METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH

Size: px
Start display at page:

Download "METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH"

Transcription

1 Warsaw Unversty of Lfe Scences SGGW Faculty of Appled Informatcs and Mathematcs METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH QUANTITATIVE METHODS IN ECONOMICS Volume XII, No. EDITOR-IN-CHIEF Bolesław Borkowsk Warsaw 20

2 EDITORIAL BOARD Prof. Zbgnew Bnderman char, Prof. Bolesław Borkowsk, Prof. Leszek Kuchar, Prof. Wojcech Zelńsk, Dr. hab. Stansław Gędek, Dr. Hanna Dudek, Dr. Agata Bnderman Secretary SCIENTIFIC BOARD Prof. Bolesław Borkowsk char (Warsaw Unversty of Lfe Scences SGGW), Prof. Zbgnew Bnderman (Warsaw Unversty of Lfe Scences SGGW), Prof. Paolo Gajo (Unversty of Florence, Italy), Prof. Evgeny Grebenkov (Computng Centre of Russa Academy of Scences, Moscow, Russa), Prof. Yury Kondratenko (Black Sea State Unversty, Ukrane), Prof. Vassls Kostoglou (Alexander Technologcal Educatonal Insttute of Thessalonk, Greece), Prof. Robert Kragler (Unversty of Appled Scences, Wengarten, Germany), Prof. Yochanan Shachmurove (The Cty College of The Cty Unversty of New York), Prof. Alexander N. Prokopenya (Brest Unversty, Belarus), Dr. Monka Krawec Secretary (Warsaw Unversty of Lfe Scences SGGW). PREPARATION OF THE CAMERA READY COPY Dr. Jolanta Kotlarska, Dr. Elżbeta Saganowska TECHNICAL EDITORS Dr. Jolanta Kotlarska, Dr. Elżbeta Saganowska LIST OF REVIEWERS Prof. Iacopo Bernett (Unversty of Florence, Italy) Prof. Paolo Gajo (Unversty of Florence, Italy) Prof. Yury Kondratenko (Black Sea State Unversty, Ukrane) Prof. Vassls Kostoglou (Alexander Technologcal Educatonal Insttute of Thessalonk, Greece), Prof. Karol Kukuła (Unversty of Agrculture n Krakow) Prof. Wanda Marcnkowska-Lewandowska (Warsaw School of Economcs) Prof. Yochanan Shachmurove (The Cty College of the Cty Unversty of New York) Prof. Ewa Marta Syczewska (Warsaw School of Economcs) Prof. Dorota Wtkowska (Warsaw Unversty of Lfe Scences SGGW) Prof. Wojcech Zelńsk (Warsaw Unversty of Lfe Scences SGGW) Dr. Lucyna Błażejczyk-Majka (Adam Mckewcz Unversty n Poznan) Dr. Mchaela Chocolata (Unversty of Economcs n Bratslava, Slovaka) ISSN X Copyrght by Katedra Ekonometr Statystyk SGGW Warsaw 20, Volume XII, No. Publshed by Warsaw Unversty of Lfe Scences Press

3 CONTENTS Zbgnew Bnderman, Bolesław Borkowsk, Wesław Szczesny An applcaton of radar charts to geometrcal measures of structures of conformablty... Zbgnew Bnderman, Marek Werzbck Some remarks on aplcatons of algebrac analyss to economcs... 5 Mchaela Chocholatá Tradng volume and volatlty of stock returns: Evdence from some European and Asan stock markets Marcn Dudzńsk, Konrad Furmańczyk The quantle estmaton of the maxma of sea levels E. M. Ekanayake, Lucyna Korneck Factors affectng nward foregn drect nvestment flows nto the Unted States: Evdence from State-Level Data Andrea Furková, Kvetoslava Surmanová Stochastc fronter analyss of regonal compettveness Jarosław Jankowsk Identfcaton of web platforms usage patterns wth dynamc tme seres analyss methods Stansław Jaworsk, Konrad Furmańczyk On the choce of parameters of change-pont detecton wth applcaton to stock exchange data Krzysztof Karpo, Arkadusz Orłowsk, Potr Łukasewcz, Jerzy Różańsk Some applcatons of rank clocks method Monka Krawec Effcency of ndrect ways of nvestng n commodtes n condtons of polsh captal market Mara Parlńska, Galsan Dareev Applcatons of producton functon n agrculture... 9 Grzegorz Przekota, Tadeusz Waścńsk, Lda Sobczak Reacton of the nterest rates n Poland to the nterest rates changes n the USA and euro zone... 25

4 4 Contents Aleksander Strasburger, Andrzej Zembrzusk On applcaton of Newton s Method to solve optmzaton problems n the consumer theory. Expanson s Paths and Engel Curves Ewa Marta Syczewska Contegraton snce Granger: evoluton and development Tadeusz Waścńsk, Grzegorz Przekota, Lda Sobczak Behavor of the Central Europe exchange rates to the Euro and US dollar Wojcech Zelńsk Comparson of confdence ntervals for fracton n fnte populatons... 77

5 QUANTITATIVE METHODS IN ECONOMICS Vol. XII, No., 20, pp. 3 AN APPLICATION OF RADAR CHARTS TO GEOMETRICAL MEASURES OF STRUCTURES OF CONFORMABILITY Zbgnew Bnderman, Bolesław Borkowsk Department of Econometrcs and Statstcs, Warsaw Unversty of Lve Scences SGGW e-mals: Wesław Szczesny Department of Informatcs, Warsaw Unversty of Lve Scences SGGW e-mal: Abstract: In the followng work we presented a method of usng radar charts to calculate measures of conformablty of two objects accordng to formulas gven by, among others, Dce, Jaccard, Tanmoto and Tversky. Ths method ncorporates another one presented by the authors of ths study [Bnderman, Borkowsk, Szczesny 200]. Presented methods can be also utlzed to defne smlartes between gven objects, as well as to order and group objects. Measures descrbed n ths work satsfy the condton of stablty as they do not depend on the order of studed features. Key words: radar method, radar measure of conformablty, Dce s, Jaccard s measure of smlarty, synthetc measures, classfcaton, cluster analyss. CONSTRUCTION OF RADAR MEASURES OF CONFORMABILITY In prevous works authors used methods that have a smple nterpretaton n the form of a radar chart to order, classfy and measure smlarty of objects [Bnderman, Borkowsk, Szczesny 2008, 2009, 2009a, 200, 200a, b, c, d, Bnderman, Szczesny 2009, 20, Bnderman 2009, 2009a]. Those methods do not depend on the way the features of a gven object are ordered. In the followng work authors attempted to utlze those methods n other, wdely known means of measurng smlarty between two objects. Comparng structures of objects s chosen here as an example. Coeffcents of Jaccard, Dce and Tanmoto, Tversky ndex and cosne smlarty are all exemplary geometrcal measures of smlarty.

6 2 Zbgnew Bnderman, Bolesław Borkowsk, Wesław Szczesny The methods presented here may seem numercally complcated but n the age of computers ths problem s of lttle sgnfcance. Numerous studes conducted n many dfferent felds of scence: economcs, statstcs, computer scence, chemstry, bology, ecology, psychology, culture and toursm have proven the usefulness of those methods [Bnderman 2009a, Bnderman, Borkowsk, Szczesny 200b, c, Cok, Kowalczyk, Pleszczyńska, Szczesny 995, Deza E., Deza M.M. 2006, Duda, Hart, Stork 2000, Gordon 999, Hubalek 982, Kukuła 2000, 200, Legendre P., Legendre L. 998, Monev 2004, Szczesny 2002, Tan, Stenbach, Kumar 2006, Warrens 2008]. Let Q and P be two objects that are descrbed by a set of n (n>2) features. n Assume that objects Q and P are descrbed by two vectors x, y R +, where: x = ( x, x2,..., xn), y = ( y, y2,..., yn); x, y 0; = 2,,..., n and n n x =, y =. = = In order to graphcally represent the methods we nscrbe a regular n-gon nto a unt crcle (wth a radus of ) wth a centre n the orgn of a polar coordnate system 0uv and we wll connect the vertces of ths n-gon wth the orgn of the coordnate system. Thus, one constructs lne segments of length, we wll denote, n sequence, O,O2,...,0n, startng, for defntveness, wth the lne segment coverng w axs. Assume that at least two coordnates of each of the vectors x and y are non-zero. Because features of objects x and y take on values from an nterval <0,>, that s 0 x 0 x, 0 y 0 y, =,2,...n, where 0:=(0,0,...,0), :=(,,...,), we can represent the values of those features as a radar chart. To do so, let x (y ) denote those ponts on the 0 axs that came nto beng by ntersectng the 0 axs wth a crcle wth the centre at the orgn of the coordnate system and radus of x (y ), =,2,...,n. By connectng the ponts: x wth x 2, x 2 wth x 3,..., x n wth x (y wth y 2, y 2 wth y 3,..., y n wth y ) we get n-gons S Q and S P, where ts areas S Q and S P, are gven by formulas: n n 2π 2π SQ = Sx = : n 2xx sn = sn, gdze, + n 2 n xx x = + + x = = () n n 2π 2π SP = Sy = sn sn, gdze :. 2yy = n 2 yy y = y + n + n+ = = The formula for the area of the ntersecton of those n-gons, whch we wll denote by Sx y : = Sx Sy has a more complcated form. Its form and detaled determnaton can be found n [Bnderman, Borkowsk, Szczesny 200]. Usng those formulae we can denote the area of the unon of n-gons S x and S y as

7 An applcaton of radar charts 3 Sx Sy = Sx + Sy Sx S y, (2) where the areas Sx, Sy are defned by formulae (). Fgure presents two graphcal llustratons of vectors x=(0,2, 0,2, 0,3, 0,5, 0,, 0,05) and y =(0,5, 0,5, 0,2, 0,25, 0,5, 0,) that descrbe two exemplary demographcal structures (for age ranges: 0-4, 5-24, 25-49, 50-64, 65-79, >80), whle Fg. A and B dffer only by the order of axes (meanng the permutaton of the coordnates). Fg.. Radar charts for vectors x and y, whch coordnates present two exemplary demographcal structures, by dfferent orderng of axes. > ,3 0,25 0,2 0,5 0, 0, > B 0-4 0,3 0,25 0,2 0,5 0, 0, A Source: own work From the fgure t s clear that areas of n-gons Sx, S y and ther unons on fgures A and B dffer n sze. They are: 0,076; 0,074; 0,05 and 0,075; 0,069; 0,047, respectvely. In works [Bnderman Borkowsk, Szczesny 2008, 200] authors proposed a measure of conformablty of objects that uses a geometrcal nterpretaton n the form of radar charts and s defned as follows: R xy = S S x y σ xy S S x y ω xy for n= 3 for n 4, () 3

8 4 Zbgnew Bnderman, Bolesław Borkowsk, Wesław Szczesny where mn( S gdy > 0 gdy > 0 x, S y ) S x S y max( S x, S y ) S x S y xy gdy Sx Sy= 0 gdy Sx Sy= 0 σ : =, ω : = xy. Note that such a measure of conformablty (smlarty) has the property of: 0 μ x.y and depends on the orderng of features [cf. Bnderman Borkowsk, Szczesny 2008]. To defne a measure of conformablty of objects that does not depend on the orderng of features, let us denote by π j a j-th permutaton of numbers,2,,n. It s known that the number of all such permutatons s equal to n! [Mostowsk, Stark 977]. Each permutaton of coordnates of vectors x and y corresponds to one permutaton π j. Let vectors x j, y j denote the j-th permutaton of coordnates of vectors x and y, respectvely, assumng that x :=x, y :=y. For example, f n=3, x=(x,x 2,x 3 ), y=(y,y 2,y 3 ) and π =(,2,3), π 2 =(,3,2), π 3 =(2,,3), π 4 =(2,3,), π 5 =(3,,2), π 6 =(3,2,) then: x =(x,x 2,x 3 ), y =(y,y 2,y 3 ), x 2 =(x,x 3,x 2 ), y 2 =(y,y 3,y 2 ) x 3 =(x 2,x,x 3 ), y 3 =(y 2,y,y 3 ), x 4 =(x 2,x 3,x ), y 4 =(y 2,y 3,y ), x 5 =(x 3,x,x 2 ), y 5 =(y 3,y,y 2 ), x 6 =(x 3,x 2,x ), y 6 =(y 3,y 2,y ). A result from our earler works s that a coeffcent of conformablty of structures corresponds to each j-th permutaton x j, y j of coordnates of vectors x and y j RQP, = R xy, ( 4) j j where naturally RQP, = R xy. Therefore, we can assume that the followng desgnatons of three dfferent measures of conformablty of consdered objects Q and P. Naturally, those measures are nvarant under the orderng of coordnates for vectors x and y. M M j QP, = xy = QP, j n! m m j QP, = xy = QP, j n! n! s s j QP, = xy = QP,. n! j= R R max R, R R mn R, () 5 R R R

