Partitioning and Dynamic Load Balancing for Petascale Applications
|
|
|
- Sharleen Parks
- 10 years ago
- Views:
Transcription
1 Partitioning and Dynamic Load Balancing for Petascale Applications Karen Devine, Sandia National Laboratories Erik Boman, Sandia National Laboratories Umit Çatalyürek, Ohio State University Lee Ann Riesen, Sandia National Laboratories Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000.
2 Partitioning and Load Balancing Assignment of application data to processors for parallel computation. Applied to grid points, elements, matrix rows, particles,.
3 Static Partitioning Initialize Application Partition Data Distribute Data Compute Solutions Output & End Static partitioning in an application: Data partition is computed. Data are distributed according to partition map. Application computes. Ideal partition: Processor idle time is minimized. Inter-processor communication costs are kept low.
4 Dynamic Repartitioning (a.k.a. Dynamic Load Balancing) Initialize Application Partition Data Redistribute Data Compute Solutions & Adapt Output & End Dynamic repartitioning (load balancing) in an application: Data partition is computed. Data are distributed according to partition map. Application computes and, perhaps, adapts. Process repeats until the application is done. Ideal partition: Processor idle time is minimized. Inter-processor communication costs are kept low. Cost to redistribute data is also kept low.
5 What makes a partition good, especially at petascale? Balanced work loads. Even small imbalances result in many wasted processors! 50,000 processors with one processor 5% over average workload is equivalent to 2380 idle processors and 47,620 perfectly balanced processors. Low interprocessor communication costs. Processor speeds increasing faster than network speeds. Partitions with minimal communication costs are critical. Scalable partitioning time and memory use. Scalability is especially important for dynamic partitioning. Low data redistribution costs (for dynamic partitioning). Redistribution costs must be recouped through reduced total execution time.
6 Partitioning Algorithms in the Zoltan Toolkit Geometric (coordinate-based) methods Recursive Coordinate Bisection (Berger, Bokhari) Recursive Inertial Bisection (Taylor, Nour-Omid) Space Filling Curve Partitioning (Warren&Salmon, et al.) Refinement-tree Partitioning (Mitchell) Hypergraph and graph (connectivity-based) methods Hypergraph Partitioning Hypergraph Repartitioning PaToH (Catalyurek & Aykanat) Zoltan Graph Partitioning ParMETIS (U. Minnesota) Jostle (U. Greenwich)
7 Geometric Partitioning Recursive Coordinate Bisection: Developed by Berger & Bokhari (987) for Adaptive Mesh Refinement. Idea: Divide work into two equal parts using a cutting plane orthogonal to a coordinate axis. Recursively cut the resulting subdomains. 2nd 3rd st cut 3rd 2nd 3rd 3rd
8 Geometric Repartitioning Implicitly achieves low data redistribution costs. For small changes in data, cuts move only slightly, resulting in little data redistribution.
9 Applications of Geometric Methods Adaptive Mesh Refinement Particle Simulations Parallel Volume Rendering Crash Simulations and Contact Detection
10 RCB Advantages and Disadvantages Advantages: Conceptually simple; fast and inexpensive. All processors can inexpensively know entire partition (e.g., for global search in contact detection). No connectivity info needed (e.g., particle methods). Good on specialized geometries. SLAC S 55-cell Linear Accelerator with couplers: One-dimensional RCB partition reduced runtime up to 68% on 52 processor IBM SP3. (Wolf, Ko) Disadvantages: No explicit control of communication costs. Mediocre partition quality. Can generate disconnected subdomains for complex geometries. Need coordinate information.
11 Graph Partitioning Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon, Hendrickson, Leland, Kumar, Karypis, et al. Represent problem as a weighted graph. Vertices = objects to be partitioned. Edges = dependencies between two objects. Weights = work load or amount of dependency. Partition graph so that Parts have equal vertex weight. Weight of edges cut by part boundaries is small.
