# CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy"

## Transcription

1 CATIA V5 Tutorials Mechanism Design & Animation Release 18 Nader G. Zamani University of Windsor Jonathan M. Weaver University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices.

2 CATIA V5 Tutorials in Mechanism Design and Animation 4-1 Chapter 4 Slider Crank Mechanism

3 4-2 CATIA V5 Tutorials in Mechanism Design and Animation Introduction In this tutorial you create a slider crank mechanism using a combination of revolute and cylindrical joints. You will also experiment with additional plotting utilities in CATIA. 1 Problem Statement A slider crank mechanism, sometimes referred to as a three-bar-linkage, can be thought of as a four bar linkage where one of the links is made infinite in length. The piston based internal combustion is based off of this mechanism. The analytical solution to the kinematics of a slider crank can be found in elementary dynamics textbooks. In this tutorial, we aim to simulate the slider crank mechanism shown below for constant crank rotation and to generate plots of some of the results, including position, velocity, and acceleration of the slider. The mechanism is constructed by assembling four parts as described later in the tutorial. In CATIA, the number and type of mechanism joints will be determined by the nature of the assembly constraints applied. There are several valid combinations of joints which would produce a kinematically correct simulation of the slider crank mechanism. The most intuitive combination would be three revolute joints and a prismatic joint. From a degrees of freedom standpoint, using three revolute joints and a prismatic joint redundantly constrains the system, although the redundancy does not create a problem unless it is geometrically infeasible, in this tutorial we will choose an alternate combination of joints both to illustrate cylindrical joints and to illustrate that any set of joint which removes the appropriate degrees of freedom while providing the capability to drive the desired motions can be applied. In the approach suggested by this tutorial, the assembly constraints will be applied in such a way that two revolute joints and two cylindrical joints are created reducing the degrees of freedom are reduced to one. This remaining degree of freedom is then removed by declaring the crank joint (one of the cylindrical joints in our approach) as being angle driven. An exercise left to the reader is to create the same mechanism using three revolute joints and one prismatic joint or some other suitable combination of joints. We will use the Multiplot feature available in CATIA is used to create plots of the simulation results where the abscissa is not necessarily the time variable. Cylindrical Revolute Revolute Cylindrical

4 Slider Crank Mechanism Overview of this Tutorial In this tutorial you will: 1. Model the four CATIA parts required. 2. Create an assembly (CATIA Product) containing the parts. 3. Constrain the assembly in such a way that only one degree of freedom is unconstrained. This remaining degree of freedom can be thought of as rotation of the crank. 4. Enter the Digital Mockup workbench and convert the assembly constraints into two revolute and two cylindrical joints. 5. Simulate the relative motion of the arm base without consideration to time (in other words, without implementing the time based angular velocity given in the problem statement). 6. Add a formula to implement the time based kinematics associated with constant angular velocity of the crank. 7. Simulate the desired constant angular velocity motion and generate plots of the kinematic results.

5 4-4 CATIA V5 Tutorials in Mechanism Design and Animation 3 Creation of the Assembly in Mechanical Design Solutions Although the dimensions of the components are irrelevant to the process (but not to the kinematic results), the tutorial details provide some specific dimensions making it easier for the reader to model the appropriate parts and to obtain results similar to those herein. Where specific dimensions are given, it is recommended that you use the indicated values (in inches). Some dimensions of lesser importance are not given; simply estimate those dimensions from the drawing. In CATIA, model four parts named base, crank, conrod, and block as shown below. base Length 10 1x1x1 cube Block Diameter 0.5 Length 0.75 Diameter 0.5 Length 0.5 crank 1x1 square Diameter 0.5 Diameter 0.7 (4 locations) 3.5 Diameter 0.5 Diameter 0.5 Diameter 0.5 Length conrod Thickness 0.25 Thickness 0.25

6 Slider Crank Mechanism 4-5 Enter the Assembly Design workbench which can be achieved by different means depending on your CATIA customization. For example, from the standard Windows toolbar, select File > New. From the box shown on the right, select Product. This moves you to the Assembly Design workbench and creates an assembly with the default name Product.1. In order to change the default name, move the curser to Product.1 in the tree, right click and select Properties from the menu list. From the Properties box, select the Product tab and in Part Number type slider_crank. This will be the new product name throughout the chapter. The tree on the top left corner of your computer screen should look as displayed below. The next step is to insert the existing parts in the assembly just created. From the standard Windows toolbar, select Insert > Existing Component. From the File Selection pop up box choose all four parts. Remember that in CATIA multiple selections are made with the Ctrl key. The tree is modified to indicate that the parts have been inserted.

7 4-6 CATIA V5 Tutorials in Mechanism Design and Animation Note that the part names and their instance names were purposely made the same. This practice makes the identification of the assembly constraints a lot easier down the road. Depending on how your parts were created earlier, on the computer screen you have the four parts all clustered around the origin. You may have to use the Manipulation icon in the Move toolbar to rearrange them as desired. The best way of saving your work is to save the entire assembly. Double click on the top branch of the tree. This is to ensure that you are in the Assembly Design workbench. Select the Save icon. The Save As pop up box allows you to rename if desired. The default name is the slider_crank.

8 Slider Crank Mechanism 4-7 Your next task is to impose assembly constraints. Pick the Anchor icon from the Constraints toolbar and select the base from the tree or from the screen. This removes all six degrees of freedom for the base. Next, we will create a coincident edge constraint between the base and the block. This removes all dof except for translation along the edge of coincidence and rotation about the edge of coincidence. The two remaining dof are consistent with our desire to create a cylindrical joint between the block and the base. To make the constraint, pick the Coincidence icon from the Constraints toolbar. Select the two edges of the base and the block as shown below. This constraint is reflected in the appropriate branch of the tree. Select this edge of base Select this edge of block Use Update icon to partially position the two parts as shown. Note that the Update icon no longer appears on the constraints branches.

