GAMMA.0279 THETA VEGA RHO

Save this PDF as:

Size: px
Start display at page:

Transcription

1 14 Option Sensitivities and Option Hedging Answers to Questions and Problems 1. Consider Call A, with: X \$70; r 0.06; T t 90 days; 0.4; and S \$60. Compute the price, DELTA, GAMMA, THETA, VEGA, and RHO for this call. c \$1.82 DELTA.2735 GAMMA.0279 THETA VEGA RHO Consider Put A, with: X \$70; r 0.06; T t 90 days; 0.4; and S \$60. Compute the price, DELTA, GAMMA, THETA, VEGA, and RHO for this put. p \$10.79 DELTA.7265 GAMMA.0279 THETA VEGA RHO Consider a straddle comprised of Call A and Put A. Compute the price, DELTA, GAMMA, THETA, VEGA, and RHO for this straddle. price c p \$12.61 DELTA GAMMA THETA VEGA RHO

3 ANSWERS TO QUESTIONS AND PROBLEMS 121 N(d 1 ) DELTA for a call, so the DELTA of a call will be smaller with a dividend present. By the same reasoning, the DELTA of the put must increase. Sensitivity C2 P2 DELTA GAMMA THETA VEGA RHO Consider three calls, Call C, Call D, and Call E, all written on the same underlying stock; S \$80; r 0.07; 0.2. For Call C, X \$70, and T t 90 days. For Call D, X \$75, and T t 90 days. For Call E, X \$80, and T t 120 days. Compute the price, DELTA, and GAMMA for each of these calls. Using Calls C and D, create a DELTA-neutral portfolio assuming that the position is long one Call C. Now use calls C, D, and E to form a portfolio that is DELTA-neutral and GAMMA-neutral, again assuming that the portfolio is long one Call C. Measure Call C Call D Call E Price \$11.40 \$7.16 \$4.60 DELTA GAMMA For a DELTA-neutral portfolio comprised of Calls C and D that is long one Call C, we must choose a position of Z shares of Call D to satisfy the following equation: Z 0 Therefore, Z , and the portfolio consists of purchasing one Call C and selling units of Call D. To form a portfolio of Calls C, D, and E that is long one Call C and that is also DELTA-neutral and GAMMA-neutral, the portfolio must meet both of the following conditions, where Y and Z are the number of Call Cs and Call Ds, respectively. DELTA-neutrality: Y Z 0 GAMMA-neutrality: Y Z 0 Multiplying the second equation by (0.8088/.0343) gives: Y Z 0 Subtracting this equation from the DELTA-neutrality equation gives: Z 0 Therefore, Z Substituting this value of Z into the DELTA-neutrality equation gives: Y (1.5221) 0 Y Therefore, the DELTA-neutral and GAMMA-neutral portfolio consists of buying one unit of Call C, selling units of Call D, and buying units of Call E. 10. Your largest and most important client s portfolio includes option positions. After several conversations it becomes clear that your client is willing to accept the risk associated with exposure to changes in volatility and stock price. However, your client is not willing to accept a change in the value of her portfolio resulting from the passage of time. Explain how the investor can protect her portfolio against changes in value due to the passage of time.

6 124 CHAPTER 14 OPTION SENSITIVITIES AND OPTION HEDGING to sell your 3,000 shares of CBC in one week. However, you do not want the value of your investment in CBC to fall below its current level. Construct a DELTA-neutral hedge using the put option written on CVN. Be sure to describe the composition of your hedged portfolio. Construction of a DELTA-neutral hedge using the put option requires the investor to hold 1/DELTA put put options per 100 shares of stock held by the investor. The put option extends the right to sell 100 shares of stock. The DELTA for the put option is Thus, the hedge ratio is / , put options per 100 shares of stock. Because you hold 3,000 shares of CBC, you must purchase (3,000/100) , put options written on CVN that expire in three months with a strike price of \$55. Since purchasing a fraction of an option s contract is not possible, you would round this up to 46 options contracts purchased. 18. An investor holds a portfolio consisting of three options, two call options and a put option, written on the stock of QDS Corporation with the following characteristics. C 1 C 2 P 1 DELTA GAMMA THETA The investor is long 100 contracts of option C 1, short 200 contracts of option C 2, and long 100 contracts of option P 1. The investor s options portfolio has the following characteristics. DELTA (100) (200) (100) GAMMA (100) (200) (100) 1.84 THETA 5.55 (100) 3.89 (200) 3.72 (100) 149 The investor wishes to hedge this portfolio of options with two call options written on the stock of QDS Corporation with the following characteristics. C a C b DELTA GAMMA THETA A. How many contracts of the two options, C a and C b, must the investor hold to create a portfolio that is DELTA-neutral and has a THETA of 100? The investor must determine how many of the call options a and b to hold to create a portfolio that has a DELTA of and a THETA of 249. That is, the DELTA of the combined portfolio of options should be zero, and the THETA of the combined portfolio should be 100. We must solve this for N a and N b subject to the constraint that the DELTA of the portfolio is and the THETA is N a N b N a 7.04 N b 249 N a N b To create a portfolio with a DELTA of and a THETA of 249, the investor must sell 176 contracts of option C a and purchase 208 contracts of option C b. B. If QDS s stock price remains relatively constant over the next month, explain what will happen to the value of the portfolio created in part A of this question. If QDS s stock price remains relatively constant, then the passage of time should increase the value of the portfolio. The DELTA of the portfolio is zero and the THETA is positive. Thus, small changes in the stock

