est to the vehicle is provided as a reference. The reference posture is formally computed as ( ()), where () =arg min R k ()k P is a projection mappin

Size: px
Start display at page:

Download "est to the vehicle is provided as a reference. The reference posture is formally computed as ( ()), where () =arg min R k ()k P is a projection mappin"

Transcription

1 PROCEEDINGS OF MED' - 9 T H MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, DUBROVNIK, CROATIA, JUNE. Combined trajectory tracking and path following for marine craft P. Encarnac~ao A. Pascoal Institute for Systems and Robotics and Dept. Electrical Eng. Instituto Superior Tecnico Av. Rovisco Pais,, 49- Lisboa, Portugal fpme,antoniogisr.ist.utl.pt Abstract The paper presents a solution to the problem of combined trajectory tracking and path following for marine craft. This problem is motivated by the practical need to develop control systems for marine vehicles that can yield good trajectory tracking performance while keeping some of the desired properties associated with path following. The solution described builds on and extends previous work by Hindman and Hauser on so-called maneuver modied trajectory tracking. The theoretical tools used borrow from Lyapunov stability theory and backstepping techniques. Simulations with a nonlinear model of an underactuated marine craft illustrate the performance of the combined trajectory tracking and path following controller derived. Keywords Trajectory Tracking, Path Following Systems, Nonlinear Control, Backstepping Techniques, Autonomous Marine Crafts. I. Introduction Over the last few years, there has been considerable interest in the development of powerful methods for motion control of autonomous vehicles. The problems of motion control addressed in the literature can be roughly classied in three groups: point stabilization, where the goal is to stabilize a vehicle at a given point, with a desired orientation; trajectory tracking, where the vehicle is required to track a time parameterized reference, and path following, where the vehicle is required to converge to and follow a desired path, without any temporal speci- cations. Point stabilization presents a true challenge to control system designers when the vehicle has nonholonomic constraints since, as pointed out in the celebrated result of Brockett [], there is no smooth (or even continuous) constant state-feedback control law that will do the job. To overcome this diculty two main approaches have been proposed: smooth time-varying control laws [], [3] and discontinuous feedback laws [4], [5], [6], [7]. The trajectory tracking problem for fully actuated systems is now well understood and satisfactory solutions can be found in standard nonlinear control textbooks [8]. However, when it comes to underactuated vehicles, this is, when the vehicle has less actuators then state variables to be This work was supported in part by the Commission of the European Communities under contract no. MAS3-CT97-9 (ASI- MOV) and the Portuguese PRAXIS and PDCTM programs under projects CARAVELA and MAROV. The rst author beneted from a PRAXIS XXI Graduate Student Fellowship. tracked, the problem is still a very active topic of research. Linearization and feedback linearization methods [9], [], as well as Lyapunov based control laws [], [], [] have been proposed. Applications to underactuated surface vessels can be found in [3], [4], [5]. Path following control has received relatively less attention than the other two problems. See for example [], [6] and the references therein. Path following systems for marine vehicles have been reported in [7], [8], [9], []. While on a path following mode, the vehicle forward speed need not be controlled accurately since it is sucient to act on the vehicle orientation to drive it to the path. Typically, smoother convergence to a path is achieved in this case when compared to the performance obtained with trajectory tracking controllers, and the control signals are less likely pushed to saturation []. These three classes of problems have traditionally been addressed separately. In fact, Brockett's condition implies that the point stabilization problem cannot be simply solved by designing a trajectory tracking control law and applying it to a trajectory that degenerates into a single point. Conversely, it is not clear how to extend stabilization methodologies now available to trajectory tracking problems. However, a paper by Hindman and Hauser [] that has not received much attention in the literature shows clearly how to go from a trajectory tracking to a path following controller. In their work, the authors assume that a trajectory tracking controller is available and that a Lyapunov function is known that yields asymptotic stability of the resulting control system about a desired trajectory. The Lyapunov function captures the distance between the vehicle's posture (position and orientation) and the desired posture along the trajectory as measured in some P -metric, that is, V = k (t) (t)k P ; where (t) is the vehicle's posture, (t) is the desired posture, and kxk P = x T P x with P >. The key idea in the work of Hindman and Hauser can now be simply explained as follows. To execute a path following maneuver, the vehicle should look at the "closest point on the path" and adopt the corresponding hypothetical vehicle's posture as a reference to which it should converge. Thus, instead of feeding a desired posture (t) to the tracking controller, the posture corresponding to the path point that is clos-