9 4-8 CATIA V5 Tutorials in Mechanism Design and Animation Depending on how your parts were constructed the block may end up in a position quite different from what is shown below. You can always use the Manipulation icon position it where desired followed by Update if necessary. to You will now impose assembly constraints between the conrod and the block. Recall that we ultimately wish to create a revolute joint between these two parts, so our assembly constraints need to remove all the dof except for rotation about the axis. Pick the Coincidence icon from Constraints toolbar. Select the axes of the two cylindrical surfaces as shown below. Keep in mind that the easy way to locate the axis is to point the cursor to the curved surfaces. Select the axis of the cylinder on the block Select the axis of the hole on the conrod The coincidence constraint just created removes all but two dof between the conrod and the base. The two remaining dof are rotation about the axis (a desired dof) and translation along the axis (a dof we wish to remove in order to produce the desired revolute joint). To remove the translation, pick the Coincidence icon from the Constraints toolbar and select the surfaces shown on the next page. If your parts are

10 Slider Crank Mechanism 4-9 originally oriented similar to what is shown, you will need to choose Same for the Orientation in the Constraints Definition box so that the conrod will flip to the desired orientation upon an update. The tree is modified to reflect this constraint. Choose the end surface of the cylinder Choose the back surface of the conrod (surface not visible in this view) Use Update icon to partially position the two parts as shown below. Note that upon updating, the conrod may end up in a location which is not convenient for the rest of the assembly. In this situation the Manipulation icon conveniently rearrange the conrod orientation. can be used to

11 4-10 CATIA V5 Tutorials in Mechanism Design and Animation So far, we have created assembly constraints which leave degrees of freedom consistent with a cylindrical joint between the block and the base and a revolute joint between the block and the conrod. Next we will apply assembly constraints consistent with a revolute joint between the conrod and the crank. This will be done with a coincidence constraint between the centerlines of the protrusion on the conrod and the upper hole of the base and a surface contact constraint to position the parts along the axis of the coincidence constraint. To begin this process, pick the Coincidence icon from Constraints toolbar. Select the axis of the cylindrical surface and the hole as shown below. Select the axis of the cylindrical protrusion in the conrod Select the axis of the hole in the crank The coincidence constraint just applied removes all dof between the conrod and the crank except for rotation along the axis of coincidence and translation along that axis. To remove the unwanted translational dof, we will use a surface contact constraint (a coincidence constraint could also be applied, but we have chosen to illustrate a contact constraint here). To create the constraint, Pick the Contact icon from Constraints toolbar and select the surfaces shown in the next page. The tree is modified to reflect this constraint. Select this face of the conrod Select the back face of the crank (face not visible here)

12 Slider Crank Mechanism 4-11 Use Update icon to partially position the two parts as shown. We need to apply one final constraint to locate the lower end of the crank onto the cylindrical protrusion on the base. Pick the Coincidence icon from Constraints toolbar. Select the axis of the cylindrical surface and the hole as shown below. Choose the axis of the hole Choose the axis of the cylindrical protrusion

13 4-12 CATIA V5 Tutorials in Mechanism Design and Animation Use Update icon to get the final position of all parts as shown. Note that since we have chosen to create a cylindrical joint between the base and the crank, we do not need to specify a constraint to remove the translation along the axis of coincidence; that translation is effectively removed by the remainder of the assembly constraints. The assembly is complete and we can proceed to the Digital Mockup workbench. As you proceed in the tutorial, keep in mind that we have created the assembly constraints with attention to the relative degrees of freedom between the parts in a manner consistent with having a cylindrical joint between the base and the crank, a revolute joint between the crank and the lower end of the conrod, a revolute joint between the upper end of the conrod and the block, and a cylindrical joint between the block and the base.

14 Slider Crank Mechanism Creating Joints in the Digital Mockup Workbench The Digital Mockup workbench is quite extensive but we will only deal with the DMU Kinematics module. To get there you can use the standard Windows toolbar as shown below: Start > Digital Mockup > DMU Kinematics. Select the Assembly Constraints Conversion icon from the DMU Kinematics toolbar. This icon allows you to create most common joints automatically from the existing assembly constraints. The pop up box below appears.

15 4-14 CATIA V5 Tutorials in Mechanism Design and Animation Select the New Mechanism button. This leads to another pop up box which allows you to name your mechanism. The default name is Mechanism.1. Accept the default name by pressing OK. Note that the box indicates Unresolved pairs: 4/4. Select the Auto Create button. Then if the Unresolved pairs becomes 0/4, things are moving in the right direction. Note that the tree becomes longer by having an Application Branch. The expanded tree is displayed below.

16 Slider Crank Mechanism 4-15 The DOF is 1 (if you have dof other than 1, revisit your assembly constraints to make sure they are consistent with those herein, delete your mechanism, then begin this chapter again). This remaining dof can be thought of as the position of the block along the base, or the rotation of the crank about the base. Since we want to drive the crank at constant angular speed, the latter interpretation is appropriate. Note that because we were careful in creating our assembly constraints consistent with the desired kinematic joints, the desired joints were created based on the assembly constraints created earlier and the Assembly Constraints Conversion icon. All of these joints could also be created directly using the icons in the Kinematics Joints toolbar In order to animate the mechanism, you need to remove the one degree of freedom present. This will be achieved by turning Cylindrical.2 (the joint between the base and the crank) into an Angle driven joint. Note that naming the instances of parts to be the same as the part name makes it easy to identify the joint between any two parts. Double click on Cylindrical.2 in the tree. The pop up box below appears.. Check the Angle driven box. This allows you to change the limits.

17 4-16 CATIA V5 Tutorials in Mechanism Design and Animation Change the value of 2nd Lower Limit to be 0. Upon closing the above box and assuming that everything else was done correctly, the following message appears on the screen. This indeed is good news. According to CATIA V5 terminology, specifying Cylindrical.2 as an Angle driven joint is synonymous to defining a command. This is observed by the creation of Command.1 line in the tree.