7 ANSWERS TO QUESTIONS AND PROBLEMS 125 price will have little impact on the value of the portfolio of options, and the passage of time should increase the value of the option portfolio. C. How many of the two options, C a and C b, must the investor hold to create a portfolio that is both DELTAand GAMMA-neutral? The investor must determine how many of the call options C a and C b to hold to create a portfolio that has a DELTA of and a GAMMA of That is, the DELTA and GAMMA of the combined portfolio of options are zero. We must solve the equation for N a and N b subject to the constraint that the DELTA of the portfolio is and the GAMMA is To create a portfolio with a DELTA of and a GAMMA of 1.84, the investor must purchase 62 contracts of option C a and sell 15 contracts of option C b. D. Suppose the investor wants to create a portfolio that is DELTA-, GAMMA-, and THETA-neutral. Could the investor accomplish this objective using the two options, C a and C b, which have been used in the previous problems? Explain. No. Creating neutrality in three dimensions requires at least three different option contracts. We need at least as many option contracts as parameters we are trying to hedge. To create a DELTA-, GAMMA-, and THETA-neutral portfolio would require an additional new option contract. 19. Both put and call options trade on HWP. Put and call options with an exercise price of \$100 expire in 90 days. HWP is trading at \$95, and has an annualized standard deviation of return of 0.3. The three-month risk-free interest rate is 5.25 percent per annum. A. Use a four-period binomial model to compute the value of the put and call options using the recursive procedure (single-period binomial option pricing model). Stock price tree U e t e / D 1/U 1/ e U r t D U D e r t N a N b N a N b 1.84 N a N b e / D

8 126 CHAPTER 14 OPTION SENSITIVITIES AND OPTION HEDGING Call price tree Put price tree The call price is \$4.33, and the put price is \$8.05. B. Increase the stock price by \$.25 to \$95.25 and recalculate the value of the put and call options using the recursive procedure (single-period binomial option pricing model). If the stock price is increased by \$.25, then the call price is \$4.43 and the put price is \$7.89. C. For both the call and put options, calculate DELTA as the change in the value of the option divided by the change in the value of the stock. Call DELTA Put DELTA ( ) / ( ) / D. Decrease the stock price by \$.25 to \$94.75 and recalculate the value of the put and call options using the recursive procedure (single-period binomial option pricing model). When the stock price is decreased by \$.25, then the call price is \$4.24 and the put price is \$8.20. E. For both the call and put options, calculate DELTA as the change in the value of the option divided by the change in the value of the stock. Call DELTA Put DELTA ( ) / ( ) /

9 ANSWERS TO QUESTIONS AND PROBLEMS 127 F. For both the call and put options, calculate GAMMA as the difference between the DELTA associated with a stock price increase and the DELTA associated with a stock price decrease, divided by the change in the value of the stock. Call GAMMA Put GAMMA ( ) / ( 0.60 ( 0.64)) / G. Increase the risk-free interest rate by 20 basis points to 5.45 percent per annum and recalculate the value of the put and call options using the recursive procedure (single-period binomial option pricing model). If the interest rate is increased by 20 basis points to 5.45 percent, then the call price is \$4.35 and the put price is \$8.02. H. For both the call and put options, calculate RHO as the change in the value of the option divided by the change in the risk-free interest rate. Call RHO Put RHO ( ) /2 10 ( ) /2 15 I. Increase the volatility of the underlying stock to 33 percent and recalculate the value of the put and call options using the recursive procedure (single-period binomial option pricing model). If the volatility is increased to 33%, then the call price is \$4.89 and the put price is \$8.60. J. For both the call and put options, calculate VEGA as the change in the value of the option divided by the change in the volatility of the stock. Call VEGA Put VEGA ( ) / ( ) / K. Notice that each branch in the binomial tree represents the passage of time. That is, as one moves forward through the branches in a binomial tree, the life of the option wastes away. Also notice that the initial stock price of \$95 reappears in the middle of the second branch of the tree. Using the parameter values for U, D, U, D, t, and e r t calculated using the initial information given, recalculate the value of the call and put options using a two-period model. That is, calculate the option prices after 45 days, assuming the stock price is unchanged. Stock price tree U e t e / D 1/U 1/ e U r t D U D e r t e / D

10 128 CHAPTER 14 OPTION SENSITIVITIES AND OPTION HEDGING Call price tree Put price tree 6.94 The call price is \$2.58, and the put price is \$6.94. L. For both the call and put options, calculate THETA as the difference in the value of the option with two periods to expiration less the value of the option with four periods to expiration, divided by twice the passage of time associated with each branch in the tree, that is, 2 t Call THETA Put THETA ( )/[2 (22.5/365)] ( )/[2 (22.5/365)] Consider a stock, ABM, trading at a price of \$70. Analysis of ABM s recent returns reveals that ABM has an annualized standard deviation of return of 0.4. The current risk-free rate of interest is 10 percent per annum. A. What is the price of a European call and put written on ABM with a \$75 strike price that expires in 180 days? Price the options using the Black Scholes model. ln(70/75) ([ (0.4 2 )](0.4932)) d (0.4932) d (0.4932) N(d 1 ) N(d 2 ) c e \$ p c S Xe r(t t) \$7.22 \$70 \$75e \$ The call price is \$7.2201, and the put price is \$ B. Increase the stock price by \$.25 to \$70.25 and recalculate the value of the put and call options. If the stock price is increased by \$.25, then the call price is \$ and the put price is \$ C. For both the call and put options, calculate DELTA as the change in the value of the option divided by the change in the value of the stock. Call DELTA Put DELTA ( )/ ( )/