12 Graph Repartitioning Diffusive strategies (Cybenko, Hu, Blake, Walshaw, Schloegel, et al.) Shift work from highly loaded processors to less loaded neighbors. Local communication keeps data redistribution costs low Multilevel partitioners that account for data redistribution costs in refining partitions (Schloegel, Karypis) Parameter weights application communication vs. redistribution communication. Coarsen graph Partition coarse graph Refine partition accounting for current part assignment
13 Applications using Graph Partitioning Multiphysics and multiphase simulations Finite Element Analysis = A Linear solvers & preconditioners (square, structurally symmetric systems) x b
14 Graph Partitioning: Advantages and Disadvantages Advantages: Highly successful model for mesh-based PDE problems. Explicit control of communication volume gives higher partition quality than geometric methods. Excellent software available. Serial: Parallel: Disadvantages: Chaco (SNL) Jostle (U. Greenwich) METIS (U. Minn.) Party (U. Paderborn) Scotch (U. Bordeaux) Zoltan (SNL) ParMETIS (U. Minn.) PJostle (U. Greenwich) More expensive than geometric methods. Edge-cut model only approximates communication volume.
15 Hypergraph Partitioning Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al. Hypergraph model: Vertices = objects to be partitioned. Hyperedges = dependencies between two or more objects. Partitioning goal: Assign equal vertex weight while minimizing hyperedge cut weight. A A Graph Partitioning Model Hypergraph Partitioning Model
16 Hypergraph Repartitioning Augment hypergraph with data redistribution costs. Account for data s current processor assignments. Weight dependencies by their size and frequency of use. Hypergraph partitioning then attempts to minimize total communication volume: Data redistribution volume + Application communication volume Total communication volume Lower total communication volume than geometric and graph repartitioning. Best Algorithms Paper Award at IPDPS07 Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations Catalyurek, Boman, Devine, Bozdag, Heaphy, & Riesen
17 Hypergraph Applications Finite Element Analysis Linear programming for sensor placement Multiphysics and multiphase simulations Rg02 R 2C02 C INDUCTOR Vs SOURCE_VOLTAGE Rs R 2 2Cm02 C 2 Rg0 R 2C0 C L2 L INDUCTOR Circuit Simulations 2 2 R2 R R R 2 C2 C C C Rg2 R Rl R Rg R 2Cm2 C A Linear solvers & preconditioners (no restrictions on matrix structure) x = b Data Mining
18 Hypergraph Partitioning: Advantages and Disadvantages Advantages: Communication volume reduced 30-38% on average over graph partitioning (Catalyurek & Aykanat). 5-5% reduction for mesh-based applications. More accurate communication model than graph partitioning. Better representation of highly connected and/or non-homogeneous systems. Greater applicability than graph model. Can represent rectangular systems and non-symmetric dependencies. Disadvantages: More expensive than graph partitioning.
19 Performance Results Experiments on Sandia s Thunderbird cluster. Dual 3.6 GHz Intel EM64T processors with 6 GB RAM. Infiniband network. Compare RCB, graph and hypergraph methods. Measure Amount of communication induced by the partition. Partitioning time.