2 est to the vehicle is provided as a reference. The reference posture is formally computed as ( ()), where () =arg min R k ()k P is a projection mapping that computes the trajectory time that minimizes the distance k ()k P. Under some technical conditions on path shape and path parametrization, it is shown that this strategy actually drives the vehicle to the path. Interestingly enough, the work of Hindman and Hauser goes even one step further. In fact, it shows how to combine in a single control law trajectory tracking and path following behaviors, thus achieving smooth spatial convergence to the trajectory as well as time convergence. This is accomplished by modifying the projection function () through the addition of a time dependent penalty term to obtain (; t) = arg min R h ( ) k ()k P + (t ) i : The constant > weighs the relative importance of convergence in time over spatial convergence to the path. If = is chosen, pure path following is achieved ( (; t) = ()). If =, (; t) = t since = t is always a minimizer of (t ), and the original trajectory tracking controller is recovered. When < <, the system displays attributes of both schemes. Since the Lyapunov function that is used to prove stability of the trajectory tracking control system is also used to dene the distance to the path, the methods proposed by Hindman and Hauser are intrinsically suitable for vehicles with negligible dynamics. This follows from the fact that in practical applications the distance to the path should only take into account kinematic variables such as vehicle position and possibly orientation, thus avoiding the need to feedforward dynamic variables. With the objective of applying similar methods to the control of marine craft, this paper extends the key results of Hindman and Hauser to encompass systems that capture the motion of vehicles with non negligible dynamics. This is done by resorting to backstepping techniques after modication of a standard tracking control law for marine craft. Using the methodology developed, the distance to the path is evaluated by taking into consideration the kinematic variables only, namely the vehicle position. The paper is organized as follows: Section II derives a control law that enables balancing combined requirements of trajectory tracking and path following for vehicles with non negligible dynamics. The application to an autonomous marine craft is described in Section III. Finally, Section IV presents the main conclusions. II. Combined trajectory tracking and path following control Consider the following general nonlinear control system _ = f () + g () () where R n is the state and R m is the control input. The functions f : D! R n and g : D! R n+m are smooth in a domain D R n that contains = and f () =. Let (t) be a reference trajectory for and let (; (t)) a trajectory tracking control law for () such that, with = (; (t)),!. Assume that local asymptotic stability of the trajectory tracking system can be proven using the Lyapunov function V (; t) = k (t)k P ; () where P is a positive denite weighting matrix (notice that V can be simply viewed as the tracking error measured in the P metric). Assume also that _V (; t) = h (t) ; _ _ (t)i P k V (; t) ; where hx; yi P = x T P y is the inner product relative to P and k is a positive scalar. The condition V _ k V can be weakened if one is able to prove stability with V _ negative semidenite by resorting to LaSalle-Yoshizawa or Barbalat's lemmas [8]. To convert the trajectory tracking control law into a combined trajectory tracking and path following control law, let the square of the distance from the path point ( () ; ) to the point (; t) be given by the function U (; t; ) = ( ) V (; ) + (t ) = ( ) k ()k P + (t ) : Given U (; t; ), dene the mapping (; t) =arg min U (; t; ) = arg min R R h ( ) k ()k P + (t ) i ; (3) where is a positive scalar that allows balancing the relative importance of time convergence to the trajectory against spatial convergence to the path. If =, (; t) =arg min R k ()k P gives the trajectory time that minimizes the distance k ()k P and a pure path following controller is obtained. If =, (; t) = t (since = t is always the minimizer of (t ) ), yielding the original trajectory tracking controller. When < <, the mapping gives the trajectory time of the path point ( () ; ) that is closest to (; t) in the metric induced by U (; t; ), and a mixed trajectory tracking and path following behavior is achieved. Under some mild technical conditions on the reference path shape and parameterization (see [] for details), () is unique and continuous. Note that a necessary condition for = (; t) to be a minimizer of U (; t; ) is that U (; t; ) = ( ) ( (; t)) ; d d ( (; t)) (t (; t)) = : (4)

3 Consider now the candidate Lyapunov function Y (; t) =min R U (; t; ) = U (; t; (; t)) (5) = ( ) k ( (; t))k P + (t (; t)) : Dierentiating Y with respect to time gives _Y (; t) = ( ) D ( (; t)) ; _ d d ( (; t)) d E dt (; t) P (; t) (t (; t)) d dt = ( ) D ( (; t)) ; _ d E d ( (; t)) + P d E d d ( (; t)) h dt (; t) ( ) D ( (; t)) ; i + (t (; t)) : From (4), the second term of this expression is zero, hence _Y (; t) = ( ) V _ (; (; t)) ( ) k V (; (; t)) : To conclude asymptotic time convergence to the path one must resort to Barbalat's Lemma [8] since Y _ is not negative denite in t. Assuming that the rst and second derivatives of () (the velocity and the acceleration along the reference path, respectively) are bounded, it is easy to prove that Y is bounded. Thus, Y _ is uniformly continuous. Since Y _ and Y is bounded below by zero, Y (; t)! Y as t!, where Y is positive and nite. Now, Barbalat's Lemma allows for the conclusion that _Y (; t)! as t!. This implies that! ( (; t)) as t!. Using (4), it follows that (; t)! t as t!. Therefore,! (t) as t!, that is, the system tracks the reference path asymptotically. In order to apply the method described to motion control of autonomous vehicle, some modications are required. This stems from the fact that the equations of motion of these vehicles exhibit a clear split between kinematics and dynamics and the specication of a trajectory to be tracked includes the kinematic variables only. For example, in the case of a marine craft a reference trajectory may simply include the desired evolution of the center of mass (and possibly the orientation) of that craft. In this case, however, the methodology proposed by Hindman and Hauser still provides a powerful tool to obtain a path following controller for the craft assuming a trajectory tracking control law exists and its stability has been proved using Lyapunov theory. In fact, the work of Hindman and Hauser provides a clear recipe to suitably modify the Lyapunov function for trajectory tracking so as to yield a new Lyapunov function for path following stability. Suppose for example that () captures the kinematics of a vehicle, and that (after a suitable coordinate transformation) the dynamics can be cast in the form _ = ; (6) where is the actual input vector. Suppose also that a stabilizing trajectory tracking controller = (; (t)) for () and a corresponding Lyapunov function V (; t) have been found. The vehicle dynamics can be included in the control design through a backstepping step [] as follows. Consider the change of variables z = : The variable z can be interpreted as the dierence between the virtual control variable and the virtual control law. Thus, if z tends to zero, the system approaches the manifold corresponding to the "kinematic system". This motivates the choice of V = Y (; t) + zt z as a candidate Lyapunov function. Dierentiating V with respect to time yields Setting _V = Y Y () [f () + g () ] + () g () z + zt _ ( ) k V (; (; t)) + Y () g () z + zt _ = _ g T () Y T () K dyn z; where K dyn is a positive denite matrix, it follows that _V ( ) k V (; (; t)) z T K dyn z : Using the same arguments as before, convergence to the path can be concluded. In practice, the modications required to deal with more realistic cases may warrant further complexity of the resulting control laws, as the next section will show. However, the key recipe provided by Hindman and Hauser still applies. III. Application to a surface craft The methodology described in Section II is now applied to the design of a combined trajectory tracking and path following controller for the DELFIM autonomous surface craft developed at the Instituto Superior Tecnico of Lisbon, Portugal. See [3], [4] for details on the construction, modeling, and control of the DELFIM vehicle. A. Vehicle model Following standard practice, the equations of motion of a marine craft can be developed using a global coordinate frame fug and a body-xed coordinate frame fbg that moves with the vehicle. The following notation is required [5], [6]: U p Borg := (x; y) T - position of the origin of fbg measured in fug; B v Borg := (u; v) T - velocity of the origin of fbg relative to fug, expressed in fbg (i.e., body-xed linear velocity); B! B := r - angular velocity of fbg relative to fu g, expressed in fbg (i.e., body-xed angular velocity). The symbol U BR ( ) denotes the rotation matrix from : 3