11 ANSWERS TO QUESTIONS AND PROBLEMS 129 D. Decrease the stock price by \$.25 to \$69.75 and recalculate the value of the put and call options. If the stock price is decreased by \$.25, then the call price is \$ and the put price is \$ E. For both the call and put options, calculate DELTA as the change in the value of the option divided by the change in the value of the stock. Call DELTA Put DELTA ( )/ ( )/ F. For both the call and put options, calculate GAMMA as the difference between the DELTA associated with a stock price increase and the DELTA associated with a stock price decrease divided by the change in the value of the stock. Call GAMMA Put GAMMA ( )/ ( ( ))/ G. Increase the risk-free interest rate by 25 basis points to percent per annum and recalculate the value of the put and call options. If the interest rate is increased by 25 basis points to percent, then the call price is \$ and the put price is \$ H. For both the call and put options, calculate RHO as the change in the value of the option divided by the change in the risk-free interest rate. Call RHO Put RHO ( )/ ( )/ I. Increase the volatility of the underlying stock to 44 percent and recalculate the value of the put and call options. If the volatility is increased to 44 percent, then the call price is \$ and the put price is \$ J. For both the call and put options, calculate VEGA as the change in the value of the option divided by the change in the volatility of the stock. Call VEGA Put VEGA ( )/ ( )/ K. Decrease the life of the option by 10 percent to 162 days and recalculate the value of the put and call options. If the life of the option is decreased by 10 percent to 162 days, then the call price is \$ and the put price is \$ L. For both the call and put options, calculate THETA as the difference in the value of the option with 162 days to expiration less the value of the option with 180 days to expiration divided by the passage of time. Call THETA Put THETA ( )/(18/365) ( )/(18/365) Consider a stock that trades for \$75. A put and a call on this stock both have an exercise price of \$70, and they expire in 145 days. The risk-free rate is 9 percent per annum and the standard deviation of return for the stock is Assume that the stock pays a continuous dividend of 4 percent.

12 130 CHAPTER 14 OPTION SENSITIVITIES AND OPTION HEDGING A. What are the prices of a European call and put option written on this stock according to Merton s model? ln(75/70) ([ ( )](0.3973)) d M d 2 M N(d 1 M ) N(d 2 M ) c M e (T t) S t N(d 1 M ) Xe r(t t) N 2 (d M ) c M e 0.04(0.3973) e 0.09(0.3973) \$9.84 N( d 1 M ) N( d 2 M ) p M Xe r(t t) N( d 2 M ) e (T t) S t N( d 1 M ) p M 70e 0.09(0.3973) e 0.04(0.3973) \$3.56 The call price is \$9.8402, and the put price is \$ B. Increase the stock price by \$.25 to \$75.25 and recalculate the value of the put and call options. When the stock price is increased by \$.25, then the call price is \$ and the put price is \$ C. For both the call and put options, calculate DELTA as the change in the value of the option divided by the change in the value of the stock. Call DELTA Put DELTA ( )/ ( )/ D. Decrease the stock price by \$.25 to \$74.75 and recalculate the value of the put and call options. If the stock price is decreased by \$.25, then the call price is \$ and the put price is \$ E. Calculate DELTA for both the call and put options as the change in the value of the option divided by the change in the value of the stock. Call DELTA Put DELTA ( )/ ( )/ F. Calculate GAMMA for both the call and put options as the difference between the DELTA associated with a stock price increase and the DELTA associated with a stock price decrease divided by the change in the value of the stock. Call GAMMA Put GAMMA ( )/ ( ( ))/ G. Increase the risk-free interest rate by 25 basis points to 9.25 percent per annum and recalculate the value of the put and call options. When the interest rate is increased by 25 basis points to 9.25 percent, then the call price is \$ and the put price is \$ H. Calculate RHO for both the call and put options as the change in the value of the option divided by the change in the risk-free interest rate.

13 ANSWERS TO QUESTIONS AND PROBLEMS 131 Call RHO Put RHO ( )/ ( )/ I. Increase the volatility of the underlying stock to 38.5 percent and recalculate the value of the put and call options. When the volatility is increased to 38.5 percent, the call price is \$ and the put price is \$ J. Calculate VEGA for both the call and put options as the change in the value of the option divided by the change in the volatility of the stock. Call VEGA Put VEGA ( )/ ( )/ K. Decrease the life of the option by 20 percent to 116 days and recalculate the value of the put and call options. When the life of the option is decreased by 20 percent to 116 days, then the call price is \$ and the put price is \$ L. Calculate THETA for both the call and put options as the difference in the value of the option with 116 days to expiration less the value of the option with 145 days to expiration divided by the passage of time. Call THETA Put THETA ( )/(29/365) ( )/(29/365) CSM is trading at \$78 and has an annualized standard deviation of return of 30 percent. CSM is expected to pay a dividend equal to 3 percent of the value of its stock price in 70 days. The current risk-free rate of interest is 7 percent per annum. Options written on this stock have an exercise price of \$80 and expire in 120 days. A. Using a four-period binomial model, calculate the values of European put and call options written on CSM. Stock price tree U e t e / D 1/U 1/ e U r t D U D e / D e r t

14 132 CHAPTER 14 OPTION SENSITIVITIES AND OPTION HEDGING The stock prices in the tree must be adjusted for the dividend to be paid in 70 days before we can calculate the value of the options. Therefore, the stock prices in the tree in periods three and four must be adjusted downward by one minus the dividend yield paid by the firm (1 3%). Dividend-adjusted stock price tree Put price tree The price of the put option is \$6.84. Call price tree The price of the call option is \$4.32.

15 ANSWERS TO QUESTIONS AND PROBLEMS 133 B. Increase the stock price by \$.25 to \$78.25 and recalculate the value of the put and call options using the recursive procedure (single-period binomial option pricing model). When the stock price is increased by \$.25, then the call price is \$4.42 and the put price is \$6.69. C. Calculate DELTA for both the call and put options as the change in the value of the option divided by the change in the value of the stock. Call DELTA Put DELTA ( )/ ( )/ D. Decrease the stock price by \$.25 to \$77.75 and recalculate the value of the put and call options using the recursive procedure (single-period binomial option pricing model). When the stock price is decreased by \$.25, then the call price is \$4.22 and the put price is \$6.99. E. Calculate DELTA for both the call and put options as the change in the value of the option divided by the change in the value of the stock. Call DELTA Put DELTA ( )/ ( )/ F. Calculate GAMMA for both the call and put options as the difference between the DELTA associated with a stock price increase and the DELTA associated with a stock price decrease divided by the change in the value of the stock. Call GAMMA Put GAMMA ( )/0.5 0 ( ( ))/0.5 0 Calculating the price of each option to two decimal places using a four-period binomial process to model the price movements in a stock over a 90-day period produces symmetric price changes in the value of the options. There is not sufficient information in our modeling process to capture the nonlinearity of the pricing function for small symmetric changes in the stock price. This generates a value of zero for GAMMA. G. Increase the risk-free interest rate by 20 basis points to 7.20 percent per annum and recalculate the value of the put and call options using the recursive procedure (single-period binomial option pricing model). When the interest rate is increased by 20 basis points to 7.20 percent, then the call price is \$4.34 and the put price is \$6.81. H. Calculate RHO for both the call and put options as the change in the value of the option divided by the change in the risk-free interest rate. Call RHO Put RHO ( )/2 10 ( )/2 15 I. Increase the volatility of the underlying stock to 33 percent and recalculate the value of the put and call options using the recursive procedure (single-period binomial option pricing model). When the volatility is increased to 33 percent, then the call price is \$4.83 and the put price is \$7.35.