20 Test Data Xyce 680K ASIC Stripped Circuit Simulation 680K x 680K 2.3M nonzeros SLAC *LCLS Radio Frequency Gun 6.0M x 6.0M 23.4M nonzeros SLAC Linear Accelerator 2.9M x 2.9M.4M nonzeros Cage5 DNA Electrophoresis 5.M x 5.M 99M nonzeros
21 Communication Volume: SLAC 6.0M LCLS Lower is Better Number of parts = number of processors. Xyce 680K circuit RCB Graph Hypergraph SLAC 2.9M Linear Accelerator Cage5 5.M electrophoresis
22 Partitioning Time: SLAC 6.0M LCLS Lower is better 024 parts. Varying number of processors. Xyce 680K circuit RCB Graph Hypergraph SLAC 2.9M Linear Accelerator Cage5 5.M electrophoresis
23 Repartitioning Experiments Experiments with 64 parts on 64 processors. Dynamically adjust weights in data to simulate, say, adaptive mesh refinement. Repartition. Measure repartitioning time and total communication volume: Data redistribution volume + Application communication volume Total communication volume
24 SLAC 6.0M LCLS Repartitioning Results: Lower is Better Xyce 680K circuit Data Redistribution Volume Application Communication Volume Repartitioning Time (secs)
25 Aiming for Petascale Reducing communication costs for applications. Reducing communication volume. Two-dimensional sparse matrix partitioning (Catalyurek, Aykanat, Bisseling). Partitioning non-zeros of matrix rather than rows/columns. Reducing message latency. Minimize maximum number of neighboring parts. Balancing both computation and communication (Pinar & Hendrickson); balance criterion is complex function of the partition instead of simple sum of object weights. Reducing communication overhead. Map parts onto processors to take advantage of network topology. Minimize distance messages travel in network.
26 Aiming for Petascale Hierarchical partitioning in Zoltan v3. Partition for multicore/manycore architectures. Partition hierarchically with respect to chips and then cores. Similar to strategies for clusters of SMPs (Teresco, Faik). Treat core-level partitions as separate threads or MPI processes. Support 00Ks processors. Reduce collective communication operations during partitioning. Allow more localized partitioning on subsets of processors. Core Processor... Entire System... Core Core Processor... Core Subsystem Proc Entire System... Subsystem Proc Proc... Proc
27 Aiming for Petascale Improving scalability of partitioning algorithms. Hybrid partitioners (particularly for mesh-based apps.): Use inexpensive geometric methods for initial partitioning; refine with hypergraph/graph-based algorithms at boundaries. Use geometric information for fast coarsening in multilevel hypergraph/graph-based partitioners. Coarsen data using geometric info Partition Refine partition coarse data Refactored partitioners for bigger data sets and processor arrays.
28 Aiming for Petascale Testing and performance evaluation. Examine effectiveness of partitions in applications. Wanted: Collaborations with application developers!
29 For More Information Zoltan web page: Download Zoltan v3 (open-source software). Read User s Guide. ITAPS Interface to Zoltan: SciDAC Tutorial, June 29, :30-4:30pm, MIT Load-balancing and partitioning for scientific computing using Zoltan Erik Boman, Karen Devine
30 S. Attaway (SNL) C. Aykanat (Bilkent U.) A. Bauer (RPI) R. Bisseling (Utrecht U.) D. Bozdag (Ohio St. U.) T. Davis (U. Florida) J. Faik (RPI) J. Flaherty (RPI) R. Heaphy (SNL) B. Hendrickson (SNL) M. Heroux (SNL) D. Keyes (Columbia) K. Ko (SLAC) Thanks SciDAC CSCAPES Institute (A. Pothen, Old Dominion U., PI) SciDAC ITAPS Center (L. Diachin, LLNL, PI) NNSA ASC Program G. Kumfert (LLNL) L.-Q. Lee (SLAC) V. Leung (SNL) G. Lonsdale (NEC) X. Luo (RPI) L. Musson (SNL) S. Plimpton (SNL) J. Shadid (SNL) M. Shephard (RPI) C. Silvio (SNL) J. Teresco (Mount Holyoke) C. Vaughan (SNL) M. Wolf (U. Illinois)
31
32 Communication Volume: SLAC 6.0M LCLS Lower is Better 024 parts. Varying number of processors. Xyce 680K circuit RCB Graph Hypergraph SLAC 2.9M Linear Accelerator Cage5 5.M electrophoresis
33 Partitioning Time: SLAC 6.0M LCLS Lower is better Number of parts = number of processors. Xyce 680K circuit RCB Graph Hypergraph SLAC 2.9M Linear Accelerator Cage5 5.M electrophoresis
Tutorial: Partitioning, Load Balancing and the Zoltan Toolkit
Tutorial: Partitioning, Load Balancing and the Zoltan Toolkit Erik Boman and Karen Devine Discrete Algorithms and Math Dept. Sandia National Laboratories, NM CSCAPES Institute SciDAC Tutorial, MIT, June
Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations
Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdağ, Robert Heaphy, and Lee Ann Riesen Ohio State University Sandia
Lecture 12: Partitioning and Load Balancing
Lecture 12: Partitioning and Load Balancing G63.2011.002/G22.2945.001 November 16, 2010 thanks to Schloegel,Karypis and Kumar survey paper and Zoltan website for many of today s slides and pictures Partitioning
New Challenges in Dynamic Load Balancing
New Challenges in Dynamic Load Balancing Karen D. Devine 1, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson Discrete Algorithms and Mathematics Department, Sandia National Laboratories, Albuquerque,
A Comparison of Load Balancing Algorithms for AMR in Uintah
1 A Comparison of Load Balancing Algorithms for AMR in Uintah Qingyu Meng, Justin Luitjens, Martin Berzins UUSCI-2008-006 Scientific Computing and Imaging Institute University of Utah Salt Lake City, UT
Software Design for Scientific Applications
Software Design for Scientific Applications Karen Devine Scalable Algorithms Department Sandia National Laboratories Erik Boman, Mike Heroux, Andrew Salinger (SNL) Robert Heaphy (Respec Engineering) Sandia
Partitioning and Load Balancing for Emerging Parallel Applications and Architectures
Chapter Partitioning and Load Balancing for Emerging Parallel Applications and Architectures Karen D. Devine, Erik G. Boman, and George Karypis. Introduction An important component of parallel scientific
Dynamic Load Balancing for Cluster Computing Jaswinder Pal Singh, CSE @ Technische Universität München. e-mail: [email protected]
Dynamic Load Balancing for Cluster Computing Jaswinder Pal Singh, CSE @ Technische Universität München. e-mail: [email protected] Abstract: In parallel simulations, partitioning and load-balancing algorithms
Mesh Generation and Load Balancing
Mesh Generation and Load Balancing Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee April 04, 2012 CS 594 04/04/2012 Slide 1 / 19 Outline Motivation Reliable
Mesh Partitioning and Load Balancing
and Load Balancing Contents: Introduction / Motivation Goals of Load Balancing Structures Tools Slide Flow Chart of a Parallel (Dynamic) Application Partitioning of the initial mesh Computation Iteration
Distributed Dynamic Load Balancing for Iterative-Stencil Applications
Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,
Load Balancing Strategies for Parallel SAMR Algorithms
Proposal for a Summer Undergraduate Research Fellowship 2005 Computer science / Applied and Computational Mathematics Load Balancing Strategies for Parallel SAMR Algorithms Randolf Rotta Institut für Informatik,
A Refinement-tree Based Partitioning Method for Dynamic Load Balancing with Adaptively Refined Grids
A Refinement-tree Based Partitioning Method for Dynamic Load Balancing with Adaptively Refined Grids William F. Mitchell Mathematical and Computational Sciences Division National nstitute of Standards
Fast Multipole Method for particle interactions: an open source parallel library component
Fast Multipole Method for particle interactions: an open source parallel library component F. A. Cruz 1,M.G.Knepley 2,andL.A.Barba 1 1 Department of Mathematics, University of Bristol, University Walk,
Sparse Matrix Decomposition with Optimal Load Balancing
Sparse Matrix Decomposition with Optimal Load Balancing Ali Pınar and Cevdet Aykanat Computer Engineering Department, Bilkent University TR06533 Bilkent, Ankara, Turkey apinar/aykanat @cs.bilkent.edu.tr
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Massively Parallel Multilevel Finite
A FAST AND HIGH QUALITY MULTILEVEL SCHEME FOR PARTITIONING IRREGULAR GRAPHS
SIAM J. SCI. COMPUT. Vol. 20, No., pp. 359 392 c 998 Society for Industrial and Applied Mathematics A FAST AND HIGH QUALITY MULTILEVEL SCHEME FOR PARTITIONING IRREGULAR GRAPHS GEORGE KARYPIS AND VIPIN
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
Guide to Partitioning Unstructured Meshes for Parallel Computing
Guide to Partitioning Unstructured Meshes for Parallel Computing Phil Ridley Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR, UK, email: [email protected] April 17,
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
ParFUM: A Parallel Framework for Unstructured Meshes. Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008