4 fbg to fug, parameterized by the yaw angle. With this notation, the dynamics and kinematics of the marine craft can be cast in the form Dynamics: M RB B _v Borg + C RB B v Borg B v Borg = RB (7) Kinematics: I z _r = N (8) U _p Borg = U BR ( ) B v Borg (9) _ = r; () where RB denotes the vector of external forces and N is the external yawing torque. The symbols M RB and I z denote the rigid body mass matrix and the moment of inertia about the z B axis respectively, and C RB represents the matrix of Coriolis and centripetal terms. The vector RB can further be decomposed as RB = add ( _; ) + body () + ; () T where add is the added mass term and = B vb T org ; r. The term body consists of the hydrodynamic forces acting on the vehicle's body. The vector = (T c ; ) T denotes the forces applied to the vehicle by the propulsion system, where T c is the force exerted on the vehicle's body by the two back propellers working in common mode. A simplied model for the yawing torque N is [4], [7] N = N v uv + N r ur + T d ; () where T d represents the torque generated by the two back propellers in dierential mode. The symbols N v and N r denote hydrodynamic torque coecients. Combining equations (7)-(8) and ()-(), the body- xed dynamic model of the AUV can be written as [4], [7] M B _v Borg + rjm B v Borg + D B v Borg ; r B v Borg = Tc (3) I z _r N v uv N r ur = T d ; (4) where M includes the rigid body mass matrix and added mass terms, and J is the skew symmetric matrix J = The term rjm B v Borg captures Coriolis and centripetal, as well as added mass terms, and D B v Borg ; r includes the hydrodynamic damping terms. For the DELFIM vehicle, a simplied model of the hydrodynaminc damping terms is Xu Xuuu D BvBorg ; r X = uuuu X vvv Y rr Y vu : ; where X () and Y () denote hydrodynamic force coecients. The D () matrix can be further decomposed as D B v Borg ; r = D B v Borg + D r, where D BvBorg = D r = Xu Xuuu X uuuu X vvv Y vu Y r Observe that the DELFIM model was written in such a way as to separate the surge and sway dynamics from the yaw dynamics. This is because control design will resort to two backstepping-like steps, the rst to include the surge and sway dynamics, and the second to include the yaw dynamics. B. Trajectory tracking controller As explained in Section II, the starting point for the derivation of a combined trajectory tracking and path following controller for the surface craft is the availability of a trajectory tracking controller for the same vehicle. In what follows, the general structure of the trajectory tracking controller for underactuated vehicles described in [4] is adopted. In his work, Godhavn presents both a nonadaptive and an adaptive controller where the latter aims at estimating and rejecting constant ocean currents. Both schemes are applicable to surface vehicles that are only actuated in surge and yaw. In this paper, only the nonadaptive version will be used since, to derive the adaption laws for the adaptive case, the estimation errors are included in the Lyapunov functions, thus preventing the use of the Hauser and Hindman methods. The controllers developed by Godhavn are applicable to low speed slender ships for which decoupling the surge from the steering (sway and yaw) dynamics is natural. Since that is not the case for the DELFIM vehicle, a slight modication in the design method is necessary. The presentation that follows borrows considerably from the work in [4]. Let (t) = (x ref (t) ; y ref (t)) T be a reference for the position U p Borg and let ~p = U p Borg (t) be the corresponding position error. Notice how in this case the reference trajectory only includes the desired position of the vehicle, thus avoiding specifying its orientation explicitly. Consider the Lyapunov function : V = ~pt ~p: (5) Dierentiating V with respect to time yields Let _V = ~p T U R B B v Borg _ (t) : U R B B v Borg where k is a positive scalar. Then Following backstepping tech- is negative denite in ~p. niques, dene = _ (t) k ~p; _V = k ~p T ~p z = U R B B v Borg ( _ (t) k ~p) 4