16 134 CHAPTER 14 OPTION SENSITIVITIES AND OPTION HEDGING J. Calculate VEGA for both the call and put options as the change in the value of the option divided by the change in the volatility of the stock. Call VEGA Put VEGA ( )/ ( )/ K. Notice that each branch in the binomial tree represents the passage of time. That is, as one moves forward through the branches in a binomial tree, the life of the option wastes away. Also notice that the initial stock price of \$78 reappears in the middle of the second branch of the tree. Using the parameter values for U, D, U, D, t, and e r t calculated using the initial information given, recalculate the value of the call and put options using a two-period model. Assume that the dividend will be paid before period one and make the appropriate adjustments to the stock price tree. That is, calculate the option prices after 60 days, assuming that the stock price is unchanged. U e t e / D 1/U 1/ e U r t D U D e / D e r t Dividend-adjusted stock price tree Call price tree Put price tree The call price is \$2.56, and the put price is \$5.98.

17 ANSWERS TO QUESTIONS AND PROBLEMS 135 L. Calculate THETA for both the call and put options as the difference in the value of the option with two periods to expiration less the value of the option with four periods to expiration divided by twice the passage of time associated with each branch in the tree, that is, 2 t. Call THETA Put THETA ( )/[2 (30/365)] ( )/[2 (30/365)] DCC exports high-speed digital switching networks, and their largest and most important clients are in Asia. A recent financial crisis in Asia has diminished the prospects of new sales to the Asian market in the near term. However, you believe that DCC is a good investment for the long term. A quick check of Quote.com reveals that DCC is trading at \$ per share. Your previous calculation of the historical volatility for DCC indicated an annual standard deviation of return of 27 percent, but examining the implied volatility of several DCC options reveals an increase in annual volatility to 32 percent. There are two traded options series that expire in 245 days. The options have \$75 and \$80 strike prices respectively. The current 245-day risk-free interest rate is 4.75 percent per annum, and you hold 2,000 shares of DCC. X 75 X 80 Call Put Call Put DELTA GAMMA THETA VEGA RHO A. Construct a portfolio that is DELTA- and GAMMA-neutral using the call options written on DCC. The investor owns 2,000 shares of DCC. An option contract extends the right to buy or sell 100 shares of the underlying stock at the strike price. Thus, by scaling the stock position by 100, we can convert the stock position to a scale that matches a single option contract. On a scaled basis, the shareholder has a long position in /100, contract units of stock. The investor must determine how many \$75 call options and \$80 call options to hold to create a portfolio that is DELTA- and GAMMA-neutral. The DELTA of the stock, DELTA s, is one, and the GAMMA of the stock, GAMMA s, is zero. N s DELTA s N 75 DELTA 75 N 80 DELTA 80 0 N s GAMMA s N 75 GAMMA 75 N 80 GAMMA N 75 (0.6674) N 80 (0.5740) N 75 (0.0176) N 80 (0.0190) 0 We must solve the equation for N 75 and N 80 subject to the constraint that the DELTA of the portfolio is 20 and the GAMMA is 0. N 75 (0.6674) N 80 (0.5740) 20 N 75 (0.0176) N 80 (0.0190) 0 N N To create a portfolio with a DELTA of 20 and a GAMMA of 0, the investor must sell of the \$75 call option contracts and purchase of the \$80 call option contracts. B. Construct a portfolio that is DELTA- and GAMMA-neutral using the put options written on DCC.

18 136 CHAPTER 14 OPTION SENSITIVITIES AND OPTION HEDGING The investor owns 2,000 shares of DCC. An option contract extends the right to buy or sell 100 shares of the underlying stock at the strike price. Thus, by scaling the stock position by 100, we can convert the stock position to a scale that matches a single option contract. On a scaled basis, the shareholder has a long position in /100, contract units of stock. The investor must determine how many \$75 put options and \$80 put options to hold to create a portfolio that is DELTA- and GAMMA-neutral. The DELTA of the stock, DELTA s, is one, and the GAMMA of the stock, GAMMA s, is zero. N s DELTA s N 75 DELTA 75 N 80 DELTA 80 0 N s GAMMA s N 75 GAMMA 75 N 80 GAMMA N 75 ( ) N 80 ( ) N 75 (0.0176) N 80 (0.0190) 0 We must solve the equation for N 75 and N 80 subject to the constraint that the DELTA of the portfolio is 20 and the GAMMA is 0. N 75 ( ) N 80 ( 0.426) 20 N 75 (0.0176) N 80 (0.0190) 0 N N To create a portfolio with a DELTA of 20 and a GAMMA of 0, the investor must sell of the \$75 put option contracts and purchase of the \$80 put option contracts. C. Construct a portfolio that is DELTA- and THETA-neutral using the call options written on DCC. The investor owns 2,000 shares of DCC. An option contract extends the right to buy or sell 100 shares of the underlying stock at the strike price. Thus, by scaling the stock position by 100, we can convert the stock position to a scale that matches a single option contract. On a scaled basis, the shareholder has a long position in /100, contract units of stock. The investor must determine how many \$75 call options and \$80 call options to hold to create a portfolio that is DELTA- and THETA-neutral. The DELTA of the stock, DELTA s, is one, and the THETA of the stock, THETA s, is zero. N s DELTA s N 75 DELTA 75 N 80 DELTA 80 0 N s THETA s N 75 THETA 75 N 80 THETA N 75 (0.6674) N 80 (0.5740) N 75 ( ) N 80 ( ) 0 We must solve the equation for N 75 and N 80 subject to the constraint that the DELTA of the portfolio is 20 and the THETA is 0. N 75 (0.6674) N 80 (0.5740) 20 N 75 ( ) N 80 ( ) 0 N N To create a portfolio with a DELTA of 20 and a THETA of 0, the investor must sell of the \$75 call option contracts and purchase of the \$80 call option contracts. D. Construct a portfolio that is DELTA- and THETA-neutral using the put options written on DCC.