ParFUM: A Parallel Framework for Unstructured Meshes Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008 What is ParFUM? A framework for writing parallel finite element
Load Balancing and Communication Optimization for Parallel Adaptive Finite Element Methods
Load Balancing and Communication Optimization for Parallel Adaptive Finite Element Methods J. E. Flaherty, R. M. Loy, P. C. Scully, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz Computer
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department
A New Unstructured Variable-Resolution Finite Element Ice Sheet Stress-Velocity Solver within the MPAS/Trilinos FELIX Dycore of PISCEES
A New Unstructured Variable-Resolution Finite Element Ice Sheet Stress-Velocity Solver within the MPAS/Trilinos FELIX Dycore of PISCEES Irina Kalashnikova, Andy G. Salinger, Ray S. Tuminaro Numerical Analysis
Mesh Partitioning for Parallel Computational Fluid Dynamics Applications on a Grid
Mesh Partitioning for Parallel Computational Fluid Dynamics Applications on a Grid Youssef Mesri * Hugues Digonnet ** Hervé Guillard * * Smash project, Inria-Sophia Antipolis, BP 93, 06902 Sophia-Antipolis
walberla: Towards an Adaptive, Dynamically Load-Balanced, Massively Parallel Lattice Boltzmann Fluid Simulation
walberla: Towards an Adaptive, Dynamically Load-Balanced, Massively Parallel Lattice Boltzmann Fluid Simulation SIAM Parallel Processing for Scientific Computing 2012 February 16, 2012 Florian Schornbaum,
Parallel Simplification of Large Meshes on PC Clusters
Parallel Simplification of Large Meshes on PC Clusters Hua Xiong, Xiaohong Jiang, Yaping Zhang, Jiaoying Shi State Key Lab of CAD&CG, College of Computer Science Zhejiang University Hangzhou, China April
Load-Balancing Spatially Located Computations using Rectangular Partitions
Load-Balancing Spatially Located Computations using Rectangular Partitions Erik Saule a,, Erdeniz Ö. Başa,b, Ümit V. Çatalyüreka,c a Department of Biomedical Informatics. The Ohio State University b Department
CSE 4351/5351 Notes 7: Task Scheduling & Load Balancing
CSE / Notes : Task Scheduling & Load Balancing Task Scheduling A task is a (sequential) activity that uses a set of inputs to produce a set of outputs. A task (precedence) graph is an acyclic, directed
Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations
Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Roy D. Williams, 1990 Presented by Chris Eldred Outline Summary Finite Element Solver Load Balancing Results Types Conclusions
Parallel Computing. Benson Muite. [email protected] http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage
Parallel Computing Benson Muite [email protected] http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework
Power-Aware High-Performance Scientific Computing
Power-Aware High-Performance Scientific Computing Padma Raghavan Scalable Computing Laboratory Department of Computer Science Engineering The Pennsylvania State University http://www.cse.psu.edu/~raghavan
Characterizing the Performance of Dynamic Distribution and Load-Balancing Techniques for Adaptive Grid Hierarchies
Proceedings of the IASTED International Conference Parallel and Distributed Computing and Systems November 3-6, 1999 in Cambridge Massachusetts, USA Characterizing the Performance of Dynamic Distribution
Efficient Storage, Compression and Transmission
Efficient Storage, Compression and Transmission of Complex 3D Models context & problem definition general framework & classification our new algorithm applications for digital documents Mesh Decimation
Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4
Center for Information Services and High Performance Computing (ZIH) Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4 PARA 2010, June 9, Reykjavík, Iceland Matthias
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008
A tutorial on: Iterative methods for Sparse Matrix Problems Yousef Saad University of Minnesota Computer Science and Engineering CRM Montreal - April 30, 2008 Outline Part 1 Sparse matrices and sparsity
A scalable multilevel algorithm for graph clustering and community structure detection
A scalable multilevel algorithm for graph clustering and community structure detection Hristo N. Djidjev 1 Los Alamos National Laboratory, Los Alamos, NM 87545 Abstract. One of the most useful measures
LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp.