5 as the dierence between the virtual control variable U R B B v Borg and the virtual control law _ (t) k ~p, and let V be the Lyapunov function V = V + zt z : (6) Finally, consider the Lyapunov function with time derivative V 3 = V + z The time derivative of V is given by where k >, and with _V = k ~p T ~p k z T z + z T U R B M Tc a = h r + h a ; _V 3 = k ~p T ~p k z T z z T U R B M + a z h I z (T d + N v uv + N r ur) + h = k ~p T ~p k z T z + z T U R B M z z h I z (T d + N v uv + N r ur) + h : The control signal + Choosing yields h = (JM MJ + D ) B v Borg h = D B v Borg B v Borg k M B v Borg M U R T B (~p (t) k _ (t) + k z ) : T c = a (7) _V = k ~p T ~p k z T z U R B M z T To include the yaw dynamics, consider now z = a; : a with >. The time derivative of a can be computed to give _a = h _r + h ; where h = (JM MJ + D ) B _v Borg r+ _D B v B Borg v Borg + D B v B Borg _v Borg k M B _v Borg U _R B T (~p (t) k (t) + k z ) M U RB T ~p _ (3) (t) k (t) + k _z : Therefore, h _z = h : I z (T d + N v uv + N r ur) In order to simplify the expressions, dene With these denitions, h h = h = h h = h : _z = h I z (T d + N v uv + N r ur) + h : T d = N v uv N r ur I z h h + z T U R B M where k 3 is a positive scalar, renders _V 3 = k ~p T ~p k z T z k 3 z + k 3 z ; (8) negative semidenite. In [4] it is shown, using LaSalle arguments, that the control law (7)-(8) provides exponential tracking of z as long as saturation of the inputs is avoided, and the vehicle surge velocity u is kept nonzero. It is now straight forward to derive a combined trajectory tracking and path following controller for the surface craft. To do this, one starts by identifying the kinematic equation (9) with the general model () by making = (x; y) T and as the vehicle inertial velocity, that is, = U R B B v Borg. Hence, f () = and g () = I, where I denotes the identity matrix. The Lyapunov function (5) should then be modied according to (5). The last step consists of redening the Lyapunov function (6) as V = Y (; t) + zt z ; where Y is dened in (5). The details are omitted. C. Simulation results Simulations with the model of the autonomous surface craft DELFIM were performed choosing k =, k = k 3 = :, and = :7, as in [4]. In the simulations, the initial posture of the vehicle was set to (x; y; )j t= = 35 m; ; and the desired velocity along the reference path was chosen as ms. The performance achieved with pure trajectory tracking ( = ), pure path following ( = ), and for combined trajectory tracking and path following ( = :) was assessed. Figure shows the vehicle following a path consisting of two straight line segments joined together by a cubic spiral, for the case when =. Figure depicts the actuator signals, that is, the force T c and the torque T d generated by the common and dierential thruster modes, respectively, and Figure 3 shows how the tracking errors x (t) x ref (t) and y (t) y ref (t) converge to zero. The 5

6 x y vehicle trajectory for = (pure path following case) is presented in Figure 4. Figure 5 shows the actuator signals. The trajectory tracking errors x (t) x ref (t) and y (t) y ref (t), and the modied errors x (t) x ref ( (; t)) and y (t) y ref ( (; t)) are plotted in Figures 6 and 7, respectively. From Figure 7 it is possible to see that the vehicle actually converges to the path. However, from Figure 6 it is clear that it is always about : m ahead of the "reference" vehicle. Finally, Figures 8 to refer to the combined trajectory tracking and path following controller that is obtained by setting = :. Figure 8 shows the x y vehicle trajectory, while Figure 9 displays the actuator signals. From the tracking errors in Figure and from the modied errors in Figure, the combined behavior can be interpreted as follows: the vehicle converges quickly to the desired path and only then will it react to achieve zero trajectory tracking error. Notice that in this particular example the overall spatial approach to the desired path does not show drastic dierences in the three dierent simulations. However, the control activity is considerably smoother in the cases where 6=, thus showing the benets of path following. y y ref x Fig. 3. Tracking errors (t) (t) for =. x y Fig. 4. Pure path following: =. T c [N] y Fig.. Pure trajectory tracking: = modied trajectory tracking and allows for its application to the control of vehicles with non negligible dynamics. The methodology described has been used to develop a combined trajectory tracking and path following controller for a fully actuated underwater vehicle and also applied to the coordinated control of autonomous marine craft [8], [9]. Further work will address the problem of controlling surface crafts in the presence of parameter uncertainty and external disturbances, as well as reduced motion sensor information. References [] R. W. Brockett, \Asymptotic stability and feedback stabilization," in Dierential Geometric Control Theory, R. W. Brock- T d [Nm] Fig.. Actuator signals for = : force T c and torque T d. IV. Conclusions The paper presented a solution to the problem of combined trajectory tracking and path following for marine craft. The solution described builds on and extends previous work by Hindman and Hauser on so-called maneuver T c [N] T d [Nm] Fig. 5. Actuator signals for = : force T c and torque T d. 6

7 4 T c [N] 3 y y ref Fig. 6. Tracking errors (t) (t) for =. T d [Nm] Fig. 9. Actuator signals for = :: force T c and torque T d. (π λ ) y y ref (π λ ).5.5 y y ref Fig. 7. Modied error (t) ( (; t)) for = Fig.. Tracking errors (t) (t) for = :. ett, R. S. Millman, and H. J. Sussman, Eds., Boston, 983, pp. 8{9, Birkhauser. [] C. Canudas de Wit, H. Khennouf, C. Samson, and O. J. Srdalen, \Nonlinear control design for mobile robots," in Recent Trends in Mobile Robotics, Yuan F. Zheng, Ed. 993, vol., pp. {56, World Scientic Series in Robotics and Automated Systems. [3] J. M. Godhavn and O. Egeland, \A Lyapunov approach to exponential stabilization of nonholonomic systems in power form," IEEE Transactions on Automatic Control, vol. 4, no. 7, pp. 8{3, July 997. [4] A. Aguiar and A. Pascoal, \Stabilization of the extended nonholonomic double integrator via a logic-based hybrid control," in Proceedings of SYROCO', 6 th IFAC Symposium on Robot Control, Vienna, Austria, Sept.. [5] A. Astol, \Exponential stabilization of a wheeled mobile ro- x y Fig. 8. Combined trajectory tracking and path following: = :. bot via discontinuous control," Journal of Dynamic Systems, Measurement, and Control, vol., pp. {6, Mar [6] J. P. Hespanha, \Stabilization of nonholonomic integrators via logic-based switching," in Proceedings of IFAC'96, 3 th World Congress of IFAC, S. Francisco, CA, USA, July 996, vol. E, pp. 467{47. [7] C. Canudas de Wit and O. J. Srdalen, \Exponential stabilization of mobile robots with nonholonomic constraints," IEEE Transactions on Automatic Control, vol. 37, no., pp. 79{ 797, Nov. 99. [8] H. K. Khalil, Nonlinear Systems, Prentice-Hall, New Jersey, Second edition, 996. [9] G. Walsh, D. Tilbury, S. Sastry, R. Murray, and J. P. Laumond, \Stabilization of trajectories for systems with nonholonomic constraints," IEEE Transactions on Automatic Control, vol. 39, no., pp. 6{, Jan [] E. Freund and R. Mayr, \Nonlinear path control in automated vehicle guidance," IEEE Transactions on Robotics and Automation, vol. 3, no., pp. 49{6, Feb [] D. H. Kim and J. H. Oh, \Globally aymptotically stable tracking control of mobile robots," in Proceedings of CCA'98, 998 IEEE International Conference on Control Applications, Trieste, Italy, Sept [] R. Fierro and F. L. Lewis, \Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics," in Proceedings of CDC'95, 34 th IEEE Conference on Decision and Control, New Orleans, LA, USA, Dec. 995, pp. 385{38. [3] J. M. Godhavn, \Nonlinear tracking of underactuated surface vessels," in Proceedings of CDC'96, 35 th IEEE Conference on Decision and Control, Kobe, Japan, Dec. 996, pp. 987{99. [4] J. M. Godhavn, Topics in Nonlinear Motion Control: Non- 7