19 ANSWERS TO QUESTIONS AND PROBLEMS 137 The investor owns 2,000 shares of DCC. An option contract extends the right to buy or sell 100 shares of the underlying stock at the strike price. Thus, by scaling the stock position by 100, we can convert the stock position to a scale that matches a single option contract. On a scaled basis, the shareholder has a long position in /100, contract units of stock. The investor must determine how many \$75 put options and \$80 put options to hold to create a portfolio that is DELTA- and THETA-neutral. The DELTA of the stock, DELTA s, is one, and the THETA of the stock, THETA s, is zero. N s DELTA s N 75 DELTA 75 N 80 DELTA 80 0 N s THETA s N 75 THETA 75 N 80 THETA N 75 ( ) N 80 ( 0.426) N 75 ( ) N 80 ( ) 0 We must solve the equation for N 75 and N 80 subject to the constraint that the DELTA of the portfolio is 20 and the THETA is 0. N 75 ( ) N 80 ( 0.426) 20 N 75 ( ) N 80 ( ) 0 N N To create a portfolio with a DELTA of 20 and a THETA of 0, the investor must sell of the \$75 put option contracts and purchase of the \$80 put option contracts. E. How effective do you expect the DELTA- and GAMMA-neutral hedges to be? Explain. The effectiveness of the DELTA-, GAMMA-neutral hedges will be conditional on movements in DCC s stock price over the hedge period. If DCC s stock remains relatively constant during the hedge period, then the hedge should be effective. However, if DCC s stock price is volatile during the hedge period, which is very likely to happen, then it will be necessary to rebalance the portfolio periodically to maintain the effectiveness of the hedge. 24. Consider a stock, PRN, that trades for \$24. A put and a call on this stock both have an exercise price of \$22.50, and they expire in 45 days. The risk-free rate is 5.5 percent per annum, and the standard deviation of return for the stock is.28. A. Calculate the price of the put and call option using the Black Scholes model. ln(24/22.5) ([ ( )](0.1233)) d (0.1233) d (0.1233) N(d 1 ) N(d 2 ) c e \$1.96 p c S Xe r(t t) \$1.96 \$24 \$22.5e \$.31 The call price is \$1.96, and the put price is \$.31. Note: Use the following information for the remaining parts of this problem. Suppose that you own 1,500 shares of PRN and you wish to hedge your investment in PRN using the traded PRN options. You are going on vacation in 45 days and want to use your shares to finance your vacation, so you do not want the value of your PRN shares to fall below \$22.50.

21 ANSWERS TO QUESTIONS AND PROBLEMS 139 When the stock price exceeds the exercise price of an option at expiration, the investor incurs an opportunity cost when implementing a covered call hedge strategy. The protective put hedging strategy is not subject to this opportunity cost. 25. A friend, Audrey, holds a portfolio of 10,000 shares of Microsoft stock. In 60 days she needs at least \$855,000 to pay for her new home. You suggest to Audrey that she can construct an insured portfolio using Microsoft stock options. You explain that an insured portfolio can be constructed several different ways, but the basic notion is to create a portfolio that consists of a long position in Microsoft s stock and a long position in put options written on Microsoft. If at the end of the hedge period Microsoft s stock is trading at a price below the strike price on the put option, Audrey has the right to sell her Microsoft stock to the owner of the put option for the strike price. Thus, at the end of the hedge period, Audrey has sufficient assets to cover her needs or obligations. This hedging strategy can be implemented using traded options. However, Audrey may not be able to find an option with the desired strike price or expiration date. Dynamic hedging permits Audrey to overcome these limitations associated with traded option contracts. In dynamic hedging, Audrey constructs a portfolio that consists of a long position in stock and a long position in Treasury bills. As the underlying stock price changes, Audrey dynamically alters the allocation of assets in the portfolio between stock and Treasury bills. Therefore, we can view dynamic hedging as an asset allocation problem where Audrey determines how much of her resources are allocated to the stock, and how much of her resources are allocated to Treasury bills. The amount of resources available for investment is simply the current cash value of Audrey s stock position. The proportion of resources committed to the stock, w, are calculated as SN(d 1 ) S P w where S is the current stock price, P is the price of the relevant put option, and N(d 1 ) comes from the Black Scholes model. The proportion of resources committed to the Treasury bill is 1 w. A. Microsoft is currently trading at \$90. The annualized risk-free interest rate on a 60-day Treasury bill is 5 percent. The current volatility of Microsoft s stock is Audrey wishes to create an insured portfolio. Since she needs \$855,000 in 60 days, she decides to establish a position in a 60-day Microsoft put option with an \$85.50 strike price. Audrey calls her broker, who informs her there is no 60-day Microsoft put option with a strike price of \$ Thus, Audrey must construct a dynamic hedge to protect the value of her investment in Microsoft stock. Using the Black Scholes model, calculate the value of a put option with an \$85.50 strike price with 60 days to expiration. Determine the allocation of assets in Audrey s insured portfolio. That is, find the proportion of resources committed to Microsoft stock, w, and the proportion of resources committed to Treasury bills, 1 w. Determine the dollar amount of her resources committed to Microsoft stock, and the dollar amount of her resources committed to Treasury bills. ln(90/85.5) ([0.05.5( )](0.1644)) d (0.1644) d (0.1644) N(d 1 ) N(d 2 ) c e \$7.59 p c S Xe r(t t) \$7.59 \$90 \$85.5e \$2.39 The call price is \$7.59, and the put price is \$2.39. The proportion of resources committed to the stock is SN(d 1 ) w S P \$ \$90 \$ The proportion of resources committed to Treasury bills is 1 w

CHAPTER 21: OPTION VALUATION

CHAPTER 21: OPTION VALUATION PROBLEM SETS 1. The value of a put option also increases with the volatility of the stock. We see this from the put-call parity theorem as follows: P = C S + PV(X) + PV(Dividends)

CHAPTER 21: OPTION VALUATION

CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given

Week 13 Introduction to the Greeks and Portfolio Management:

Week 13 Introduction to the Greeks and Portfolio Management: Hull, Ch. 17; Poitras, Ch.9: I, IIA, IIB, III. 1 Introduction to the Greeks and Portfolio Management Objective: To explain how derivative portfolios

Options Pricing. This is sometimes referred to as the intrinsic value of the option.

Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff

Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging

Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in

11 Option. Payoffs and Option Strategies. Answers to Questions and Problems

11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of \$80 and a cost of \$5. Graph the profits and losses at expiration for various

Fundamentals of Futures and Options (a summary)

Fundamentals of Futures and Options (a summary) Roger G. Clarke, Harindra de Silva, CFA, and Steven Thorley, CFA Published 2013 by the Research Foundation of CFA Institute Summary prepared by Roger G.

Option Valuation. Chapter 21

Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

Underlier Filters Category Data Field Description

Price//Capitalization Market Capitalization The market price of an entire company, calculated by multiplying the number of shares outstanding by the price per share. Market Capitalization is not applicable

OPTIONS CALCULATOR QUICK GUIDE Reshaping Canada s Equities Trading Landscape OCTOBER 2014 Table of Contents Introduction 3 Valuing options 4 Examples 6 Valuing an American style non-dividend paying stock

Options: Valuation and (No) Arbitrage

Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial

Options/1. Prof. Ian Giddy

Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2

Figure S9.1 Profit from long position in Problem 9.9

Problem 9.9 Suppose that a European call option to buy a share for \$100.00 costs \$5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances

The Greeks Vega. Outline: Explanation of the greeks. Using greeks for short term prediction. How to find vega. Factors influencing vega.

The Greeks Vega 1 1 The Greeks Vega Outline: Explanation of the greeks. Using greeks for short term prediction. How to find vega. Factors influencing vega. 2 Outline continued: Using greeks to shield your

Risk Management and Governance Hedging with Derivatives. Prof. Hugues Pirotte

Risk Management and Governance Hedging with Derivatives Prof. Hugues Pirotte Several slides based on Risk Management and Financial Institutions, e, Chapter 6, Copyright John C. Hull 009 Why Manage Risks?

14 Greeks Letters and Hedging

ECG590I Asset Pricing. Lecture 14: Greeks Letters and Hedging 1 14 Greeks Letters and Hedging 14.1 Illustration We consider the following example through out this section. A financial institution sold

The equilibrium price of the call option (C; European on a non-dividend paying stock) is shown by Black and Scholes to be: are given by. p T t.

THE GREEKS BLACK AND SCHOLES (BS) FORMULA The equilibrium price of the call option (C; European on a non-dividend paying stock) is shown by Black and Scholes to be: C t = S t N(d 1 ) Xe r(t t) N(d ); Moreover

Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9

Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying

The Binomial Option Pricing Model André Farber

1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a non-dividend paying stock whose price is initially S 0. Divide time into small

VALUATION IN DERIVATIVES MARKETS

VALUATION IN DERIVATIVES MARKETS September 2005 Rawle Parris ABN AMRO Property Derivatives What is a Derivative? A contract that specifies the rights and obligations between two parties to receive or deliver

Lecture 11: The Greeks and Risk Management

Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.

Option pricing. Vinod Kothari

Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate

CHAPTER 22 Options and Corporate Finance

CHAPTER 22 Options and Corporate Finance Multiple Choice Questions: I. DEFINITIONS OPTIONS a 1. A financial contract that gives its owner the right, but not the obligation, to buy or sell a specified asset

Introduction to Options. Derivatives

Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived

CHAPTER 20. Financial Options. Chapter Synopsis

CHAPTER 20 Financial Options Chapter Synopsis 20.1 Option Basics A financial option gives its owner the right, but not the obligation, to buy or sell a financial asset at a fixed price on or until a specified

Volatility as an indicator of Supply and Demand for the Option. the price of a stock expressed as a decimal or percentage.

Option Greeks - Evaluating Option Price Sensitivity to: Price Changes to the Stock Time to Expiration Alterations in Interest Rates Volatility as an indicator of Supply and Demand for the Option Different

Don t be Intimidated by the Greeks, Part 2 August 29, 2013 Joe Burgoyne, OIC

Don t be Intimidated by the Greeks, Part 2 August 29, 2013 Joe Burgoyne, OIC www.optionseducation.org 2 The Options Industry Council Options involve risks and are not suitable for everyone. Prior to buying

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards

Lecture 12. Options Strategies

Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same

Caput Derivatives: October 30, 2003

Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor

Return to Risk Limited website: www.risklimited.com Overview of Options An Introduction Options Definition The right, but not the obligation, to enter into a transaction [buy or sell] at a pre-agreed price,

www.optionseducation.org OIC Options on ETFs

www.optionseducation.org Options on ETFs 1 The Options Industry Council For the sake of simplicity, the examples that follow do not take into consideration commissions and other transaction fees, tax considerations,

ETF Trend Trading. Option Basics Part Two The Greeks

ETF Trend Trading Option Basics Part Two The Greeks Option Basics Separate Sections 1. Option Basics 2. The Greeks 3. Pricing 4. Types of Option Trades The Greeks A simple perspective on the 5 Greeks 1.