18 Slider Crank Mechanism 4-17 We will now simulate the motion without regard to time based angular velocity. Select the Simulation icon from the DMU Generic Animation toolbar. This enables you to choose the mechanism to be animated if there are several present. In this case, select Mechanism.1 and close the window. As soon as the window is closed, a Simulation branch is added to the tree. As you scroll the bar in this toolbar from left to right, the crank begins to turn and makes a full 360 degree revolution. Notice that the zero position is simply the initial position of the assembly when the joint was created. Thus, if a particular zero position had been desired, a temporary assembly constraint could have been created earlier to locate the mechanism to the desired zero position. This temporary constraint would need to be deleted before conversion to mechanism joints.

19 4-18 CATIA V5 Tutorials in Mechanism Design and Animation When the scroll bar in the Kinematics Simulation pop up box reaches the right extreme end, select the Insert button in the Edit Simulation pop up box shown above. This activates the video player buttons shown. Return the block to its original position by picking the Jump to Start button. Note that the Change Loop Mode button Upon selecting the Play Forward button its revolution. is also active now., the crank makes fast jump completing In order to slow down the motion of the crank, select a different interpolation step, such as Upon changing the interpolation step to , return the crank to its original position by picking the Jump to Start button. Apply Play Forward button and observe the slow and smooth rotation of the crank. It is likely that your slider will proceed beyond the end of the block; the entities involved in the joints are treated as infinite. If you wish, you may alter your block dimensions so the slider remains on the block. Select the Compile Simulation icon from the Generic Animation toolbar and activate the option Generate an animation file. Now, pressing the File name button allows you to set the location and name of the animation file to be generated as displayed below. Select a suitable path and file name and change the Time step to be 0.04 to produce a slow moving rotation in an AVI file.

20 Slider Crank Mechanism 4-19 The completed pop up box is displayed for your reference. As the file is being generated, the crank slowly rotates. The resulting AVI file can be viewed with the Windows Media Player. In the event that an AVI file is not needed, but one wishes to play the animation, repeatedly, a Replay need be generated. Therefore, in the Compile Simulation box, check the Generate a replay button. Note that in this case most of the previously available options are dimmed out. A Replay.1 branch has also been added to the tree. Select the Replay icon from the Generic Animation toolbar. Double clock on Replay.1 in the tree and the Replay pop up box appears. Experiment with the different choices of the Change Loop Mode buttons,,. The block can be returned to the original position by picking the Jump to Start button. The skip ratio (which is chosen to be x1 in the right box) controls the speed of the Replay.

21 4-20 CATIA V5 Tutorials in Mechanism Design and Animation Once a Replay is generated such as Replay.1 in the tree above, it can also be played with a different icon. Select the Simulation Player icon from the DMUPlayer toolbar. The outcome is the pop up box above. Use the cursor to pick Replay.1 from the tree. The player keys are no longer dimmed out. Use the Play Forward (Right) button to begin the replay.

22 Slider Crank Mechanism Creating Laws in the Motion You will now introduce some time based physics into the problem by specifying the crank angular velocity. The objective is to specify the angular position versus time function as a constant 1 revolution/sec (360 degrees/sec). Click on Simulation with Laws icon in the Simulation toolbar. You will get the following pop up box indication that you need to add at least a relation between a command and the time parameter. To create the required relation, select the Formula icon from the Knowledge toolbar. The pop up box below appears on the screen. Point the cursor to the Mechanism.1, DOF=0 branch in the tree and click. The consequence is that only parameters associated with the mechanism are displayed in the Formulas box. The long list is now reduced to two parameters as indicated in the box.

23 4-22 CATIA V5 Tutorials in Mechanism Design and Animation Select the entry Mechanism.1\Commands\Command.1\Angle and press the Add Formula button. This action kicks you to the Formula Editor box. Pick the Time entry from the middle column (i.e. Members of Parameters) then double click on Mechanism.1\KINTime in the Members of Time column.

24 Slider Crank Mechanism 4-23 Since angle can be computed as the product of angular velocity (360deg)/(1s) in our case and time, edit the box containing the right hand side of the equality such that the formula becomes: Mechanism.1\ Commands \ Command.1\ Angle = (360deg) /(1s )*( Mechnism.1\ KINTime) The completed Formula Editor box should look as shown below. Upon accepting OK, the formula is recorded in the Formulas pop up box as shown below.

25 4-24 CATIA V5 Tutorials in Mechanism Design and Animation Careful attention must be given to the units when writing formulas involving the kinematic parameters. In the event that the formula has different units at the different sides of the equality you will get Warning messages such as the one shown below. We are spared the warning message because the formula has been properly inputted. Note that the introduced law has appeared in Law branch of the tree. Keep in mind that our interest is to plot the position, velocity and accelerations generated by this motion. To set this up, select the Speed and Acceleration icon from the DMU Kinematics toolbar appears on the Screen.. The pop up box below For the Reference product, select the base from the screen or the tree. For the Point selection, pick the vertex of the block as shown in the sketch below. This will set up the sensor to record the movement of the chosen point relative to the base (which is fixed).

26 Slider Crank Mechanism 4-25 For Point selection, pick this vertex For Reference product, pick the base Note that the Speed and Acceleration.1 has appeared in the tree. Having entered the required kinematic relation and designated the vertex on the block as the point to collect data on, we will simulate the mechanism. Click on Simulation with Laws icon in the Simulation toolbar. This results in the Kinematics Simulation pop up box shown below. Note that the default time duration is 10 seconds. To change this value, click on the button. In the resulting pop up box, change the time duration to 1s. This is the time duration for the crank to make one full revolution.

27 4-26 CATIA V5 Tutorials in Mechanism Design and Animation The scroll bar now moves up to 1s. Check the Activate sensors box, at the bottom left corner. (Note: CATIA V5R15 users will also see a Plot vectors box in this window). You will next have to make certain selections from the accompanying Sensors box. Observing that the coordinate direction of interest is X, click on the following items to record position, velocity, and acceleration of the block: Mechanism.1\Joints\Cylindrical.1\Length Speed-Acceleration.1\X_LinearSpeed Speed-Acceleration.1\X_LinearAcceleration As you make selections in this window, the last column in the Sensors box, changes to Yes for the corresponding items. This is shown on the next page. Do not close the Sensors box after you have made your selection (leave it open to generate results).