8 y y ref (π λ ) (π λ ) holonomic, Underactuated, and Hybrid Systems, Ph.D. thesis, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, 997. [5] K. Y. Pettersen and H. Nijmeijer, \Tracking control of an underactuated surface vessel," in Proceedings of CDC'98, 37 th IEEE Conference on Decision and Control, Tampa, Florida, USA, Dec. 998, pp. 456{4566. [6] Z. Jiang and H. Nijmeijer, \A recursive technique for tracking control of nonholonomic systems in chained form," IEEE Transactions on Robotics and Automation, vol. 44, no., pp. 65{79, Feb [7] P. Encarnac~ao, A. Pascoal, and M. Arcak, \Path following for marine vehicles in the presence of unknown currents," in Proceedings of SYROCO', 6 th IFAC Symposium on Robot Control, Vienna, Austria, Sept.. [8] G. Indiveri, M. Aicardi, and G. Casalino, \Nonlinear timeinvariant feedback control of an underactuated marine vehicle along a straight course," in Proceedings of MCMC', IFAC Conference on Manoeuvring and Control of Marine Craft, Aalborg, Denmark, Aug.. [9] P. Encarnac~ao and A. Pascoal, \3D path following for autonomous underwater vehicles," in Proceedings of CDC', 39 th IEEE Conference on Decision and Control, Sydney, Australia, Dec.. [] M. Aicardi, G. Casalino, G. Indiveri, A. Aguiar, P. Encarnac~ao, and A. Pascoal, \A planar path following controller for underactuated marine vehicles," in Proceedings of MED', 9 th Mediterranean Conference on Control and Automation, Dubrovnik, Croatia, June. [] R. Hindman and J. Hauser, \Maneuver modied trajectory tracking," in Proceedings of MTNS'96, International Symposium on the Mathematical Theory of Networks and Systems, St. Louis, MO, USA, June 99. [] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc, New York, 995. [3] A. Pascoal, P. Oliveira, C. Silvestre, L. Sebasti~ao, M. Runo, V. Barroso, J. Gomes, G. Ayela, P. Coince, M. Cardew, A. Ryan, H. Braithwaite, N. Cardew, J. Trepte, N. Seube, J. Champeau, P. Dhaussy, V. Sauce, R. Moitie, R. Santos, F. Cardigos, M. Brussieux, and P. Dando, \Robotic ocean vehicles for marine science applications: the european ASIMOV project," in Proceedings of OCEANS' MTS/IEEE, Rhode Island, Providence, USA, Sept.. [4] M. Prado, \Modeling and control of an autonomous ocean vehicle," M.S. thesis, Department of Electrical Engineering, Instituto Superior Tecnico, Lisboa, Portugal,. [5] D. Fryxell, P. Oliveira, A. Pascoal, C. Silvestre, and I. Kaminer, \Navigation, guidance, and control of AUVs: An application to the MARIUS vehicle," IFAC Journal of Control Engineering Practice, vol. 4, no. 3, pp. 4{49, Mar [6] C. Silvestre and A. Pascoal, \Control of an AUV in the vertical and horizontal planes: System design and tests at sea," Transactions of the Institute of Measurement and Control, vol. 9, no. 3, pp. 6{38, 997. [7] T. I. Fossen, Guidance and Control of Ocean Vehicles, John Wiley & Sons, Chichester, England, 994. [8] P. Encarnac~ao and A. Pascoal, \Combined trajectory tracking and path following for underwater vehicles," Accepted for presentation at CAMS', IFAC Conference on Control Applications in Marine Systems, Apr.. [9] P. Encarnac~ao and A. Pascoal, \Combined trajectory tracking and path following control: an application to the coordinated control of autonomous marine craft," Submitted to CDC', 4 th IEEE Conference on Decision and Control, Mar Fig.. Modied error (t) ( (; t)) for = :. 8

Modelling and Identification of Underwater Robotic Systems

Modelling and Identification of Underwater Robotic Systems University of Genova Modelling and Identification of Underwater Robotic Systems Giovanni Indiveri Ph.D. Thesis in Electronic Engineering and Computer Science December 1998 DIST Department of Communications,

More information

A Lagrangian Framework to Incorporate Positional and Velocity Constraints to Achieve Path-Following Control

A Lagrangian Framework to Incorporate Positional and Velocity Constraints to Achieve Path-Following Control 211 5th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December 12-15, 211 A Lagrangian Framework to Incorporate Positional and Velocity Constraints

More information

MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac.

MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac. MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS N. E. Pears Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac.uk) 1 Abstract A method of mobile robot steering

More information

Robotic Ocean Vehicles for Marine Science Applications: the European ASIMOV Project*

Robotic Ocean Vehicles for Marine Science Applications: the European ASIMOV Project* Robotic Ocean Vehicles for Marine Science Applications: the European ASIMOV Project* António Pascoal 1, Paulo Oliveira 1, Carlos Silvestre 1, Luis Sebastião 1, Manuel Rufino 1, Victor Barroso 1, João Gomes

More information

CONTRIBUTIONS TO THE AUTOMATIC CONTROL OF AERIAL VEHICLES

CONTRIBUTIONS TO THE AUTOMATIC CONTROL OF AERIAL VEHICLES 1 / 23 CONTRIBUTIONS TO THE AUTOMATIC CONTROL OF AERIAL VEHICLES MINH DUC HUA 1 1 INRIA Sophia Antipolis, AROBAS team I3S-CNRS Sophia Antipolis, CONDOR team Project ANR SCUAV Supervisors: Pascal MORIN,

More information

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot

More information

1996 IFAC World Congress San Francisco, July 1996

1996 IFAC World Congress San Francisco, July 1996 1996 IFAC World Congress San Francisco, July 1996 TRAJECTORY GENERATION FOR A TOWED CABLE SYSTEM USING DIFFERENTIAL FLATNESS Richard M. Murray Mechanical Engineering, California Institute of Technology

More information

Véronique PERDEREAU ISIR UPMC 6 mars 2013

Véronique PERDEREAU ISIR UPMC 6 mars 2013 Véronique PERDEREAU ISIR UPMC mars 2013 Conventional methods applied to rehabilitation robotics Véronique Perdereau 2 Reference Robot force control by Bruno Siciliano & Luigi Villani Kluwer Academic Publishers

More information

CFD Modelling and Real-time testing of the Wave Surface Glider (WSG) Robot

CFD Modelling and Real-time testing of the Wave Surface Glider (WSG) Robot 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 CFD Modelling and Real-time testing of the Wave Surface Glider (WSG) Robot

More information

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written

More information

Parameter identification of a linear single track vehicle model

Parameter identification of a linear single track vehicle model Parameter identification of a linear single track vehicle model Edouard Davin D&C 2011.004 Traineeship report Coach: dr. Ir. I.J.M. Besselink Supervisors: prof. dr. H. Nijmeijer Eindhoven University of

More information

Sensor Based Control of Autonomous Wheeled Mobile Robots

Sensor Based Control of Autonomous Wheeled Mobile Robots Sensor Based Control of Autonomous Wheeled Mobile Robots Gyula Mester University of Szeged, Department of Informatics e-mail: gmester@inf.u-szeged.hu Abstract The paper deals with the wireless sensor-based

More information

Force/position control of a robotic system for transcranial magnetic stimulation

Force/position control of a robotic system for transcranial magnetic stimulation Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme

More information

Stability Of Structures: Basic Concepts

Stability Of Structures: Basic Concepts 23 Stability Of Structures: Basic Concepts ASEN 3112 Lecture 23 Slide 1 Objective This Lecture (1) presents basic concepts & terminology on structural stability (2) describes conceptual procedures for

More information

ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

More information

Awell-known lecture demonstration1

Awell-known lecture demonstration1 Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Path Tracking for a Miniature Robot

Path Tracking for a Miniature Robot Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking

More information

Operational Space Control for A Scara Robot

Operational Space Control for A Scara Robot Operational Space Control for A Scara Robot Francisco Franco Obando D., Pablo Eduardo Caicedo R., Oscar Andrés Vivas A. Universidad del Cauca, {fobando, pacaicedo, avivas }@unicauca.edu.co Abstract This

More information

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Lecture 8 : Dynamic Stability

Lecture 8 : Dynamic Stability Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic

More information

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

4 Lyapunov Stability Theory

4 Lyapunov Stability Theory 4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We

More information

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter

More information

Adaptive Cruise Control of a Passenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control

Adaptive Cruise Control of a Passenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control Adaptive Cruise Control of a assenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control Somphong Thanok, Manukid arnichkun School of Engineering and Technology, Asian Institute of Technology,

More information

Onboard electronics of UAVs

Onboard electronics of UAVs AARMS Vol. 5, No. 2 (2006) 237 243 TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

Physics in the Laundromat

Physics in the Laundromat Physics in the Laundromat Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (Aug. 5, 1997) Abstract The spin cycle of a washing machine involves motion that is stabilized

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Seungsu Kim, ChangHwan Kim and Jong Hyeon Park School of Mechanical Engineering Hanyang University, Seoul, 133-791, Korea.