CHAPTER 22: FUTURES MARKETS

CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support

CHAPTER 15. Option Valuation

CHAPTER 15 Option Valuation Just what is an option worth? Actually, this is one of the more difficult questions in finance. Option valuation is an esoteric area of finance since it often involves complex

Steve Meizinger. Understanding the FX Option Greeks

Steve Meizinger Understanding the FX Option Greeks For the sake of simplicity, the examples that follow do not take into consideration commissions and other transaction fees, tax considerations, or margin

1 The Black-Scholes model: extensions and hedging

1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes

Steve Meizinger. FX Options Pricing, what does it Mean?

Steve Meizinger FX Options Pricing, what does it Mean? For the sake of simplicity, the examples that follow do not take into consideration commissions and other transaction fees, tax considerations, or

Introduction to Binomial Trees

11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths

Option Pricing Basics

Option Pricing Basics Aswath Damodaran Aswath Damodaran 1 What is an option? An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called

INDEPENDENT. OBJECTIVE. RELIABLE. Options Basics & Essentials: The Beginners Guide to Trading Gold & Silver Options

INDEPENDENT. OBJECTIVE. RELIABLE. 1 About the ebook Creator Drew Rathgeber is a senior broker at Daniels Trading. He has been heavily involved in numerous facets of the silver & gold community for over

Swing Trade Warrior Chapter 1. Introduction to swing trading and how to understand and use options How does Swing Trading Work? The idea behind swing trading is to capitalize on short term moves of stocks

BINOMIAL OPTION PRICING

Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing

SAMPLE MID-TERM QUESTIONS

SAMPLE MID-TERM QUESTIONS William L. Silber HOW TO PREPARE FOR THE MID- TERM: 1. Study in a group 2. Review the concept questions in the Before and After book 3. When you review the questions listed below,

Simplified Option Selection Method

Simplified Option Selection Method Geoffrey VanderPal Webster University Thailand Options traders and investors utilize methods to price and select call and put options. The models and tools range from

Chapters 15. Delta Hedging with Black-Scholes Model. Joel R. Barber. Department of Finance. Florida International University.

Chapters 15 Delta Hedging with Black-Scholes Model Joel R. Barber Department of Finance Florida International University Miami, FL 33199 1 Hedging Example A bank has sold for \$300,000 a European call option

9 Basics of options, including trading strategies

ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European

Sensex Realized Volatility Index

Sensex Realized Volatility Index Introduction: Volatility modelling has traditionally relied on complex econometric procedures in order to accommodate the inherent latent character of volatility. Realized

Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS 8-1 a. An option is a contract which gives its holder the right to buy or sell an asset at some predetermined

General Forex Glossary

General Forex Glossary A ADR American Depository Receipt Arbitrage The simultaneous buying and selling of a security at two different prices in two different markets, with the aim of creating profits without

Put-Call Parity and Synthetics

Courtesy of Market Taker Mentoring LLC TM Excerpt from Trading Option Greeks, by Dan Passarelli Chapter 6 Put-Call Parity and Synthetics In order to understand more-complex spread strategies involving

FTS Real Time System Project: Using Options to Manage Price Risk

FTS Real Time System Project: Using Options to Manage Price Risk Question: How can you manage price risk using options? Introduction The option Greeks provide measures of sensitivity to price and volatility

Option strategies. Stock Price Payoff Profit. The butterfly spread leads to a loss when the final stock price is greater than \$64 or less than \$56.

Option strategies Problem 11.20. Three put options on a stock have the same expiration date and strike prices of \$55, \$60, and \$65. The market prices are \$3, \$5, and \$8, respectively. Explain how a butterfly

Chapter 20 Understanding Options

Chapter 20 Understanding Options Multiple Choice Questions 1. Firms regularly use the following to reduce risk: (I) Currency options (II) Interest-rate options (III) Commodity options D) I, II, and III

Answers to Concepts in Review 1. Puts and calls are negotiable options issued in bearer form that allow the holder to sell (put) or buy (call) a stipulated amount of a specific security/financial asset,

Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies

Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton

FINANCIAL ENGINEERING CLUB TRADING 201 STOCK PRICING It s all about volatility Volatility is the measure of how much a stock moves The implied volatility (IV) of a stock represents a 1 standard deviation

Trading Strategies Involving Options. Chapter 11

Trading Strategies Involving Options Chapter 11 1 Strategies to be Considered A risk-free bond and an option to create a principal-protected note A stock and an option Two or more options of the same type

CHAPTER 8: TRADING STRATEGES INVOLVING OPTIONS

CHAPTER 8: TRADING STRATEGES INVOLVING OPTIONS Unless otherwise stated the options we consider are all European. Toward the end of this chapter, we will argue that if European options were available with

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder

Factors Affecting Option Prices

Factors Affecting Option Prices 1. The current stock price S 0. 2. The option strike price K. 3. The time to expiration T. 4. The volatility of the stock price σ. 5. The risk-free interest rate r. 6. The

Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)

Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared

http://www.infinity100.com

http://www.infinity100.com THE GREEKS MANAGING AND PROFITING FROM DELTA, VEGA, THETA, GAMMA RISK THE 'GREEKS' RISK MANGEMENT GRID Line Max Profit? * VEGA POSITION 1 Long Vega 2 3, 4 Short Vega Long Vega

CHAPTER 8 SUGGESTED ANSWERS TO CHAPTER 8 QUESTIONS

INSTRUCTOR S MANUAL: MULTINATIONAL FINANCIAL MANAGEMENT, 9 TH ED. CHAPTER 8 SUGGESTED ANSWERS TO CHAPTER 8 QUESTIONS. On April, the spot price of the British pound was \$.86 and the price of the June futures

CHAPTER 5 OPTION PRICING THEORY AND MODELS

1 CHAPTER 5 OPTION PRICING THEORY AND MODELS In general, the value of any asset is the present value of the expected cash flows on that asset. In this section, we will consider an exception to that rule

Section 1. Introduction to Option Trading

Section 1. Introduction to Option Trading Trading stock options is a much different game from trading the underlying stocks. When options are traded for appreciation, it is a game of leverage, with big

Hedging of Financial Derivatives and Portfolio Insurance

Hedging of Financial Derivatives and Portfolio Insurance Gasper Godson Mwanga African Institute for Mathematical Sciences 6, Melrose Road, 7945 Muizenberg, Cape Town South Africa. e-mail: gasper@aims.ac.za,

Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model

Brunel University Msc., EC5504, Financial Engineering Prof Menelaos Karanasos Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model Recall that the price of an option is equal to

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

S 1 S 2. Options and Other Derivatives

Options and Other Derivatives The One-Period Model The previous chapter introduced the following two methods: Replicate the option payoffs with known securities, and calculate the price of the replicating

Chapter 21 Valuing Options

Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher

Lecture 4: Derivatives

Lecture 4: Derivatives School of Mathematics Introduction to Financial Mathematics, 2015 Lecture 4 1 Financial Derivatives 2 uropean Call and Put Options 3 Payoff Diagrams, Short Selling and Profit Derivatives

For example, someone paid \$3.67 per share (or \$367 plus fees total) for the right to buy 100 shares of IBM for \$180 on or before November 18, 2011

Chapter 7 - Put and Call Options written for Economics 104 Financial Economics by Prof Gary R. Evans First edition 1995, this edition September 24, 2011 Gary R. Evans This is an effort to explain puts

Pairs Trading Pairs trading refers to opposite positions in two different stocks or indices, that is, a long (bullish) position in one stock and another short (bearish) position in another stock. The objective

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS

Sensitivity Analysis of Options. c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

Sensitivity Analysis of Options c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264 Cleopatra s nose, had it been shorter, the whole face of the world would have been changed. Blaise Pascal

Financial Options: Pricing and Hedging

Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial

2. How is a fund manager motivated to behave with this type of renumeration package?

MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff

Option Values. Option Valuation. Call Option Value before Expiration. Determinants of Call Option Values

Option Values Option Valuation Intrinsic value profit that could be made if the option was immediately exercised Call: stock price exercise price : S T X i i k i X S Put: exercise price stock price : X

Mid-Term Spring 2003

Mid-Term Spring 2003 1. (1 point) You want to purchase XYZ stock at \$60 from your broker using as little of your own money as possible. If initial margin is 50% and you have \$3000 to invest, how many shares

Option Theory Basics

Option Basics What is an Option? Option Theory Basics An option is a traded security that is a derivative product. By derivative product we mean that it is a product whose value is based upon, or derived

GLOBAL TABLE OF CONTENTS Introduction Delta Delta as Hedge Ratio Gamma Other Letters Appendix 3 4 5 7 9 10 HIGH RISK WARNING: Before you decide to trade either foreign currency ( Forex ) or options, carefully

Determination of Forward and Futures Prices. Chapter 5

Determination of Forward and Futures Prices Chapter 5 Fundamentals of Futures and Options Markets, 8th Ed, Ch 5, Copyright John C. Hull 2013 1 Consumption vs Investment Assets Investment assets are assets

Option pricing in detail

Course #: Title Module 2 Option pricing in detail Topic 1: Influences on option prices - recap... 3 Which stock to buy?... 3 Intrinsic value and time value... 3 Influences on option premiums... 4 Option

CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS

1 CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS (f) 1 The three step valuation process consists of 1) analysis of alternative economies and markets, 2) analysis of alternative industries

CHAPTER 20: OPTIONS MARKETS: INTRODUCTION

CHAPTER 20: OPTIONS MARKETS: INTRODUCTION PROBLEM SETS 1. Options provide numerous opportunities to modify the risk profile of a portfolio. The simplest example of an option strategy that increases risk

Hedging Strategies Using Futures. Chapter 3

Hedging Strategies Using Futures Chapter 3 Fundamentals of Futures and Options Markets, 8th Ed, Ch3, Copyright John C. Hull 2013 1 The Nature of Derivatives A derivative is an instrument whose value depends

Lecture 11: Risk-Neutral Valuation Steven Skiena. skiena

Lecture 11: Risk-Neutral Valuation Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Risk-Neutral Probabilities We can

Session IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics

Session IX: Stock Options: Properties, Mechanics and Valuation Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Stock

w w w.c a t l e y l a k e m a n.c o m 0 2 0 7 0 4 3 0 1 0 0

A ADR-Style: for a derivative on an underlying denominated in one currency, where the derivative is denominated in a different currency, payments are exchanged using a floating foreign-exchange rate. The

Consider a European call option maturing at time T

Lecture 10: Multi-period Model Options Black-Scholes-Merton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T

LEAPS LONG-TERM EQUITY ANTICIPATION SECURITIES

LEAPS LONG-TERM EQUITY ANTICIPATION SECURITIES The Options Industry Council (OIC) is a non-profit association created to educate the investing public and brokers about the benefits and risks of exchange-traded

Chapter 3.4. Forex Options

Chapter 3.4 Forex Options 0 Contents FOREX OPTIONS Forex options are the next frontier in forex trading. Forex options give you just what their name suggests: options in your forex trading. If you have

Trading Greeks Greeks based trading strategies Position and Greeks position Delta Gamma Theta Vega Long + 0 0 0 Short - 0 0 0 Long call + (0 to 1) + - + Long put Short call - (-1 to 0) + - + - (0 to 1)

Finance 350: Problem Set 6 Alternative Solutions

Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas

One Period Binomial Model

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing

FTS Real Time Client: Equity Portfolio Rebalancer

FTS Real Time Client: Equity Portfolio Rebalancer Many portfolio management exercises require rebalancing. Examples include Portfolio diversification and asset allocation Indexation Trading strategies