28 Slider Crank Mechanism 4-27 Also, change the Number of steps to 80. The larger this number, the smoother the velocity and acceleration plots will be. The larger this number, The smoother the plots Note: If you haven t already done so, change the default units on position, velocity and acceleration to in, in/s and in/s 2, respectively. This is done in the Tools, Options, Parameters and Measures menu shown on the next page.

29 4-28 CATIA V5 Tutorials in Mechanism Design and Animation Finally, drag the scroll bar in the Kinematics Simulation box. As you do this, the crank rotates and the block travels along the base. Once the bar reaches its right extreme point, the crank has made one full revolution. This corresponds to 1s. Scroll the bar to the right The crank turns

30 Slider Crank Mechanism 4-29 Once the crank reaches the end, click on the Graphics button in the Sensor box. The result is the plot of the position, velocity and acceleration all on the same axis (but with the vertical axis units corresponding to whichever one of the three outputs is highlighted in the right side of the window). Click on each of the three outputs to see the corresponding axis units for each output. The three plots for position (corresponding to cylindrical joint Length), velocity (X_LinearSpeed), and acceleration (X_Linear_Acceleration) are shown below.

31 4-30 CATIA V5 Tutorials in Mechanism Design and Animation It is not uncommon that you may develop a variety of simulation results before determining exactly how to achieve the desired results. In this case, prior results stored need to be erased. To do this, click on the History tab of the Sensors box. Use the Clear key to erase the values generated.

32 Slider Crank Mechanism 4-31 Next, we will create a plot which is not simply versus time. As an illustrative example, we will place a point somewhere along the conrod. For this point, we will plot its linear speed and linear acceleration versus crank angle. It is important to note that DMU computes positive scalars for linear speeds and linear accelerations since it simply computes the magnitude based on the three rectangular components. First, return to Part Design and create a reference point on the conrod at the approximate location as shown below. Return to DMU. x Create a point on the conrod approximately at this location The plan is to generate two plots. The first plot is the speed of the created point against the angular position of the crank. The second plot is the acceleration of the created point against the angular position of the crank. In order to generate the speed and acceleration data, you need to use the Speed and Acceleration icon from the DMU Kinematics toolbar. Click on the icon and in the resulting pop up box make the following selections. For Reference product, pick the base from the screen. For Reference point, pick the point that was created earlier on the conrod.

33 4-32 CATIA V5 Tutorials in Mechanism Design and Animation Pick the base for the Reference product The tree indicates that Speed-Acceleration.2 is being generated which holds the data for the point on the conrod. x Pick this point for the Reference point Click on Simulation with Laws icon in the Simulation toolbar. This results in the Kinematics Simulation pop up box shown below. Check the Activate sensors box, at the bottom left corner. You will have to make the following selections from the accompanying Sensors box. If you scroll down the list, you will notice that the data from Speed-Acceleration.1 and Speed-Acceleration.2 are both available. Click on the History tab of the Sensors box and make sure that no data is present. Of course the data can be cleared using the button.

34 Slider Crank Mechanism 4-33 In the Sensors box, click on the following line items; be careful as many entries look alike with minor differences. Mechanism.1\Joints\Cylindrical.2\LengthAngle Speed-Acceleration.2\LinearSpeed Speed-Acceleration.2\Linear Acceleration Note: Depending upon your installation, you may see Angle instead of LengthAngle. As you make these selections, the last column in the Sensors box, changes to Yes for the corresponding items. Be sure you have picked Cylindrical.2 for the angle since this is the cylindrical joint at the crank connection to the base. Pick the Options button in the Sensors box. The pop up box shown below appears. Check the Customized radio button. Pick the Add button. The Curve Creation pop up box appears. Use the pull down menu to make the following selections. For Abscissa, select Mechanism.1\Joints\Cylindrical.2\LengthAngle For Ordinate, select Speed-Acceleration.2\LinearSpeed

35 4-34 CATIA V5 Tutorials in Mechanism Design and Animation Press OK to close the box. Note that Curve.1 is now setup. Pick the Add button once again. The Curve Creation pop up box appears. Use the pull down menu to make the following selections. For Abscissa, select Mechanism.1\Joints\Cylindrical.2\LengthAngle For Ordinate, select Speed-Acceleration.2\Linear Acceleration Press OK to close the box. Note that Curve.2 is now setup. Close the Graphical Representation box. Drag the scroll bar in the Kinematics Simulation box all the way to the right or simply click on. Drag the scroll bar all the way to the right or simply click on Once the crank reaches the end, click on Graphics button in the Sensor box. The Multiplot window appears and allows you to pick either Curve.1, or Curve.2. The plots for Curve.1 and Curve.2 are shown on the next page.

36 Slider Crank Mechanism 4-35

TABLE OF CONTENTS Introduction...1 Fitting Simulation...2 Pull Down Menus...3 Insert...3 Tools...4 Analyze...5 Window...5 Fitting Simulation Workbench...6 Manipulation...7 Recorder...8 Player...8 Bottom

### ME Week 11 Windshield Wiper Assembly

a Within this project there are three separate projects that all work on completing dynamic simulation activities on a windshield wiper assembly. The project will cover creating and editing joints plus

### DMU Kinematics Simulator

DMU Kinematics Simulator Preface What's New? Getting Started Basic Tasks Advanced Tasks Workbench Description Glossary Index Dassault Systèmes 1994-99. All rights reserved. Preface DMU Kinematics Simulator

TABLE OF CONTENTS Introduction...1 Manual Format...2 Log on/off procedures for Windows...3 To log on...3 To logoff...7 Assembly Design Screen...8 Part Design Screen...9 Pull-down Menus...10 Start...10