More information

Automatic Steering Methods for Autonomous Automobile Path Tracking

Automatic Steering Methods for Autonomous Automobile Path Tracking Automatic Steering Methods for Autonomous Automobile Path Tracking Jarrod M. Snider CMU-RI-TR-09-08 February 2009 Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania c Carnegie Mellon

More information

Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4. problems: 5.61, 5.67, 6.63, 13.21 Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

More information

The Phase Plane. Phase portraits; type and stability classifications of equilibrium solutions of systems of differential equations

The Phase Plane. Phase portraits; type and stability classifications of equilibrium solutions of systems of differential equations The Phase Plane Phase portraits; type and stability classifications of equilibrium solutions of systems of differential equations Phase Portraits of Linear Systems Consider a systems of linear differential

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 3 - ROTATING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 3 - ROTATING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 3 - ROTATING SYSTEMS TUTORIAL 1 - ANGULAR MOTION CONTENT Be able to determine the characteristics

More information

Metrics on SO(3) and Inverse Kinematics

Metrics on SO(3) and Inverse Kinematics Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon Motion Control of 3 Degree-of-Freedom Direct-Drive Robot A Thesis Presented to The Academic Faculty by Rutchanee Gullayanon In Partial Fulfillment of the Requirements for the Degree Master of Engineering

More information

Newton s Laws of Motion

Newton s Laws of Motion Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

More information

IMU Components An IMU is typically composed of the following components:

IMU Components An IMU is typically composed of the following components: APN-064 IMU Errors and Their Effects Rev A Introduction An Inertial Navigation System (INS) uses the output from an Inertial Measurement Unit (IMU), and combines the information on acceleration and rotation

More information

2. Dynamics, Control and Trajectory Following

2. Dynamics, Control and Trajectory Following 2. Dynamics, Control and Trajectory Following This module Flying vehicles: how do they work? Quick refresher on aircraft dynamics with reference to the magical flying space potato How I learned to stop

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

Topic 1: Matrices and Systems of Linear Equations.

Topic 1: Matrices and Systems of Linear Equations. Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method

More information

A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight

A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight e-περιοδικό Επιστήμης & Τεχνολογίας 33 A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight Vassilios McInnes Spathopoulos Department of Aircraft Technology

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE

More information

CHAPTER 11. The total energy of the body in its orbit is a constant and is given by the sum of the kinetic and potential energies

CHAPTER 11. The total energy of the body in its orbit is a constant and is given by the sum of the kinetic and potential energies CHAPTER 11 SATELLITE ORBITS 11.1 Orbital Mechanics Newton's laws of motion provide the basis for the orbital mechanics. Newton's three laws are briefly (a) the law of inertia which states that a body at

More information

Figure 3: Radius of Gyration Mathematical Model

Figure 3: Radius of Gyration Mathematical Model The characteristics of the core s size, shape, and density play a vital role in determining how the core will influence the rotation of the bowling ball by altering the calculated RG and Differential RG.

More information

WMR Control Via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation

WMR Control Via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 6, NOVEMBER 2002 835 WMR Control Via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation Giuseppe Oriolo, Member,

More information

SO(3) Camillo J. Taylor and David J. Kriegman. Yale University. Technical Report No. 9405

SO(3) Camillo J. Taylor and David J. Kriegman. Yale University. Technical Report No. 9405 Minimization on the Lie Group SO(3) and Related Manifolds amillo J. Taylor and David J. Kriegman Yale University Technical Report No. 945 April, 994 Minimization on the Lie Group SO(3) and Related Manifolds

More information

A Python Project for Lagrangian Mechanics

A Python Project for Lagrangian Mechanics The 3rd International Symposium on Engineering, Energy and Environments 17-20 November 2013, Pullman King Power Hotel, Bangkok A Python Project for Lagrangian Mechanics Peter Slaets 1, Pauwel Goethals

More information

Section 10.7 Parametric Equations

Section 10.7 Parametric Equations 299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

On the D-Stability of Linear and Nonlinear Positive Switched Systems

On the D-Stability of Linear and Nonlinear Positive Switched Systems On the D-Stability of Linear and Nonlinear Positive Switched Systems V. S. Bokharaie, O. Mason and F. Wirth Abstract We present a number of results on D-stability of positive switched systems. Different

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration

More information

distance is equivalent to the Euclidean distance between the transformed compositions by the centered logratio function clr. The angular distance give

distance is equivalent to the Euclidean distance between the transformed compositions by the centered logratio function clr. The angular distance give MEASURES OF DIFFERENCE FOR COMPOSITIONAL DATA AND HI- ERARCHICAL CLUSTERING METHODS J. A. Martn-Fernandez (1), C. Barcelo-Vidal (1) and V. Pawlowsky-Glahn (2) (1) Universitat de Girona (2) Universitat

More information

MODULE VII LARGE BODY WAVE DIFFRACTION

MODULE VII LARGE BODY WAVE DIFFRACTION MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wave-structure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.

More information

Lyapunov Stability Analysis of Energy Constraint for Intelligent Home Energy Management System

Lyapunov Stability Analysis of Energy Constraint for Intelligent Home Energy Management System JAIST Reposi https://dspace.j Title Lyapunov stability analysis for intelligent home energy of energ manageme Author(s)Umer, Saher; Tan, Yasuo; Lim, Azman Citation IEICE Technical Report on Ubiquitous

More information

DESIGN, IMPLEMENTATION, AND COOPERATIVE COEVOLUTION OF AN AUTONOMOUS/TELEOPERATED CONTROL SYSTEM FOR A SERPENTINE ROBOTIC MANIPULATOR

DESIGN, IMPLEMENTATION, AND COOPERATIVE COEVOLUTION OF AN AUTONOMOUS/TELEOPERATED CONTROL SYSTEM FOR A SERPENTINE ROBOTIC MANIPULATOR Proceedings of the American Nuclear Society Ninth Topical Meeting on Robotics and Remote Systems, Seattle Washington, March 2001. DESIGN, IMPLEMENTATION, AND COOPERATIVE COEVOLUTION OF AN AUTONOMOUS/TELEOPERATED

More information

Multi-Robot Tracking of a Moving Object Using Directional Sensors

Multi-Robot Tracking of a Moving Object Using Directional Sensors Multi-Robot Tracking of a Moving Object Using Directional Sensors Manuel Mazo Jr., Alberto Speranzon, Karl H. Johansson Dept. of Signals, Sensors & Systems Royal Institute of Technology SE- 44 Stockholm,

More information

Lecture L14 - Variable Mass Systems: The Rocket Equation

Lecture L14 - Variable Mass Systems: The Rocket Equation J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L14 - Variable Mass Systems: The Rocket Equation In this lecture, we consider the problem in which the mass of the body changes during

More information

OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS. You should judge your progress by completing the self assessment exercises.

OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS. You should judge your progress by completing the self assessment exercises. Unit 60: Dynamics of Machines Unit code: H/601/1411 QCF Level:4 Credit value:15 OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS 2 Be able to determine the kinetic and dynamic parameters of

More information

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

Elgersburg Workshop 2010, 1.-4. März 2010 1. Path-Following for Nonlinear Systems Subject to Constraints Timm Faulwasser

Elgersburg Workshop 2010, 1.-4. März 2010 1. Path-Following for Nonlinear Systems Subject to Constraints Timm Faulwasser #96230155 2010 Photos.com, ein Unternehmensbereich von Getty Images. Alle Rechte vorbehalten. Steering a Car as a Control Problem Path-Following for Nonlinear Systems Subject to Constraints Chair for Systems

More information

Quadcopters. Presented by: Andrew Depriest

Quadcopters. Presented by: Andrew Depriest Quadcopters Presented by: Andrew Depriest What is a quadcopter? Helicopter - uses rotors for lift and propulsion Quadcopter (aka quadrotor) - uses 4 rotors Parrot AR.Drone 2.0 History 1907 - Breguet-Richet

More information

Control and Navigation Framework for Quadrotor Helicopters

Control and Navigation Framework for Quadrotor Helicopters Control and Navigation Framework for Quadrotor Helicopters Amr Nagaty, Sajad Saeedi, Carl Thibault, Mae Seto and Howard Li Abstract This paper presents the development of a nonlinear quadrotor simulation

More information

We call this set an n-dimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P.

We call this set an n-dimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P. Volumes of parallelograms 1 Chapter 8 Volumes of parallelograms In the present short chapter we are going to discuss the elementary geometrical objects which we call parallelograms. These are going to

More information

THERE is a significant amount of current research activity

THERE is a significant amount of current research activity IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 5, SEPTEMBER 2006 789 Stable Task Load Balancing Strategies for Cooperative Control of Networked Autonomous Air Vehicles Jorge Finke, Member,

More information

V(x)=c 2. V(x)=c 1. V(x)=c 3

V(x)=c 2. V(x)=c 1. V(x)=c 3 University of California Department of Mechanical Engineering Linear Systems Fall 1999 (B. Bamieh) Lecture 6: Stability of Dynamic Systems Lyapunov's Direct Method 1 6.1 Notions of Stability For a general

More information

THEORETICAL MECHANICS

THEORETICAL MECHANICS PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

More information

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering

More information

Curriculum Vitae Michael M. Zavlanos

Curriculum Vitae Michael M. Zavlanos Curriculum Vitae Michael M. Zavlanos Home Address Work Address 2114 Pine Street 3330 Walnut Street Apartment 1 Front GRASP Laboratory, Levine Hall 465 Philadelphia, PA 19103 Dept. of Electrical and Systems

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Stability Analysis of Small Satellite Formation Flying and Reconfiguration Missions in Deep Space

Stability Analysis of Small Satellite Formation Flying and Reconfiguration Missions in Deep Space Stability Analysis of Small Satellite Formation Flying and Reconfiguration Missions in Deep Space Saptarshi Bandyopadhyay, Chakravarthini M. Saaj, and Bijnan Bandyopadhyay, Member, IEEE Abstract Close-proximity

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

More information

Research Article End-Effector Trajectory Tracking Control of Space Robot with L 2 Gain Performance

Research Article End-Effector Trajectory Tracking Control of Space Robot with L 2 Gain Performance Mathematical Problems in Engineering Volume 5, Article ID 7534, 9 pages http://dx.doi.org/.55/5/7534 Research Article End-Effector Trajectory Tracking Control of Space Robot with L Gain Performance Haibo

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

The Trimmed Iterative Closest Point Algorithm

The Trimmed Iterative Closest Point Algorithm Image and Pattern Analysis (IPAN) Group Computer and Automation Research Institute, HAS Budapest, Hungary The Trimmed Iterative Closest Point Algorithm Dmitry Chetverikov and Dmitry Stepanov http://visual.ipan.sztaki.hu

More information

Master slave approach for the modelling of joints with dependent degrees of freedom in exible mechanisms

Master slave approach for the modelling of joints with dependent degrees of freedom in exible mechanisms COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2003; 19:689 702 (DOI: 10.1002/cnm.627) Master slave approach for the modelling of joints with dependent degrees of freedom

More information

CH-205: Fluid Dynamics

CH-205: Fluid Dynamics CH-05: Fluid Dynamics nd Year, B.Tech. & Integrated Dual Degree (Chemical Engineering) Solutions of Mid Semester Examination Data Given: Density of water, ρ = 1000 kg/m 3, gravitational acceleration, g

More information

ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E.

ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E. ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E. Woodrow M. Poplin, P.E. is a consulting engineer specializing in the evaluation of vehicle and transportation accidents. Over the past 23 years he has

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

The Design and Application of Water Jet Propulsion Boat Weibo Song, Junhai Jiang3, a, Shuping Zhao, Kaiyan Zhu, Qihua Wang

The Design and Application of Water Jet Propulsion Boat Weibo Song, Junhai Jiang3, a, Shuping Zhao, Kaiyan Zhu, Qihua Wang International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015) The Design and Application of Water Jet Propulsion Boat Weibo Song, Junhai Jiang3, a, Shuping Zhao,

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation Pilotage, which essentially relies on recognizing landmarks

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras 1 CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation Prof. Dr. Hani Hagras Robot Locomotion Robots might want to move in water, in the air, on land, in space.. 2 Most of the

More information

Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information