LS-DYNA Scalability on Cray Supercomputers Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. WP-LS-DYNA-12213 www.cray.com Table of Contents Abstract... 3 Introduction... 3 Scalability
A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment
A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment Panagiotis D. Michailidis and Konstantinos G. Margaritis Parallel and Distributed
OPTIMIZED AND INTEGRATED TECHNIQUE FOR NETWORK LOAD BALANCING WITH NOSQL SYSTEMS
OPTIMIZED AND INTEGRATED TECHNIQUE FOR NETWORK LOAD BALANCING WITH NOSQL SYSTEMS Dileep Kumar M B 1, Suneetha K R 2 1 PG Scholar, 2 Associate Professor, Dept of CSE, Bangalore Institute of Technology,
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
Solvers, Algorithms and Libraries (SAL)
Solvers, Algorithms and Libraries (SAL) D. Knoll (LANL), J. Wohlbier (LANL), M. Heroux (SNL), R. Hoekstra (SNL), S. Pautz (SNL), R. Hornung (LLNL), U. Yang (LLNL), P. Hovland (ANL), R. Mills (ORNL), S.
Lecture 2 Parallel Programming Platforms
Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple
Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC
Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC Outline Dynamic Load Balancing framework in Charm++ Measurement Based Load Balancing Examples: Hybrid Load Balancers Topology-aware
A Case Study - Scaling Legacy Code on Next Generation Platforms
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2015) 000 000 www.elsevier.com/locate/procedia 24th International Meshing Roundtable (IMR24) A Case Study - Scaling Legacy
Calculation of Eigenmodes in Superconducting Cavities
Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December
Load balancing in a heterogeneous computer system by self-organizing Kohonen network
Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.
FD4: A Framework for Highly Scalable Dynamic Load Balancing and Model Coupling
Center for Information Services and High Performance Computing (ZIH) FD4: A Framework for Highly Scalable Dynamic Load Balancing and Model Coupling Symposium on HPC and Data-Intensive Applications in Earth
A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures
11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the
P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE
1 P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE JEAN-MARC GRATIEN, JEAN-FRANÇOIS MAGRAS, PHILIPPE QUANDALLE, OLIVIER RICOIS 1&4, av. Bois-Préau. 92852 Rueil Malmaison Cedex. France
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
Optimizing Load Balance Using Parallel Migratable Objects
Optimizing Load Balance Using Parallel Migratable Objects Laxmikant V. Kalé, Eric Bohm Parallel Programming Laboratory University of Illinois Urbana-Champaign 2012/9/25 Laxmikant V. Kalé, Eric Bohm (UIUC)
High-fidelity electromagnetic modeling of large multi-scale naval structures
High-fidelity electromagnetic modeling of large multi-scale naval structures F. Vipiana, M. A. Francavilla, S. Arianos, and G. Vecchi (LACE), and Politecnico di Torino 1 Outline ISMB and Antenna/EMC Lab
An Improved Spectral Load Balancing Method*
SAND93-016C An Improved Spectral Load Balancing Method* Bruce Hendrickson Robert Leland Abstract We describe an algorithm for the static load balancing of scientific computations that generalizes and improves
Load Balancing Techniques
Load Balancing Techniques 1 Lecture Outline Following Topics will be discussed Static Load Balancing Dynamic Load Balancing Mapping for load balancing Minimizing Interaction 2 1 Load Balancing Techniques
Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach
Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach S. M. Ashraful Kadir 1 and Tazrian Khan 2 1 Scientific Computing, Royal Institute of Technology (KTH), Stockholm, Sweden [email protected],
Weighted Decomposition in High-Performance Lattice-Boltzmann Simulations: Are Some Lattice Sites More Equal than Others?