9 An applcaton of radar charts 5 Other well-known n lterature technques that use geometrcal nterpretatons, such as radar charts, may be used to compare two structures x = ( x, x2,..., xn), y = ( y, y2,..., y n). Most well known among them are: cosne smlarty [Deza, Deza 2006] Sx Sy for S S > 0 c x y S S, xy x y (6) = 0 for Sx Sy = 0 Jaccard coeffcent [Jaccard 90, 902, 908] Sx Sy for S S 0 J x y > xy = Sx Sy, 0 for Sx Sy = 0 (7) Dce s coeffcent [Dce 945] 2Sx Sy for Sx Sy > 0 D xy = Sx + Sy, (8) 0 for Sx Sy = 0 Tanmoto coeffcent [Tanmoto 957, 959] Sx Sy for Sx Sy > 0 T xy = Sx + Sy Sx S y, (9) 0 for Sx Sy = 0

10 6 Zbgnew Bnderman, Bolesław Borkowsk, Wesław Szczesny Tversky ndex [Tversky 957] S S x y for Sx Sy > 0 xy Sx Sy + α S x \Sy + β S y \Sx, T = αβ 0. (0) 0 for Sx Sy = 0 Let us note that f n the above formula the coeffcents fulfll α=β= then we get Tanmoto s formula and f α=β= then we get Dce s formula. Here and n 2 the sequel we shall assume that α=β=. 4 Note that the defned above measures of smlarty, take a value between [0, ], are dependent on the orderng of features n case once represents the object by a radar chart. Another smple way of vsualzng the structure x = ( x, x2,..., xn ) s a bar graph, n whch each coordnate s represented as a rectangle of wdth and heght x (for =,,n). The area of such graph s equal to and one of the most popular ndcators of smlarty of two structures x = ( x, x2,..., xn ) and y = ( y, y2,..., y n ) s defned as [Malna 2004]: n Wxy : = mn( x, y), () = It s clear that ts value s ndependent of the orderng of features and, n the case of such graphcal representaton of structure, takes a value dentcal to the values of coeffcents defned n (6) and (8). In every stuaton when the ndcator of smlarty of two structures that uses a graphcal nterpretaton s not nvarant under the permutaton of coordnates, we may modfy ts defnton, n a way shown above (see formula (5)). Thus, to defne a measure of conformablty that would be ndependent of the orderng of features, let us denote by p j the j-th permutaton of numbers,2,,n. Naturally, each permutaton of coordnates of vectors x and y corresponds to one permutaton p j. Let vectors x j, y j denote j-th permutaton of coordnates of vectors x and y, respectvely. Assume that x =x, y =y, for each j-th permutaton x j, y j of coordnates of vectors x and y corresponds a coeffcent of conformablty of structures j c, = cxy, ( 2) j j QP

11 An applcaton of radar charts 7 where naturally c QP, = c xy, and the cosne smlarty c xy s defned as n formula (6). Wth regard to the above, let us assume the followng defntons of three dfferent measures of conformablty for objects Q and P M M j QP, = x,y = QP, j n! m m j QP, = x,y = QP, j n! n! s s j QP, = x,y = QP, n! j= c c max c, c c mn c, ( 3) c c c. In a smlar manner we can defne other coeffcents M m s M m s M m s M m s J xy,j xy,j xy;d xy,d xy, D xy ; Txy, Txy, T xy;t xy,txytxy. In order to demonstrate the presented above method of comparng structures, let us consder a smple example. Example. Let Q= x=,, 0, R= y =,,. Let us assume the followng denotatons: x: = x4 : = x, x2 : = x5: =,0,, x3: = x6 : = 0,,, y: = y2 : = y3: = y4 : = y5: = y6 = y. Thus we have: 2π 3 2π 3 Sx = sn =, S 3 sn, y = = π Sx S sn,, y = = S x S y = Rxy = / =, dla =,2,...,

12 8 Zbgnew Bnderman, Bolesław Borkowsk, Wesław Szczesny M m s 2 So Rx,y = Rx,y = Rx,y = = ~, M s m, where coeffcents RQP,, RQP,, R QP, are defned as n formulae (5). It can be easly verfed that coeffcents of conformablty of structures: cosne (formula (3)), Jaccard, Dce s are equal to: M m s M m s M m s c = c = c = 0, 385; J = J = J = 0, 236; D = D = D = 0, 38. x,y x,y x,y x,y x,y x,y x,y x,y x,y Note that M M M c = 0620, ; J = 0486, ; D = 067,. x,y x,y x,y It s also noteworthy that n ths case the coeffcent of conformablty of structures 2 (defned by formula ()) s W xy = =. The value of the coeffcent defne by formula (7) or (9) that uses an nterpretaton of the structure as a bar graph s equal to 0,5 =0,6(6)/,3(3). The above example shows that measures of smlarty of two objects calculated by dfferent methods (e.g. a method that ncludes the manner of the graphcal representaton of the structure or a method of normalzng, whch, when appled, causes the measure of the area of the unon of faces to take a value between [0, ]), can be sgnfcantly dfferent. A sngle measure of smlarty of objects can be far from optmal n the understandng of a gven expert. Furthermore, experts can dsagree on the meanngs of ndvdual measures. Thus t s safer to use, n the analyss of structures, a measure that s, for example, an average of several dfferent measures of smlarty [see: Breman 994]. EMPIRICAL RESULTS In order to verfy the approach descrbed n the prevous secton, we present an evaluaton of the sze of changes n demographcal structures of European countres between the years 999 and 2000, usng the dscussed above coeffcents. The followng Tables and 2 contan values of ndcators evaluatng the change of demographcal structures for 27 countres between years 999 and 200; wth an ndcaton what poston they occuped n the rankng of values of ndvdual measures as well as two parttons of countres nto 4 groups (columns C and C2). The partton s made based on the values of ndcator M (arthmetc mean of values of ndcators R, C, J, D and T) and ndcator W, whle the thresholds were defned as: A-d, A, A+d, where A denotes an average and d standard devaton.

13 An applcaton of radar charts 9 Table. Values and rankngs of ndcators evaluatng the smlarty of demographcal structures of 27 European countres n the years 999 and 200. Indcators are defned on the grounds of formulas: R - (3), C - (6), J - (7), D - (8), T-(0), M=(R+C+J+D+T)/5, W - () for the followng orderng of age ranges: 0-4, 5-24, 25-49, 50-64, 65-79, >80. The last two columns contan nformaton about the partton nto 4 groups, accordng to values of ndcators M and W, respectvely. No. country R C J D T M W R C J D T M W C C2 Austra 0,9676 0,9536 0,90 0,9534 0,9762 0,9524 0, Belgum 0,966 0,9427 0,893 0,9425 0,9704 0,947 0, Bulgara 0,9455 0,9038 0,8243 0,9037 0,9494 0,9054 0, Cyprus 0,939 0,8967 0,820 0,8963 0,9453 0,8964 0, Czech Republc 0,9347 0,8776 0,788 0,8776 0,9348 0,883 0, Denmark 0,978 0,9606 0,9242 0,9606 0,9799 0,9607 0, Estona 0,9634 0,9438 0,8933 0,9437 0,970 0,9430 0, Fnland 0,9469 0,923 0,8385 0,92 0,9540 0,928 0, France 0,9504 0,980 0,8482 0,978 0,9572 0,983 0, Germany 0,9624 0,9340 0,8762 0,9340 0,9659 0,9345 0, Greece 0,9364 0,8900 0,806 0,8899 0,947 0,899 0, Hungary 0,944 0,8950 0,800 0,8950 0,9446 0,8978 0, Ireland 0,9225 0,8754 0,7779 0,875 0,9334 0,8769 0, Italy 0,9620 0,9346 0,877 0,9345 0,9662 0,9349 0, Latva 0,9587 0,9386 0,8839 0,9384 0,9682 0,9375 0, Lthuana 0,945 0,9239 0,8577 0,9234 0,9602 0,9220 0, Luxembourg 0,976 0,9650 0,938 0,9647 0,9820 0,9630 0, Malta 0,9263 0,8809 0,7867 0,8806 0,9365 0,8822 0, Netherlands 0,953 0,9276 0,8646 0,9274 0,9623 0,9270 0, Poland 0,906 0,8464 0,733 0,8460 0,966 0,8497 0, Portugal 0,9357 0,8873 0,7973 0,8872 0,9402 0,8895 0, Romana 0,9346 0,8820 0,7888 0,8820 0,9373 0,8849 0, Slovaka 0,93 0,853 0,7435 0,8529 0,9206 0,8566 0, Slovena 0,9288 0,8667 0,7647 0,8667 0,9286 0,87 0, Span 0,9299 0,8860 0,7949 0,8857 0,9394 0,8872 0, Sweden 0,9689 0,9594 0,925 0,9592 0,9792 0,9576 0, Unted Kngdom 0,9700 0,9625 0,9272 0,9622 0,9808 0,9605 0, Source: own work Note that each of the frst 5 ndcators presented n Table, has an dentcal geometrcal nterpretaton of smlarty of structures, an ntersecton of two hexagons that represent those structures. They dffer only by the method used to normalze that area, so that the value of the ndcator of smlarty s between [0, ]. That s why all the ndcators, wth the excepton of ndcator R, they gve the same orderng of European countres, accordng to the smlarty of structures for the years 999 and 200. Small dfferences are vsble only n the case of ndcator R. The results do not change f we modfy the ndcator so that ts value s ndependent of the orderng of coordnates of the vector representng the structure (see. Table 2). On the other hand, dfferences between the orderng by the value of ndcator W (based on a dfferent vsualzaton of structures that the rest), and the

14 0 Zbgnew Bnderman, Bolesław Borkowsk, Wesław Szczesny orderng by the value of ndcator M are notceable. Even more so n the last two columns of Table 2, whch represent the partton of countres nto 4 groups, accordng to the smlarty of structures for years 999 and 200. In case of Span, we can observe a substantal dfference n the assgnment to a group dependng on the used ndcator. Table 2. Descrpton s smlar to that of Table. The calculatons of ndvdual ndcators where performed based on the frst formulas (maxmum) from (5), (3) and analogous modfcatons freeng the value of an ndcator from the orderng of coordnates of a vector descrbng a gven structure. No. country R M C M J M D M T M M M W R M C M J M D M T M M M W C C2 Austra 0,9737 0,9572 0,977 0,957 0,978 0,9567 0, Belgum 0,967 0,9427 0,893 0,9425 0,9704 0,9428 0, Bulgara 0,9658 0,9360 0,8796 0,9360 0,9669 0,9369 0, Cyprus 0,9592 0,9239 0,8575 0,9233 0,960 0,9248 0, Czech Republc 0,9582 0,926 0,8545 0,925 0,9592 0,9230 0, Denmark 0,982 0,9658 0,9338 0,9658 0,9826 0,9658 0, Estona 0,9702 0,952 0,9066 0,950 0,9749 0,9508 0, Fnland 0,9605 0,9294 0,8673 0,9290 0,9632 0,9299 0, France 0,9590 0,9234 0,8577 0,9234 0,9602 0,9247 0, Germany 0,9668 0,9386 0,8842 0,9385 0,9683 0,9393 0, Greece 0,9629 0,936 0,878 0,935 0,9646 0,9325 0, Hungary 0,9635 0,938 0,8722 0,937 0,9647 0,9328 0, Ireland 0,9665 0,9429 0,898 0,9428 0,9705 0,9429 0, Italy 0,9804 0,9669 0,9357 0,9668 0,983 0,9666 0, Latva 0,9632 0,946 0,8890 0,942 0,9697 0,940 0, Lthuana 0,9527 0,9254 0,8598 0,9246 0,9608 0,9247 0, Luxembourg 0,979 0,9650 0,938 0,9647 0,9820 0,9645 0, Malta 0,949 0,9097 0,8340 0,9095 0,9526 0,90 0, Netherlands 0,9653 0,9379 0,883 0,9379 0,9680 0,9384 0, Poland 0,9468 0,903 0,8233 0,903 0,949 0,905 0, Portugal 0,9680 0,9376 0,8826 0,9376 0,9678 0,9387 0, Romana 0,9548 0,972 0,8470 0,97 0,9568 0,986 0, Slovaka 0,9544 0,98 0,8378 0,98 0,9538 0,939 0, Slovena 0,9482 0,95 0,846 0,940 0,955 0,948 0, Span 0,9705 0,9425 0,893 0,9425 0,9704 0,9434 0, Sweden 0,984 0,9649 0,9322 0,9649 0,9822 0,965 0, Unted Kngdom 0,9790 0,9634 0,9293 0,9634 0,983 0,9633 0, Source: own work Tables and 2 show that the greatest stablty of the demographcal structure between 999 and 200 was possessed by: Austra, Denmark, Luxembourg, Sweden and Unted Kngdom. On the other hand, the greatest changes were observed n: Cyprus, Malta, Poland, Slovaka and Slovena. The greatest change occurred n Poland, and the smallest one n Luxembourg.

15 An applcaton of radar charts SUMMARY Means for defnng the values of ndcators of smlarty that use geometrcal nterpretatons n the form of a value of an area and are descrbed n ths work can also be used n other geometrcal ways of studyng the smlarty of structures as well as objects. These ways are an example of applyng geometrcal methods that are ntroduced by the authors usng radar charts [Bnderman, Borkowsk, Szczesny 2008, 200]. The emprcal analyss shows that when structures are not subject to large changes then the values of ndvdual ndcators, based on the same geometrcal nterpretaton, they order the structures smlarly. However, f we change the way of vsualzng the smlarty (the geometrcal nterpretaton) then we see changes n orderng. That s the reason why t s advsable to use several dfferent ndcators that use dfferent means of vsualzaton. Furthermore, t s worth notng that by usng geometrcal nterpretaton as a bass to construct an ndcator of smlarty we can obtan an ndcator that s very senstve to changes n the orderng of coordnates of a vector that numercally represents a gven structure. In practce there may be stuatons n whch a researcher desres such qualty n an ndcator so t may vsbly hghlght even small dfferences between structures, but for a gven orderng of ther components. However, one needs to remember that methods of constructng ndcators of smlarty that use a geometrcal nterpretaton are often appled manly because of the ease of vsualzaton of multdmensonal data. Then an unseasoned researcher may msuse them. It must be hghlghted that ndcators based solely on those llustratons do not satsfy often posed n the lterature on ths subject the basc requrement of stablty of the used method [see Jackson 970], that means the ndependence of the orderng of features. Technques presented by the authors show how a defnton of an ndcator must be modfed (the method of measurement) to remove ths flaw. Technques that were ponted out may seem numercally complex; nevertheless, n the age of computers that problem became nsgnfcant. On the other hand, ths smple and stable emprcal example shows that by applyng modfcatons, that s makng the measurement of smlarty ndependent of the orderng of ndvdual components of the structure, we obtan dfferent results (see Tables and 2, e.g., Span). The measurement of smlarty of structures based on geometrcal nterpretaton becomes even more complcated when a researcher s nterested n changes that occurred n a gven structures durng the whole studed perod and not only between the begnnng and the end of the sample. Further works on ths subject can be found n the work Bnderman and Szczesny 20.

16 2 Zbgnew Bnderman, Bolesław Borkowsk, Wesław Szczesny REFERENCES Bnderman Z., Borkowsk B., Szczesny W. (2008) O pewnej metodze porządkowana obektów na przykładze regonalnego zróżncowana rolnctwa, Metody loścowe w badanach ekonomcznych, IX, wyd. SGGW, Bnderman Z., Borkowsk B., Szczesny W (2009) O pewnych metodach porządkowych w analze polskego rolnctwa wykorzystujących funkcje użytecznośc, Rocznk Nauk Rolnczych PAN, Sera G, Ekonomka Rolnctwa, T. 96, z. 2, Bnderman Z., Borkowsk B., Szczesny W. (2009a) Tendences n changes of regonal dfferentaton of farms structure and area Quanttatve methods n regonal and sectored analyss / sc. ed. D. Wtkowska D., Łatuszyńska M., U.S., Szczecn, Bnderman Z., Borkowsk B., Szczesny W. (200) Radar measures of structures conformablty, Quanttatve methods n economy, v. XI, No., Bnderman Z., Borkowsk B., Szczesny W. (200a) The tendences n regonal dfferentaton changes of agrcultural producton structure n Poland, Quanttatve methods n regonal and sectored analyss, U.S., Szczecn, Bnderman Z., Borkowsk B., Szczesny W. (200b) Wykorzystane metod geometrycznych do analzy regonalnego zróżncowana kultury na ws, Sera T. XII, z. 5, Bnderman, Z., Borkowsk B., Szczesny W. (200c) Regonalne zróżncowane turystyk w Polsce w latach , Oeconoma 9 (3) Bnderman Z., Borkowsk B., Szczesny W. (200d) Regonalnego zróżncowane kultury mędzy wsą a mastem w latach , Mędzy dawnym a nowym na szlakach humanzmu, wyd. SGGW, Bnderman Z., Szczesny W. (2009) Arrange methods of tradesmen of software wth a help of graphc representatons Computer algebra systems n teachng and research, Sedlce, Wyd. WSFZ, 7-3. Bnderman Z., Szczesny W., (20) Comparatve Analyss of Computer Technques for Vsualzaton Multdmensonal Data, Computer algebra systems n teachng and research, Sedlce, wyd. Collegum Mazova, Bnderman Z. (2009) Syntetyczne mernk elastycznośc przedsęborstw, Kwartalnk Prace Materały Wydzału Zarządzana Unwersytetu Gdańskego, nr 4/2, Bnderman, Z. (2009a) Ocena regonalnego zróżncowana kultury turystyk w Polsce w 2007 roku Rocznk Wydzału Nauk Humanstycznych, SGGW, T XII, Borkowsk B., Szczesny W. (2002) Metody taksonomczne w badanach przestrzennego zróżncowana rolnctwa. Warszawa, RNR, Sera G, T 89, z Breman L. (994) Baggng predctors, Techncal Report 420, Departament of Statstcs, Unversty of Calforna, CA, USA, September 994. Cok A., Kowalczyk T., Pleszczyńska E., Szczesny W. (995) Algorthms of grade correspondence-cluster analyss. The Collected Papers on Theoretcal and Apled Computer Scence, 7, Deza E., Deza M.M. (2006) Dctonary of Dstances, Elsever. Dce Lee R. (945) Measures of the Amount of Ecologc Assocaton Between Speces, Ecology, Ecologcal Socety of Amerca, Vol. 26, No. 3,

17 An applcaton of radar charts 3 Duda R. O., Hart P. E., Stork D. G. (2000) Pattern Classfcaton. John Wley & Sons, Inc., 2nd ed. Gordon, A.D. (999) Classfcaton, 2nd edton, London-New York. Hubalek Z. (982) Coeffcents of Assocaton and Smlarty, Based on Bnary (Presence- Absence) Data: An Evaluaton, Bologcal Revews, Vol.57-4, Jaccard P. (90) Étude comparatve de la dstrbuton florale dans une porton des Alpes et des Jura. Bulletn del la Socété Vaudose des Scences Naturelles 37, Jaccard, P. (902) Los de dstrbuton florale dans la zone alpne. Bull. Soc. Vaud. Sc. Nat. 38, Jaccard, P. (908) Nouvel les recherches sur la dstrbuton floral e. Bull. Soc. Vaud. Sc. Nat. 44, Jackson D. M. (970) The stablty of classfcatons of bnary attrbute data, Techncal Report 70-65, Cornell Unversty, -3. Kukuła K. (2000) Metoda untaryzacj zerowej, PWN, Warszawa. Kukuła K. (red) (200) Statystyczne studum struktury agrarnej w Polsce, PWN, Warszawa. Legendre P., Legendre L. (998) Numercal Ecology, Second Englsh Edton Ed., Elsever. Malna A. (2004) Welowymarowa analza przestrzennego zróżncowana struktury gospodark Polsk według województw. AE, Sera Monografe nr 62, Kraków. Monev V. (2004) Introducton to Smlarty Searchng n Chemstry, MATCH Commun. Math. Comput. Chem. 5, Mostowsk A., Stark M.: Elementy algebry wyższej, PWN, Warszawa. Szczesny W. (2002) Grade correspondence analyss appled to contngency tables and questonnare data, Intellgent Data Analyss, vol. 6, 7-5. Tan P., Stenbach M., Kumar V. (2006) Introducton to Data Mnng, Pearson Educaton, Inc. Tanmoto, T.T. (957) IBM Internal Report 7th Nov. 957 Tanmoto T.T. (959) An Elementary Mathematcal Theory of Classfcaton and Predcton, IBM Program IBCFL. Tversky A. (957) Features of smlarty. Psychologcal Revew, 84(4) Warrens M. J. (2008) On Assocaton Coeffcents for 2 2 Tables and Propertes that do not depend on the Margnal Dstrbutons, Psychometrka Vol. 73, n. 4,

18 4 Zbgnew Bnderman, Bolesław Borkowsk, Wesław Szczesny

19 QUANTITATIVE METHODS IN ECONOMICS Vol. XII, No., 20, pp SOME REMARKS ON APLICATIONS OF ALGEBRAIC ANALYSIS TO ECONOMICS Zbgnew Bnderman, Marek Werzbck Department of Econometrcs and Statstcs Warsaw Unversty of Lfe Scences SGGW e-mals: Abstract: In ths paper, the author contnues the nvestgatons started n hs earler work [Bnderman 2009]. Here, problems of lnear equaton Dx=y wth the dfference operator D are studed. The work s an ntroducton to applcatons of the theory of rght nvertble operators to economcs. As an example, quotatons of KGHM on Warsaw Stock Exchange are consdered. Key words: algebrac analyss, rght nvertble operator, dfference operator, quotatons of Stock Exchange, Jacoban matrx In memory of Professor Krystyna Twardowska INTRODUCTION In mathematcs the term Algebrac Analyss s used n two completely dfferent senses [cf. Przeworska - Rolewcz 2000]. Here, meanng of Algebrac Analyss s closely connected wth theory of rght nvertble operators [cf. Przeworska - Rolewcz 988]. In the earler work of the author [Bnderman 2009] a new defnton of elastcty operators n algebras wth rght nvertble operators was proposed. The defnton uses logarthmc mappngs of algebrac analyss [cf. Przeworska-Rolewcz 998]. The obtaned results were appled to economcs n order to fnd a functon f elastcty of ths functon s gven. Here, possbltes of applcatons of algebrac analyss to economcs, on the smple example of the dfference operator D and the lnear equaton Dx=y are presented. The paper s an ntroducton n ths range.

20 6 Zbgnew Bnderman, Marek Werzbck Throughout ths work wll denote ether the real feld,, or the complex feld, Let X and Y be a lnear space over. The set of all lnear operators domans contaned n X and ranges contaned n Y wll be denoted by L(X,Y). We shall wrte: L0(X,Y): = { A L(X,Y):domA = X }, L(X): = L(X,X), L0(X) : = L0(X, X), ker A :{ x dom A :Ax = 0} for A L(X, Y). Followng D. Przeworska - Rolewcz [c.f. Przeworska - Rolewcz 988], an operator D L(X) s sad to be rght nvertble f there s an operator R L L 0 (X) such that RX dom D and DR=I. The operator R s called a rght nverse of D. We shall consder n L(X) the followng sets: the set R(X) of all rght nvertble operators belongng to L(X) ; the set R D := { R L 0 (X) : DRx = x for all x X }; the set F D := { F L 0 (X) : F 2 = F, FX = ker D and R R D : FR=0} of all ntal operators for a D R(X). We note, f D R(X), R R D and ker D {0 }, then the operator D s rght nvertble, but not nvertble. We have DRx= x for all x X and x dom D: RDx x. Here, the nvertblty of an operator A L (X) means that the equaton Ax=y has the unque soluton for every y X. If D R(X) and 0 z ker D and x s a soluton of the equaton DX=y then the element x +z s also the soluton of ths equaton. If F s an ntal operator for D correspondng to R then Fx =x RDx=(I-RD)x for x dom D and Fz=z for z ker D. () We note, a dfferent approach to the defnton of rght nvertble lnear operators s presented n the work [Bnderman 2009]. In the sequel we shall assume that D R(X), R R D, F F D s an ntal operator for D correspondng to R and dm ker D>0,.e. D s rght nvertble but not nvertble. We observe, that f we know one rght nverse of D then the sets [c.f. Przeworska - Rolewcz 988] R D = {R + FA: A L 0 (X)}; (2) F D = {F(I-AD): A L 0 (X)}. (3) We shall need the two followng theorems [c.f. Przeworska - Rolewcz 988]. Theorem. The general soluton of the equaton s gven by the formula Dx = y, y X, (4)

METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH

METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Warsaw Unversty of Lfe Scences SGGW Faculty of Appled Informatcs and Mathematcs METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH QUANTITATIVE METHODS IN ECONOMICS Volume XII, No. EDITOR-IN-CHIEF Bolesław Borkowsk

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001. Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

The Analysis of Outliers in Statistical Data

The Analysis of Outliers in Statistical Data THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

The Application of Fractional Brownian Motion in Option Pricing

The Application of Fractional Brownian Motion in Option Pricing Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optimal Control of a Cascade of Hydro-Electric Power Stations On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

More information

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts Scale Dependence of Overconfdence n Stoc Maret Volatlty Forecasts Marus Glaser, Thomas Langer, Jens Reynders, Martn Weber* June 7, 007 Abstract In ths study, we analyze whether volatlty forecasts (judgmental

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

The covariance is the two variable analog to the variance. The formula for the covariance between two variables is

The covariance is the two variable analog to the variance. The formula for the covariance between two variables is Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA*

HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* Luísa Farnha** 1. INTRODUCTION The rapd growth n Portuguese households ndebtedness n the past few years ncreased the concerns that debt

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING

Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING 260 Busness Intellgence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING Murphy Choy Mchelle L.F. Cheong School of Informaton Systems, Sngapore

More information

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Research Note APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES * Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC

More information

Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models

Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models Forecastng Irregularly Spaced UHF Fnancal Data: Realzed Volatlty vs UHF-GARCH Models Franços-Érc Raccot *, LRSP Département des scences admnstratves, UQO Raymond Théoret Département Stratége des affares,

More information

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Binomial Link Functions. Lori Murray, Phil Munz

Binomial Link Functions. Lori Murray, Phil Munz Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

Section 5.3 Annuities, Future Value, and Sinking Funds

Section 5.3 Annuities, Future Value, and Sinking Funds Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

More information

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP) 6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes

More information

greatest common divisor

greatest common divisor 4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no

More information

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6)

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6) Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called

More information

Macro Factors and Volatility of Treasury Bond Returns

Macro Factors and Volatility of Treasury Bond Returns Macro Factors and Volatlty of Treasury Bond Returns Jngzh Huang Department of Fnance Smeal Colleage of Busness Pennsylvana State Unversty Unversty Park, PA 16802, U.S.A. Le Lu School of Fnance Shangha

More information

The Impact of Stock Index Futures Trading on Daily Returns Seasonality: A Multicountry Study

The Impact of Stock Index Futures Trading on Daily Returns Seasonality: A Multicountry Study The Impact of Stock Index Futures Tradng on Daly Returns Seasonalty: A Multcountry Study Robert W. Faff a * and Mchael D. McKenze a Abstract In ths paper we nvestgate the potental mpact of the ntroducton

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt. Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

More information

Calendar Corrected Chaotic Forecast of Financial Time Series

Calendar Corrected Chaotic Forecast of Financial Time Series INTERNATIONAL JOURNAL OF BUSINESS, 11(4), 2006 ISSN: 1083 4346 Calendar Corrected Chaotc Forecast of Fnancal Tme Seres Alexandros Leonttss a and Costas Sropoulos b a Center for Research and Applcatons

More information

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence 1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,

More information

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Statistical Methods to Develop Rating Models

Statistical Methods to Develop Rating Models Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

World currency options market efficiency

World currency options market efficiency Arful Hoque (Australa) World optons market effcency Abstract The World Currency Optons (WCO) maket began tradng n July 2007 on the Phladelpha Stock Exchange (PHLX) wth the new features. These optons are

More information

Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy

Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy Fnancal Tme Seres Analyss Patrck McSharry patrck@mcsharry.net www.mcsharry.net Trnty Term 2014 Mathematcal Insttute Unversty of Oxford Course outlne 1. Data analyss, probablty, correlatons, vsualsaton

More information

Time Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University

Time Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton

More information

The Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15

The Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15 The Analyss of Covarance ERSH 830 Keppel and Wckens Chapter 5 Today s Class Intal Consderatons Covarance and Lnear Regresson The Lnear Regresson Equaton TheAnalyss of Covarance Assumptons Underlyng the

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60 BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true

More information

An Interest-Oriented Network Evolution Mechanism for Online Communities

An Interest-Oriented Network Evolution Mechanism for Online Communities An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne

More information

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel

More information

High Correlation between Net Promoter Score and the Development of Consumers' Willingness to Pay (Empirical Evidence from European Mobile Markets)

High Correlation between Net Promoter Score and the Development of Consumers' Willingness to Pay (Empirical Evidence from European Mobile Markets) Hgh Correlaton between et Promoter Score and the Development of Consumers' Wllngness to Pay (Emprcal Evdence from European Moble Marets Ths paper shows that the correlaton between the et Promoter Score

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

Gender differences in revealed risk taking: evidence from mutual fund investors

Gender differences in revealed risk taking: evidence from mutual fund investors Economcs Letters 76 (2002) 151 158 www.elsever.com/ locate/ econbase Gender dfferences n revealed rsk takng: evdence from mutual fund nvestors a b c, * Peggy D. Dwyer, James H. Glkeson, John A. Lst a Unversty

More information

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts Power-of-wo Polces for Sngle- Warehouse Mult-Retaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)

More information

Joe Pimbley, unpublished, 2005. Yield Curve Calculations

Joe Pimbley, unpublished, 2005. Yield Curve Calculations Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward

More information

Transition Matrix Models of Consumer Credit Ratings

Transition Matrix Models of Consumer Credit Ratings Transton Matrx Models of Consumer Credt Ratngs Abstract Although the corporate credt rsk lterature has many studes modellng the change n the credt rsk of corporate bonds over tme, there s far less analyss

More information

FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES

FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES Zuzanna BRO EK-MUCHA, Grzegorz ZADORA, 2 Insttute of Forensc Research, Cracow, Poland 2 Faculty of Chemstry, Jagellonan

More information

Marginal Returns to Education For Teachers

Marginal Returns to Education For Teachers The Onlne Journal of New Horzons n Educaton Volume 4, Issue 3 MargnalReturnstoEducatonForTeachers RamleeIsmal,MarnahAwang ABSTRACT FacultyofManagementand Economcs UnverstPenddkanSultan Idrs ramlee@fpe.ups.edu.my

More information

Two Faces of Intra-Industry Information Transfers: Evidence from Management Earnings and Revenue Forecasts

Two Faces of Intra-Industry Information Transfers: Evidence from Management Earnings and Revenue Forecasts Two Faces of Intra-Industry Informaton Transfers: Evdence from Management Earnngs and Revenue Forecasts Yongtae Km Leavey School of Busness Santa Clara Unversty Santa Clara, CA 95053-0380 TEL: (408) 554-4667,

More information

Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity

Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity Trade Adjustment Productvty n Large Crses Gta Gopnath Department of Economcs Harvard Unversty NBER Brent Neman Booth School of Busness Unversty of Chcago NBER Onlne Appendx May 2013 Appendx A: Dervaton

More information

Comparison of Control Strategies for Shunt Active Power Filter under Different Load Conditions

Comparison of Control Strategies for Shunt Active Power Filter under Different Load Conditions Comparson of Control Strateges for Shunt Actve Power Flter under Dfferent Load Condtons Sanjay C. Patel 1, Tushar A. Patel 2 Lecturer, Electrcal Department, Government Polytechnc, alsad, Gujarat, Inda

More information

Efficient Project Portfolio as a tool for Enterprise Risk Management

Efficient Project Portfolio as a tool for Enterprise Risk Management Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

Stress test for measuring insurance risks in non-life insurance

Stress test for measuring insurance risks in non-life insurance PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n non-lfe nsurance Summary Ths memo descrbes stress testng of nsurance

More information

Tourism and trade in OECD countries. A dynamic heterogeneous panel data analysis

Tourism and trade in OECD countries. A dynamic heterogeneous panel data analysis Toursm and trade n OECD countres. A dynamc heterogeneous panel data analyss María Santana-Gallego a, Francsco Ledesma-Rodríguez a, Jorge V. Pérez-Rodríguez b* a Facultad de Cencas Económcas y Empresarales,

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

STATISTICAL DATA ANALYSIS IN EXCEL

STATISTICAL DATA ANALYSIS IN EXCEL Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 petr.nazarov@crp-sante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for

More information

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,

More information

A Master Time Value of Money Formula. Floyd Vest

A Master Time Value of Money Formula. Floyd Vest A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.

More information

ErrorPropagation.nb 1. Error Propagation

ErrorPropagation.nb 1. Error Propagation ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then

More information

2.4 Bivariate distributions

2.4 Bivariate distributions page 28 2.4 Bvarate dstrbutons 2.4.1 Defntons Let X and Y be dscrete r.v.s defned on the same probablty space (S, F, P). Instead of treatng them separately, t s often necessary to thnk of them actng together

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

A Model of Private Equity Fund Compensation

A Model of Private Equity Fund Compensation A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs

More information

IMPACT ANALYSIS OF A CELLULAR PHONE

IMPACT ANALYSIS OF A CELLULAR PHONE 4 th ASA & μeta Internatonal Conference IMPACT AALYSIS OF A CELLULAR PHOE We Lu, 2 Hongy L Bejng FEAonlne Engneerng Co.,Ltd. Bejng, Chna ABSTRACT Drop test smulaton plays an mportant role n nvestgatng

More information

Damage detection in composite laminates using coin-tap method

Damage detection in composite laminates using coin-tap method Damage detecton n composte lamnates usng con-tap method S.J. Km Korea Aerospace Research Insttute, 45 Eoeun-Dong, Youseong-Gu, 35-333 Daejeon, Republc of Korea yaeln@kar.re.kr 45 The con-tap test has the

More information

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: jean-perre.barrot@cnes.fr 1/Introducton The

More information

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

More information

Probability and Optimization Models for Racing

Probability and Optimization Models for Racing 1 Probablty and Optmzaton Models for Racng Vctor S. Y. Lo Unversty of Brtsh Columba Fdelty Investments Dsclamer: Ths presentaton does not reflect the opnons of Fdelty Investments. The work here was completed

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information