### Animations in Creo 3.0

Animations in Creo 3.0 ME170 Part I. Introduction & Outline Animations provide useful demonstrations and analyses of a mechanism's motion. This document will present two ways to create a motion animation

### Introduction to CATIA V5

Introduction to CATIA V5 Release 16 (A Hands-On Tutorial Approach) Kirstie Plantenberg University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com

### ABAQUS for CATIA V5 Tutorials

ABAQUS for CATIA V5 Tutorials AFC V2 Nader G. Zamani University of Windsor Shuvra Das University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com

TABLE OF CONTENTS Introduction...1 DMU Viewer...1 Product Structure Introduction...3 Pull Down Menus...4 Start...4 File...5 Edit...6 View...9 Insert...12 Tools...13 Analyze...16 Window...17 Help...18 Product

### Chapter 11. Assembly Modeling. Evaluation chapter. Logon to for more details. Learning Objectives

Chapter 11 Assembly Modeling Learning Objectives After completing this chapter you will be able to: Insert components into an assembly file. Create bottom-up assemblies. Insert components into a product

### Practical Work DELMIA V5 R20 Lecture 1. D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr

Practical Work DELMIA V5 R20 Lecture 1 D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr Native languages Definition of the language for the user interface English,

### SpaceClaim Introduction Training Session. A SpaceClaim Support Document

SpaceClaim Introduction Training Session A SpaceClaim Support Document In this class we will walk through the basic tools used to create and modify models in SpaceClaim. Introduction We will focus on:

### Drawing Sketches in the Sketcher Workbench-II

Chapter 3 Drawing Sketches in the Sketcher Workbench-II Learning Objectives After completing this chapter, you will be able to: Draw ellipses. Draw splines. Connect two elements using an arc or a spline.

### Pro/ENGINEER Wildfire 4.0 Basic Design

Introduction Datum features are non-solid features used during the construction of other features. The most common datum features include planes, axes, coordinate systems, and curves. Datum features do

### Figure 1 - Delta Theta Input Selection

Creating Cams in Pro/Engineer Wildfire Using DYNACAM Mechanical Engineering Mechanical Design Created by: David E. Yamartino M.S. Mechanical Engineering May 2004 April 12, 2004 Objective: The objective

### DMU Space Analysis. Preface What's New Getting Started Basic Tasks Workbench Description Customizing Glossary Index

DMU Space Analysis Preface What's New Getting Started Basic Tasks Workbench Description Customizing Glossary Index Dassault Systèmes 1994-99. All rights reserved. Preface DMU Space Analysis is a CAD-independent

### Understand the Sketcher workbench of CATIA V5.

Chapter 1 Drawing Sketches in Learning Objectives the Sketcher Workbench-I After completing this chapter you will be able to: Understand the Sketcher workbench of CATIA V5. Start a new file in the Part

### 6 To create an assembly.

6 To create an assembly. Contents. 6.1 Introduction. 6.2 Pre-requisites. 6.3 Creating an assembly. 6.3.1 The base component. 6.4 To assemble the LUG.prt to STARTPART.prt. 6.4.1 The surface normal vector.

### Working with Wireframe and Surface Design

Chapter 9 Working with Wireframe and Surface Design Learning Objectives After completing this chapter you will be able to: Create wireframe geometry. Create extruded surfaces. Create revolved surfaces.

### CATIA for Design and Engineering. Version 5 Releases 14 & 15. David S. Kelley. Central Michigan University SDC

CATIA for Design and Engineering ersion 5 Releases 4 & 5 David S. Kelley Central Michigan University SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com TUTORIAL Extruded

TABLE OF CONTENTS Introduction...1 Knowledgeware...2 Pull Down Menus...3 Insert - part environment...3 Insert - product environment...3 Knowledge Toolbar...4 Parameters...5 Instrinsic Parameters...5 Renaming

### Chapter 1. Creating Sketches in. the Sketch Mode-I. Evaluation chapter. Logon to www.cadcim.com for more details. Learning Objectives

Chapter 1 Creating Sketches in Learning Objectives the Sketch Mode-I After completing this chapter you will be able to: Use various tools to create a geometry. Dimension a sketch. Apply constraints to

### ME 24-688 Week 11 Introduction to Dynamic Simulation

The purpose of this introduction to dynamic simulation project is to explorer the dynamic simulation environment of Autodesk Inventor Professional. This environment allows you to perform rigid body dynamic

### Autodesk Fusion 360: Assemblies. Overview

Overview In this module you will learn how different components can be put together to create an assembly. We will use several tools in Fusion 360 to make sure that these assemblies are constrained appropriately

### Introduction to SolidWorks Software

Introduction to SolidWorks Software Marine Advanced Technology Education Design Tools What is SolidWorks? SolidWorks is design automation software. In SolidWorks, you sketch ideas and experiment with different

### Generative Drafting. Page 1 1997 2001 DASSAULT SYSTEMES. IBM Product Lifecycle Management Solutions / Dassault Systemes

Generative Drafting Page 1 Tutorial Objectives Description This Tutorial is an introduction to Generative Drafting. Message To show how CATIA V5 allows the user to automatically generate associative drafting

### Chapter 9. Editing Features. Learning Objectives

Chapter 9 Editing Features Learning Objectives After completing this chapter, you will be able to: Edit features. Edit sketches of the sketch based features. Edit the sketch plane of the sketch based features.

### MET 306. Activity 8a. Mechanism Design Creo 2.0 Level 7 POINT A GROUND LINK LINK 1 LINK 2 LINK 3 POINT B 10/15/2010 1

Mechanism Design Creo 2.0 Level 7 POINT A LINK 1 GROUND LINK LINK 2 LINK 3 POINT B 10/15/2010 1 Download parts ground, key, link_1, link_2, link_3 and pulley from the V:/MET_306/Activity_8_Creo drive.

### Introduction to Autodesk Inventor for F1 in Schools

Introduction to Autodesk Inventor for F1 in Schools F1 in Schools Race Car In this course you will be introduced to Autodesk Inventor, which is the centerpiece of Autodesk s digital prototyping strategy

### Using 3 D SketchUp Design Software. Building Blocks Tools

Using 3 D SketchUp Design Software Building Blocks Tools Introduction Google s SketchUp is an easy to use drawing program capable of building 3 dimensional (or 3 D) objects (SketchUp also does 2 D easily).

### Extrude and Revolve Features

Pro/ENGINEER Wildfire Basic Design Section 1 Extrude and Revolve Features Introduction Solid features can be created using a variety of techniques. The most common solid features are Extrude and Revolve.

### Creo Parametric 2.0 Tutorial

Creo Parametric 2.0 Tutorial Creo Parametric 1.0 Tutorial and MultiMedia DVD was written for Creo Parametric1.0. PTC released Creo Parametric 2.0 in the Spring of 2012. This book is fully compatible with

### CATIA V5 Freeform Surfaces

CATIA V5 Freeform Surfaces (Tutorial 4 Rebuild P51 Mustang) Infrastructure Sketcher Freestyle (Surface-modeling) A- 1 CATIA Freeform Surface-modeling Tutorial 4A Create three Extrude surfaces, offsetting

### DMU Kinematics Simulator

DMU Kinematics Simulator Preface What's New? Getting Started Basic Tasks Advanced Tasks Workbench Description Glossary Index Dassault Systèmes 1994-2000. All rights reserved. Preface DMU Kinematics Simulator

### Help. Contents Back >>

Contents Back >> Customizing Opening the Control Panel Control Panel Features Tabs Control Panel Lists Control Panel Buttons Customizing Your Tools Pen and Airbrush Tabs 2D Mouse and 4D Mouse Tabs Customizing

### Chapter 9 Slide Shows

Impress Guide Chapter 9 Slide Shows Transitions, animations, and more Copyright This document is Copyright 2007 2013 by its contributors as listed below. You may distribute it and/or modify it under the

### A Guide to Using Excel in Physics Lab

A Guide to Using Excel in Physics Lab Excel has the potential to be a very useful program that will save you lots of time. Excel is especially useful for making repetitious calculations on large data sets.

### Tutorial: Biped Character in 3D Studio Max 7, Easy Animation

Tutorial: Biped Character in 3D Studio Max 7, Easy Animation Written by: Ricardo Tangali 1. Introduction:... 3 2. Basic control in 3D Studio Max... 3 2.1. Navigating a scene:... 3 2.2. Hide and Unhide

### Piston Ring. Problem:

Problem: A cast-iron piston ring has a mean diameter of 81 mm, a radial height of h 6 mm, and a thickness b 4 mm. The ring is assembled using an expansion tool which separates the split ends a distance

### CATIA V5 Workbook Release 16

CATIA V5 Workbook Release 16 By: Richard Cozzens Southern Utah University SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com Visit the following websites to learn more

TABLE OF CONTENTS Introduction...1 Functional Tolerancing and Annotation...2 Pull-down Menus...3 Insert...3 Functional Tolerancing and Annotation Workbench...4 Bottom Toolbar Changes...5 3D Grid Toolbar...5

### Beginner s Guide to SolidWorks Level I

Beginner s Guide to SolidWorks 2013 - Level I Parts, Assemblies, Drawings, Simulation Xpress Alejandro Reyes MSME, CSWP, CSWI SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices.

### CATIA V5 FEA Tutorials Releases 12 & 13

CATIA V5 FEA Tutorials Releases 12 & 13 Nader G. Zamani University of Windsor SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com Visit our website to learn more about

### Creating Fill-able Forms using Acrobat 8.0: Part 1

Creating Fill-able Forms using Acrobat 8.0: Part 1 The first step in creating a fill-able form in Adobe Acrobat is to generate the form with all its formatting in a program such as Microsoft Word. Then

### Creating Custom Crystal Reports Tutorial

Creating Custom Crystal Reports Tutorial 020812 2012 Blackbaud, Inc. This publication, or any part thereof, may not be reproduced or transmitted in any form or by any means, electronic, or mechanical,

TABLE OF CONTENTS Introduction...1 Drafting...2 Drawing Screen...3 Pull-down Menus...4 File...4 Edit...5 View...6 Insert...7 Tools...8 Drafting Workbench...9 Views and Sheets...9 Dimensions and Annotations...10

### 10. THERM DRAWING TIPS

10. THERM DRAWING TIPS 10.1. Drawing Tips The THERM User's Manual describes in detail how to draw cross-sections in THERM. This section of the NFRC Simualation Training Manual presents some additional

### TABLE OF CONTENTS. INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE...

Starting Guide TABLE OF CONTENTS INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE... 7 ADVANCE CONCRETE USER INTERFACE... 7 Other important

### Chapter. 4 Mechanism Design and Analysis

Chapter. 4 Mechanism Design and Analysis 1 All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

### SolidWorks Implementation Guides. Sketching Concepts

SolidWorks Implementation Guides Sketching Concepts Sketching in SolidWorks is the basis for creating features. Features are the basis for creating parts, which can be put together into assemblies. Sketch

### Speeding Up Dynamic Simulation and Animation Workflows Using the New Joint Tool in Autodesk Inventor Sergio Duran SolidCAD Solutions

Speeding Up Dynamic Simulation and Animation Workflows Using the New Joint Tool in Autodesk Sergio Duran SolidCAD Solutions MA2749 Autodesk Inventor 2014 3D CAD software has an amazing set of new tools

### Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook

### Maya 2014 Basic Animation & The Graph Editor

Maya 2014 Basic Animation & The Graph Editor When you set a Keyframe (or Key), you assign a value to an object s attribute (for example, translate, rotate, scale, color) at a specific time. Most animation

TABLE OF CONTENTS Introduction...1 Electrical Harness Design...2 Electrical Harness Assembly Workbench...4 Bottom Toolbar...5 Measure...5 Electrical Harness Design...7 Defining Geometric Bundles...7 Installing

### Introduction to Autodesk Inventor for F1 in Schools

F1 in Schools race car Introduction to Autodesk Inventor for F1 in Schools In this course you will be introduced to Autodesk Inventor, which is the centerpiece of Autodesk s Digital Prototyping strategy

### Wireframe and Surface

Wireframe and Surface Preface What's New Getting Started Basic Tasks Workbench Description Glossary Index Dassault Systèmes 1994-99. All rights reserved. Preface CATIA Version 5 Wireframe and Surface allows

### Hypercosm. Studio. www.hypercosm.com

Hypercosm Studio www.hypercosm.com Hypercosm Studio Guide 3 Revision: November 2005 Copyright 2005 Hypercosm LLC All rights reserved. Hypercosm, OMAR, Hypercosm 3D Player, and Hypercosm Studio are trademarks

### SketchUp Instructions

SketchUp Instructions Every architect needs to know how to use SketchUp! SketchUp is free from Google just Google it and download to your computer. You can do just about anything with it, but it is especially

### Autodesk Inventor Tutorial 3

Autodesk Inventor Tutorial 3 Assembly Modeling Ron K C Cheng Assembly Modeling Concepts With the exception of very simple objects, such as a ruler, most objects have more than one part put together to

### IES Tutorial. ModelIT (Version 6.0)

IES Tutorial ModelIT (Version 6.0) 1 Introduction: ModelIT Tutorial This document shows you how to use ModelIT, IES s 3D building geometry modelling tool. The tutorial is intended

### Creating Drawings in Pro/ENGINEER

6 Creating Drawings in Pro/ENGINEER This chapter shows you how to bring the cell phone models and the assembly you ve created into the Pro/ENGINEER Drawing mode to create a drawing. A mechanical drawing

### Parametric Technology Corporation. Pro/ENGINEER Wildfire 4.0 Design Animation Concepts Guide

Parametric Technology Corporation Pro/ENGINEER Wildfire 4.0 Design Animation Concepts Guide Copyright 2007 Parametric Technology Corporation. All Rights Reserved. User and training guides and related documentation

### Dynamic Blocks in AutoCAD

AutoCAD 2006 Dynamic Blocks in AutoCAD Part 2 of 3: Inventory of Block Editor, Commands, Parameters, Actions, and Parameter Sets. This second of three white papers on Dynamic Blocks in AutoCAD 2006 documents

### Adding Animation With Cinema 4D XL

Step-by-Step Adding Animation With Cinema 4D XL This Step-by-Step Card covers the basics of using the animation features of Cinema 4D XL. Note: Before you start this Step-by-Step Card, you need to have

### Generative Assembly Structural Analysis

Generative Assembly Structural Analysis Site Map Preface What's New? Getting Started Basic Tasks Workbench Description Index Dassault Systèmes 1994-99. All rights reserved. Site Map Preface Using This

### Creating and Viewing Task Dependencies between Multiple Projects using Microsoft Project

Creating and Viewing Task Dependencies between Multiple Projects using Microsoft Project Preliminary 1. You must have Microsoft Project 2003 or higher installed to complete these procedures. 2. If necessary,

### Part Design. Page 1 1997 2001 DASSAULT SYSTEMES. IBM Product Lifecycle Management Solutions / Dassault Systemes

Part Design Page 1 Tutorial Objectives Description This tutorial is an introduction to Part Design. Message This tutorial illustrates how CATIA can Design precise 3D mechanical parts with an intuitive

### Autodesk Fusion 360 Badge Guide: Design an F1 in Schools Trophy

Autodesk Fusion 360 Badge Guide: Design an F1 in Schools Trophy Abstract: Gain basic understanding of creating 3D models in Fusion 360 by designing an F1 in Schools trophy. This badge may be claimed by

### Overview of the Adobe Flash Professional CS6 workspace

Overview of the Adobe Flash Professional CS6 workspace In this guide, you learn how to do the following: Identify the elements of the Adobe Flash Professional CS6 workspace Customize the layout of the

### Windows Movie Maker 2012 Notes

Windows Movie Maker 2012 Notes CONTENTS Introduction... 2 Acquiring photos, videos, and audio... 2 Downloading and Installing Windows Movie Maker... 3 Movie Maker Window Layout... 3 Creating a New Movie...

### Pretty Pictures Sell Products! Enhancing Your Presentations to Effectively Communicate Ideas

Pretty Pictures Sell Products! Enhancing Your Presentations to Effectively Communicate Ideas Garin Gardiner Autodesk MA211-3P In this class, we ll look at how to use presentations, Autodesk Inventor Studio,

### CATIA: Navigating the CATIA V5 environment. D. CHABLAT / S. CARO Damien.Chablat@irccyn.ec-nantes.fr

CATIA: Navigating the CATIA V5 environment D. CHABLAT / S. CARO Damien.Chablat@irccyn.ec-nantes.fr Standard Screen Layout 5 4 6 7 1 2 3 8 9 10 11 12 13 14 15 D. Chablat / S. Caro -- Institut de Recherche

### Plotting: Customizing the Graph

Plotting: Customizing the Graph Data Plots: General Tips Making a Data Plot Active Within a graph layer, only one data plot can be active. A data plot must be set active before you can use the Data Selector

### Working With Animation: Introduction to Flash

Working With Animation: Introduction to Flash With Adobe Flash, you can create artwork and animations that add motion and visual interest to your Web pages. Flash movies can be interactive users can click

### Generative Drafting. Preface What's New Getting Started Basic Tasks Workbench Description Customizing Glossary Index

Generative Drafting Preface What's New Getting Started Basic Tasks Workbench Description Customizing Glossary Index Dassault Systèmes 1994-99. All rights reserved. About This Product This User's guide

### Structure Design. Preface What's New? Getting Started Basic Tasks Advanced Tasks Workbench Description Customizing Glossary Index

Structure Design Preface What's New? Getting Started Basic Tasks Advanced Tasks Workbench Description Customizing Glossary Index Dassault Systèmes 1994-2000. All rights reserved. Preface CATIA Version

### 2. A tutorial: Creating and analyzing a simple model

2. A tutorial: Creating and analyzing a simple model The following section leads you through the ABAQUS/CAE modeling process by visiting each of the modules and showing you the basic steps to create and

### OpenOffice Impress (Presentation Software) Tutorial

OpenOffice Impress (Presentation Software) Tutorial Table of Contents Introduction...3 Starting OpenOffice Impress...3 Looking at the Screen...4 Creating an Empty (Blank) Presentation...5 Adding Information

### Appointment Scheduler

EZClaim Appointment Scheduler User Guide Last Update: 11/19/2008 Copyright 2008 EZClaim This page intentionally left blank Contents Contents... iii Getting Started... 5 System Requirements... 5 Installing

### Awesome PowerPoint Tricks for Effective Presentations

Awesome PowerPoint Tricks for Effective Presentations Visualization Identify all the individual elements that could be represented by a single object, icon, or picture Role Person Company X Y Z Graph X

### Motion 1. 1 Introduction. 2 The Motion Sensor

Motion 1 Equipment: DataStudio, motion sensor mounted about 25 cm above lab bench, Data studio files mot1.ds and mot2.ds. Lab Report: Describe procedures not given in the write up. Submit data graphs where

### Getting Started with ANSYS ANSYS Workbench Environment

Getting Started with ANSYS ANSYS Workbench Environment Overview The purpose of this tutorial is to get you started with the ANSYS Workbench environment. We will use a simple, static analysis of a single

### GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

### How to make a line graph using Excel 2007

How to make a line graph using Excel 2007 Format your data sheet Make sure you have a title and each column of data has a title. If you are entering data by hand, use time or the independent variable in

TABLE OF CONTENTS Introduction... 1 Wireframe & Surfaces... 2 Pull Down Menus... 3 Edit... 3 Insert... 4 Tools... 6 Generative Shape Design Workbench... 7 Bottom Toolbar... 9 Tools... 9 Analysis... 10

### The main imovie window is divided into six major parts.

The main imovie window is divided into six major parts. 1. Project Drag clips to the project area to create a timeline 2. Preview Window Displays a preview of your video 3. Toolbar Contains a variety of

### Welcome to Corel DESIGNER, a comprehensive vector-based drawing application for creating technical graphics.

Importing 3D models Welcome to Corel DESIGNER, a comprehensive vector-based drawing application for creating technical graphics. In this tutorial, you will modify a three-dimensional model of a transmission

### Fitting Simulation & Kinematics

Fitting Simulation & Kinematics NATIONAL INSTITUTE FOR AVIATION RESEARCH Wichita State University Revision 5.14 Copyright 2005. All rights reserved. www.cadcamlab.org None of this material may be reproduced,

### 2005 Jonathan Barkand Page 1 of 5

Microsoft PowerPoint Instructor: Jonathan Barkand (412-655-8447) Creating a new presentation: When creating a presentation you can either choose a blank presentation or a design template. In most cases

### Introduction to Pro/ENGINEER Wildfire 5.0

Introduction to Pro/ENGINEER Wildfire 5.0 Overview Course Code TRN-2232 T Course Length 5 Days This course is designed for new users who want to become proficient with Pro/ENGINEER Wildfire 5.0 as quickly

### Sheet Metal Design. Preface What's New? Getting Started Basic Tasks Workbench Description Customizing Glossary Index

Sheet Metal Design Preface What's New? Getting Started Basic Tasks Workbench Description Customizing Glossary Index Dassault Systèmes 1994-99. All rights reserved. Preface The V5 CATIA - Sheet Metal Design

### Getting Started with CATIA Version 5

WB Getting Started with CATIA Version 5 Page 1 CATIA User Interface Let s review the following key features: Multi-document support Standard and specific menus & toolbars (File, Edit, Insert, ) Standard

### Introduction to Windows

Introduction to Windows Today s Class Learn the Windows environment Identify the different parts of a window Understand how to manipulate icons, windows and other objects Work on the Introduction to Windows

### CATIA V4/V5 Kinematic Elements Hindra Salim, Markus Maier

CATIA V4/V5 Kinematic Elements Hindra Salim, Markus Maier V4V5KIN-1 5/15/2000 IDSICC Interoperability Center for CATIA V4/V5 IBM Frankfurt, Germany www.de.ibm.com/caeserv/cicoc/cicoc.htm How to Visualize

### ABERLINK 3D MKIII MEASUREMENT SOFTWARE

ABERLINK 3D MKIII MEASUREMENT SOFTWARE PART 1 (MANUAL VERSION) COURSE TRAINING NOTES ABERLINK LTD. EASTCOMBE GLOS. GL6 7DY UK INDEX 1.0 Introduction to CMM measurement...4 2.0 Preparation and general hints

### Excel 2007 Tutorial - Draft

These notes will serve as a guide and reminder of several features in Excel 2007 that make the use of a spreadsheet more like an interactive thinking tool. The basic features/options to be explored are:

### GeoGebra 4.0 Applications Workshop

Exporting Static and Animated Images using GeoGebra GeoGebra s drawing pad can be exported as 2 types of pictures, a static picture and an animated picture. These exporting options can be found under File

### Pro/E Design Animation Tutorial*

MAE 377 Product Design in CAD Environment Pro/E Design Animation Tutorial* For Pro/Engineer Wildfire 3.0 Leng-Feng Lee 08 OVERVIEW: Pro/ENGINEER Design Animation provides engineers with a simple yet powerful

### Arena Tutorial 1. Installation STUDENT 2. Overall Features of Arena

Arena Tutorial This Arena tutorial aims to provide a minimum but sufficient guide for a beginner to get started with Arena. For more details, the reader is referred to the Arena user s guide, which can