Decomposition in High-Performance Lattice-Boltzmann Simulations: Are Some Lattice Sites More Equal than Others? Derek Groen 1(B), David Abou Chacra 1,RupertW.Nash 1, Jiri Jaros 2, Miguel O. Bernabeu 1,
Fast Setup and Integration of ABAQUS on HPC Linux Cluster and the Study of Its Scalability
Fast Setup and Integration of ABAQUS on HPC Linux Cluster and the Study of Its Scalability Betty Huang, Jeff Williams, Richard Xu Baker Hughes Incorporated Abstract: High-performance computing (HPC), the
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.
A first evaluation of dynamic configuration of load-balancers for AMR simulations of flows
A first evaluation of dynamic configuration of load-balancers for AMR simulations of flows Henrik Johansson, Johan Steensland and Jaideep Ray Uppsala University, Uppsala and Sandia National Laboratories,
A Review of Customized Dynamic Load Balancing for a Network of Workstations
A Review of Customized Dynamic Load Balancing for a Network of Workstations Taken from work done by: Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy Computer Science Department, University of Rochester
Petascale, Adaptive CFD (ALCF ESP Technical Report)
ANL/ALCF/ESP-13/7 Petascale, Adaptive CFD (ALCF ESP Technical Report) ALCF-2 Early Science Program Technical Report Argonne Leadership Computing Facility About Argonne National Laboratory Argonne is a
Load Balance Strategies for DEVS Approximated Parallel and Distributed Discrete-Event Simulations
Load Balance Strategies for DEVS Approximated Parallel and Distributed Discrete-Event Simulations Alonso Inostrosa-Psijas, Roberto Solar, Verónica Gil-Costa and Mauricio Marín Universidad de Santiago,
Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing
Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing James D. Jackson Philip J. Hatcher Department of Computer Science Kingsbury Hall University of New Hampshire Durham,
Calculation of Eigenfields for the European XFEL Cavities
Calculation of Eigenfields for the European XFEL Cavities Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt Status Meeting
The enhancement of the operating speed of the algorithm of adaptive compression of binary bitmap images
The enhancement of the operating speed of the algorithm of adaptive compression of binary bitmap images Borusyak A.V. Research Institute of Applied Mathematics and Cybernetics Lobachevsky Nizhni Novgorod
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell R&D Manager, Scalable System So#ware Department Sandia National Laboratories is a multi-program laboratory managed and
Fast Optimal Load Balancing Algorithms for 1D Partitioning
Fast Optimal Load Balancing Algorithms for D Partitioning Ali Pınar Department of Computer Science University of Illinois at Urbana-Champaign [email protected] Cevdet Aykanat Computer Engineering Department
Partitioning and Divide and Conquer Strategies
and Divide and Conquer Strategies Lecture 4 and Strategies Strategies Data partitioning aka domain decomposition Functional decomposition Lecture 4 and Strategies Quiz 4.1 For nuclear reactor simulation,
A Load Balancing Tool for Structured Multi-Block Grid CFD Applications
A Load Balancing Tool for Structured Multi-Block Grid CFD Applications K. P. Apponsah and D. W. Zingg University of Toronto Institute for Aerospace Studies (UTIAS), Toronto, ON, M3H 5T6, Canada Email:
High Performance Computing. Course Notes 2007-2008. HPC Fundamentals
High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs
