straight-line Pick-up Motion Gene Y. Liao Gregory J. Koshurba Wayne State University Abstract This paper describes a capstone design project in developing

More information

Ground Water Surveys and Investigation

Ground Water Surveys and Investigation Ground Water Surveys and Investigation By Gautam Mahajan ASHISH PUBLISHING HOUSE 8/81, PUNJABI BAGH, NEW DELHI-110 026 - Contents Preface List of Abbrivations (v) (vii) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.7.1

More information

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

More information

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT RESOURCE REGULATION TRAINING MEMORANDUM

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT RESOURCE REGULATION TRAINING MEMORANDUM SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT RESOURCE REGULATION TRAINING MEMORANDUM DATE: December 04, 1996 This document is subject to change. If in doubt, verify current status with Technical Services

More information

Training Guide. An Introduction to Well Drawdown

Training Guide. An Introduction to Well Drawdown Training Guide An Introduction to Well Drawdown Rural and Small Systems Training Guide An Introduction to Well Drawdown Michael J. Lytle, Arizona Water Association Contributing Author Paul Markowski, Nebraska

More information

CONCEPTS AND MODELING IN GROUND-WATER HYDROLOGY- A SELF-PACED TRAINING COURSE

CONCEPTS AND MODELING IN GROUND-WATER HYDROLOGY- A SELF-PACED TRAINING COURSE CONCEPTS AND MODELING IN GROUND-WATER HYDROLOGY- A SELF-PACED TRAINING COURSE by O. L Franke, G.D. Bennett, T.E. Reilly, R.L. Laney, H.T. Buxton, and RJ. Sun U.S. GEOLOGICAL SURVEY Open-File Report 90-707

More information

Basic Hydrology. Time of Concentration Methodology

Basic Hydrology. Time of Concentration Methodology Basic Hydrology Time of Concentration Methodology By: Paul Schiariti, P.E., CPESC Mercer County Soil Conservation District What is the Time of Concentration? The time it takes for runoff to travel from

More information

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer

More information

Open Channel Flow Measurement Weirs and Flumes

Open Channel Flow Measurement Weirs and Flumes Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

More information

Answer Key for the Review Packet for Exam #3

Answer Key for the Review Packet for Exam #3 Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y

More information

Construction sites are dewatered for the following purposes:

Construction sites are dewatered for the following purposes: 9. DEWATERING CONTROL OF GROUNDWATER Construction of buildings, powerhouses, dams, locks and many other structures requires excavation below the water table into water-bearing soils. Such excavations require

More information

The University of Toledo Soil Mechanics Laboratory

The University of Toledo Soil Mechanics Laboratory The University of Toledo Soil Mechanics Laboratory Permeability Testing - 1 Constant and Falling Head Tests Introduction In 1856 the French engineer Henri D arcy demonstrated by experiment that it is possible

More information

Chapter 12 - HYDROLOGICAL MEASUREMENTS

Chapter 12 - HYDROLOGICAL MEASUREMENTS Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes Edited by Jamie Bartram and Richard Ballance Published on behalf of

More information

Evaluation of Open Channel Flow Equations. Introduction :

Evaluation of Open Channel Flow Equations. Introduction : Evaluation of Open Channel Flow Equations Introduction : Most common hydraulic equations for open channels relate the section averaged mean velocity (V) to hydraulic radius (R) and hydraulic gradient (S).

More information

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Nature of Services The company has a long history of performance of tests of piles and pile groups under a variety

More information

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

More information

Revised Multi-Node Well (MNW2) Package for MODFLOW Ground-Water Flow Model

Revised Multi-Node Well (MNW2) Package for MODFLOW Ground-Water Flow Model Revised Multi-Node Well (MNW2) Package for MODFLOW Ground-Water Flow Model Techniques and Methods 6 A30 U.S. Department of the Interior U.S. Geological Survey Cover: Schematic cross section showing flow

More information

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps Pumping Systems: Parallel and Series Configurations For some piping system designs, it may be desirable to consider a multiple pump system to meet the design requirements. Two typical options include parallel

More information

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

More information

Chapter 5: Working with contours

Chapter 5: Working with contours Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in

More information

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

More information

Groundwater Flooding: a UK Perspective

Groundwater Flooding: a UK Perspective Groundwater Flooding: a UK Perspective David Macdonald British Geological Survey Maclean Building Crowmarsh Gifford Wallingford OX10 8BB Tel 01491 838800 NERC All rights reserved Talk outline Definition

More information

Slope and Rate of Change

Slope and Rate of Change Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the

More information

Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data U.S. Geological Survey Circular 1217

Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data U.S. Geological Survey Circular 1217 Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data U.S. Geological Survey Circular 1217 by Charles J. Taylor William M. Alley Denver, Colorado 2001 U.S. DEPARTMENT OF THE INTERIOR

More information

Rational Method Hydrologic Calculations with Excel. Rational Method Hydrologic Calculations with Excel, Course #508. Presented by:

Rational Method Hydrologic Calculations with Excel. Rational Method Hydrologic Calculations with Excel, Course #508. Presented by: Rational Method Hydrologic Calculations with Excel, Course #508 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Calculation of peak storm water runoff rate from a drainage

More information

APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY CURVE ON HYPOTHETICAL WELL-X

APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY CURVE ON HYPOTHETICAL WELL-X PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 8-30, 008 SGP-TR-185 APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY

More information

Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

Figure 1 - Unsteady-State Heat Conduction in a One-dimensional Slab

Figure 1 - Unsteady-State Heat Conduction in a One-dimensional Slab The Numerical Method of Lines for Partial Differential Equations by Michael B. Cutlip, University of Connecticut and Mordechai Shacham, Ben-Gurion University of the Negev The method of lines is a general

More information

ATTACHMENT 8: Quality Assurance Hydrogeologic Characterization of the Eastern Turlock Subbasin

ATTACHMENT 8: Quality Assurance Hydrogeologic Characterization of the Eastern Turlock Subbasin ATTACHMENT 8: Quality Assurance Hydrogeologic Characterization of the Eastern Turlock Subbasin Quality assurance and quality control (QA/QC) policies and procedures will ensure that the technical services

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

ESSENTIAL COMPONENTS OF WATER-LEVEL MONITORING PROGRAMS. Selection of Observation Wells

ESSENTIAL COMPONENTS OF WATER-LEVEL MONITORING PROGRAMS. Selection of Observation Wells ESSENTIAL COMPONENTS OF WATER-LEVEL MONITORING PROGRAMS Before discussing the uses and importance of long-term water-level data, it is useful to review essential components of a water-level monitoring

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

14.330 SOIL MECHANICS Assignment #4: Soil Permeability.

14.330 SOIL MECHANICS Assignment #4: Soil Permeability. Geotechnical Engineering Research Laboratory One University Avenue Lowell, Massachusetts 01854 Edward L. Hajduk, D.Eng, PE Lecturer PA105D Tel: (978) 94 2621 Fax: (978) 94 052 e mail: Edward_Hajduk@uml.edu

More information

potential in the centre of the sphere with respect to infinity.

potential in the centre of the sphere with respect to infinity. Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, 2006-09-27, kl 16.00-22.00 Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

How To Map A Lake In The North Of The Holland (Fiji)

How To Map A Lake In The North Of The Holland (Fiji) 1. Hydrogelogical mapping Jiri Sima Aim of HG map Groundwater and rocks qualitative permeability and quantitative potential of rock units aquifers / aquitards / aquiclides Water points (spatial distribution

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 5 : Geophysical Exploration [ Section 5.1 : Methods of Geophysical Exploration ]

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 5 : Geophysical Exploration [ Section 5.1 : Methods of Geophysical Exploration ] Objectives In this section you will learn the following General Overview Different methods of geophysical explorations Electrical resistivity method Seismic refraction method 5 Geophysical exploration

More information

Figure 2.1: Center of mass of four points.

Figure 2.1: Center of mass of four points. Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

More information

GROUNDWATER FLOW NETS Graphical Solutions to the Flow Equations. One family of curves are flow lines Another family of curves are equipotential lines

GROUNDWATER FLOW NETS Graphical Solutions to the Flow Equations. One family of curves are flow lines Another family of curves are equipotential lines GROUNDWTER FLOW NETS Graphical Solutions to the Flow Equations One family of curves are flow lines nother family of curves are equipotential lines B C D E Boundary Conditions B and DE - constant head BC

More information

Lecture notes for Choice Under Uncertainty

Lecture notes for Choice Under Uncertainty Lecture notes for Choice Under Uncertainty 1. Introduction In this lecture we examine the theory of decision-making under uncertainty and its application to the demand for insurance. The undergraduate

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

BAFFLES AS A MEANS OF STATION PROTECTION FROM HIGH AIR VELOCITIES - COMPARISON OF ANALYTICAL AND FIELD MEASUREMENTS RESULTS

BAFFLES AS A MEANS OF STATION PROTECTION FROM HIGH AIR VELOCITIES - COMPARISON OF ANALYTICAL AND FIELD MEASUREMENTS RESULTS - 289 - BAFFLES AS A MEANS OF STATION PROTECTION FROM HIGH AIR VELOCITIES - COMPARISON OF ANALYTICAL AND FIELD MEASUREMENTS RESULTS Maevski Igor, PhD, PE Jacobs Engineering, USA ABSTRACT Draught relief

More information

Water Supply and Wells

Water Supply and Wells Re-issued under new categorization in August 2009 as Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-4 Buildings Department Practice Note

More information

Well deliverability test of Kailastila gas field (Well no. KTL-01, KTL-02)

Well deliverability test of Kailastila gas field (Well no. KTL-01, KTL-02) Journal of Petroleum and Gas Exploration Research (ISSN 76-6510) Vol. (10) pp. 188-193, November, 01 Available online http://www.interesjournals.org/jpger Copyright 01 International Research Journals Full

More information

ources of Drinking Water

ources of Drinking Water The drop on water Sources of Drinking Water Did you know that 40 per cent of Nova Scotians get their water privately from a drilled well, a dug well, or a surface water source? The other 60 per cent rely

More information

Fun with stacking blocks

Fun with stacking blocks Fun with stacking blocks John F. Hall California Institute of Technology, Pasadena, California 925 Received 3 March 2005; accepted 6 August 2005 How can a given number of rigid, rectangular blocks be stacked

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

U. S. Army Corps of Engineers Ground Water Extraction System Subsurface Performance Checklist

U. S. Army Corps of Engineers Ground Water Extraction System Subsurface Performance Checklist U. S. Army Corps of Engineers Ground Water Extraction System Subsurface Performance Checklist Installation Name Site Name / I.D. Evaluation Team Site Visit Date This checklist is meant to aid in evaluating

More information

Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

More information

Solutions of Equations in One Variable. Fixed-Point Iteration II

Solutions of Equations in One Variable. Fixed-Point Iteration II Solutions of Equations in One Variable Fixed-Point Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Step 11 Static Load Testing

Step 11 Static Load Testing Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

More information

Hydrogeological Data Visualization

Hydrogeological Data Visualization Conference of Junior Researchers in Civil Engineering 209 Hydrogeological Data Visualization Boglárka Sárközi BME Department of Photogrammetry and Geoinformatics, e-mail: sarkozi.boglarka@fmt.bme.hu Abstract

More information

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155 Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

COST AND PERFORMANCE REPORT

COST AND PERFORMANCE REPORT COST AND PERFORMANCE REPORT Pump and Treat of Contaminated Groundwater at the United Chrome Superfund Site Corvallis, Oregon September 1998 Prepared by: SITE INFORMATION Identifying Information: United

More information

Rainfall Intensities for Southeastern Arizona

Rainfall Intensities for Southeastern Arizona Rainfall Intensities for Southeastern Arizona By Herbert B. Osborn, Member, ASCE1 and Kenneth G. Renard, Fellow, ASCE1 Introduction Small watershed storm runoff in the southwestern United States is dominated

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering

More information

A plan for conversion of stormwater to groundwater recharge on the Utah Valley University main campus, Orem, Utah

A plan for conversion of stormwater to groundwater recharge on the Utah Valley University main campus, Orem, Utah Hydrology Days 2013 A plan for conversion of stormwater to groundwater recharge on the Utah Valley University main campus, Orem, Utah Dylan B. Dastrup, Gabriela R. Ferreira, Daniel Zacharias, Daniel H.

More information

8. Simultaneous Equilibrium in the Commodity and Money Markets

8. Simultaneous Equilibrium in the Commodity and Money Markets Lecture 8-1 8. Simultaneous Equilibrium in the Commodity and Money Markets We now combine the IS (commodity-market equilibrium) and LM (money-market equilibrium) schedules to establish a general equilibrium

More information

CHAPTER 2 HYDRAULICS OF SEWERS

CHAPTER 2 HYDRAULICS OF SEWERS CHAPTER 2 HYDRAULICS OF SEWERS SANITARY SEWERS The hydraulic design procedure for sewers requires: 1. Determination of Sewer System Type 2. Determination of Design Flow 3. Selection of Pipe Size 4. Determination

More information

Impedance Matching. Using transformers Using matching networks

Impedance Matching. Using transformers Using matching networks Impedance Matching The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load,

More information

720 Contour Grading. General. References. Resources. Definitions

720 Contour Grading. General. References. Resources. Definitions 720 Contour Grading General Contour grading directs water to a desired point, prevents erosion, provides noise deflection, provides visual fit of the facility into the landscape, and protects desirable

More information

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )). Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y

More information

A Strategy for Teaching Finite Element Analysis to Undergraduate Students

A Strategy for Teaching Finite Element Analysis to Undergraduate Students A Strategy for Teaching Finite Element Analysis to Undergraduate Students Gordon Smyrell, School of Computing and Mathematics, University of Teesside The analytical power and design flexibility offered

More information

Mathematics on the Soccer Field

Mathematics on the Soccer Field Mathematics on the Soccer Field Katie Purdy Abstract: This paper takes the everyday activity of soccer and uncovers the mathematics that can be used to help optimize goal scoring. The four situations that

More information

FUNDAMENTALS OF CONSOLIDATION

FUNDAMENTALS OF CONSOLIDATION FUNDAMENTALS OF CONSOLIDATION SAND (Vertical Stress Increase) CLAY CONSOLIDATION: Volume change in saturated soils caused by the expulsion of pore water from loading. Saturated Soils: causes u to increase

More information