TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS
|
|
- Josephine Rice
- 2 years ago
- Views:
Transcription
1 9 8 TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Econ Lit C 810 Information technology is a highly dynamic field of research. As part of it, business intelligence systems (BIS) also develop very quickly. In this paper we shall adhere to the following definition of BIS: BIS combine the activities of data mining and data processing and knowledge management through analytical means in order to present complex competitive information to consumers who draw plans and make decisions. 1 Under conditions of ever increasing competition organizations aim to apply various management strategies for achieving competitive advantages. One of these strategies is the implementation and use of BIS in the organization. In their own turn, accounting for the growing demand for these systems, leading organizations from the field of information technologies deploy their resources and efforts in the enhancing of business intelligence (BI) solutions they offer. The purpose of this paper is to offer an improvement of the existing capabilities of BI solutions and development of their maturity model. To achieve this goal the following tasks have been solved: basic capabilities of BI platforms have been examined the ones owned by leading BI developers, as well as the new capabilities added due to the revolutionary breakthrough in the BI solutions market. The leading manufacturers of such solutions have been identified, the features they emphasize when they develop and enhance BIS, with an evaluation made of the degree to which they have been implemented. Three new opportunities for BI solutions have been offered. The maturity model, developed by Adam Getz in 2010 has been further developed. 1. Analysis of today s capabilities of BI platforms Before we examine the maturity model of BI solutions and the guidelines for its development, it is necessary to perform an analysis of the capabilities of BI solutions, as well as the market for these solutions. As a starting point for this research we take Gartner s Magic Quadrants for BI platforms, published in 2007 (fig. 1). In it Gartner defines BI platforms as software platforms providing 12 capabilities, divided into 3 basic categories: Delivery of information; Integration; Analytics. 1 Solomon Negash and Paul Gray, Business Intelligence, ( ).
2 Articles To the first category belong the capacities for: Generating reports; Navigation panes; Ad hoc queries; Integration with MS Office. The second group includes: BI infrastructure; Metadata management; Developing environments; Workflows; Cooperation. The third category covers the capabilities for: Online analytical processing; Visualization; Delivery of knowledge and forecasting; Maps of results. Five years later Gartner published a new Magic Quadrant for BI platforms, that is still current for In this document BI platforms continue to be viewed as software platforms, delivering the capabilities described above. But two more features have been added to the delivery of knowledge category, namely search-based BI and mobile BI. The basic capabilities of BI platforms have been widely discussed and studied, so for this reason they will not be considered in detail in this paper. More attention will be paid to the two new characteristics, offered by Gartner. The first opportunity is search-based BI. Essentially it is an application of a search-index in structured and unstructured data sources and their division (organization) into a classification structure of measures and dimensions, which consumers can easily navigate and explore, using a Google-like interface. The basic difference between search engines and data warehouses is that search engines are very flexible and support any kind of format and type of information be it structured or unstructured. Thus search engines can cope with increasingly evolving data structures. The indexing of both existing and new data (unknown so far) does not require additional data modeling. Conventional data warehousing architecture has limited capabilities for dealing with unstructured data that are necessary for facilitating decisionmaking and search engines fill this gap. In comparison, data warehouses require time not only for creating the warehouse model, but also for adding new data. Another positive feature of search engines is their ease of navigation through contents. At each step of the navigation, search engines provide different opportunities for filtering the results according to contents into the multitude of data that have been indexed and analyzed in nearly real time. Relational database management systems (RDBMS) have no capacity for data analysis unless they possess some knowledge about different type of data. That is, a search engine can easily follow any event that happened at a certain moment in time, while using conventional RDBMS a search can be performed only within strictly defined data fields. 9 9
3 100 Search engines also include functionality for automatic generation of clusters and categories, which improves contextual reference and data semantics. Besides, today s search engines possess functionality for aggregating and data analysis, which enables end users to discover the data links and models without the need for a precise formulation of a request or a query. Concerning integration, search engines can operate with the existing information systems (data warehouses, data showcases, manufacturing systems, etc.) and provide a general view on data, a view that can include new sources and facilitate cross navigation between data domains. Last, but not least comes the fact, that end users working with software with a user-friendly, intuitive interface have the considerable advantage of being relatively independent from IT departments. Having analyzed this new opportunity offered by BI platforms, we come to the conclusion that search engines can be used together with data warehouses to improve BI platforms performance. The other new opportunity mobile BI - refers to the delivery of reports and contents from the navigation panes of mobile devices such as smart phones and tablets in both a publishing mode and interactive mode, using the advantages of these devices, as well as their other capabilities which are not available in desktop computers or laptops, e.g. location awareness 2. The huge advantage of using mobile devices is the faster and more convenient access to BI reports and panes which speed up informed decision-making at any time and any place. However, mobile BI differs from conventional BI. Both needs and devices are different. Mobile BI does not mean presentation of already developed mobile devices navigation panels, or representation of essential panes for any specific device. The feasible approach is as follows: once developed, navigation panes can be represented with no alteration whatsoever, or with minimal adjustments on all relevant devices. Furthermore, in mobile devices design, we should first consider the smaller screen size, which in turn calls for smaller font size and only basic functionalities presentation. Hence the necessity of a detailed survey of consumers who will use mobile devices to access BIS. Another aspect to consider is the fact that mobile BI has to provide opportunities for effective concurrent work of consumers of BI solutions. The emergence of these new opportunities, as well as the need for the further development of the model Getz offered, are a result of the upsurge in the market for BI solutions. Gartner Magic Quadrants for BI platforms (fig. 1) features leading providers of BI platforms for 2007 and 2012 respectively. We can observe the dynamics of the market for BI solutions and thus in 2012 companies like SAP, Microsoft, Information Builders, which were categorized as challengers in 2007, made it to the leaders section. Microstrategy and QlickTeh also made progress. 2 Devices can find their geographical location by themselves.
4 Articles 101 Fig. 1. Magic Quadrant for BI platforms, January and February Leading vendors of BI platforms as of February 2012, as well as the evaluation of the degree to which they delivered the capabilities already described in 2007 (grades ranging in the 0-4 interval, where 0 stands for not available and 4 - for excellent delivery), have been presented in the following tables 5. Delivery of Information Table 1 Functionality Delivery of information Vendor Reporting Dashboards Ad hoc queries Integration with MS Office SAP IBM Information Builders Microsoft Microstrategy Schlegel, K., Hostmann, B., Bitterer, A., Magic Quadrant for Business Intelligence Platforms, 1Q07, Gartner, Hagerty, J., Sallam, R., Richardson, J., Magic Quadrant for Business Intelligence Platforms, Gartner, Schlegel, K., Sood, B., Business Intelligence Platform Capability Matrix, Gartner, 2007.
5 102 Oracle QlickTech SAS Integration Table 2 Functionality Integration Vendor BI infrastructure Metadata management Developing environment Workflow and cooperation SAP IBM Information Builders Microsoft Microstrategy Oracle QlickTech SAS Analytics Table 3 Vendor Functionality Online analytical processing Visualization Analytics Knowledge delivery and forecasting Maps of results SAP IBM Information Builders Microsoft Microstrategy Oracle QlickTech SAS
6 Articles As we see from the tables, companies that were not among the leaders in 2007, nevertheless provided excellent capabilities for which even leaders did not score that high. When delivery of information is considered, navigation panes rank first and in analytics maps of results are best developed. But delivery of knowledge and forecasting, which are among the most valuable capabilities of BIS, are not fully guaranteed by any of the leading technology providers of BI solutions. The development of the analytical in-memory devices, however, makes it clear that a lot of efforts are put in enhancing analytical capabilities. Besides, it is very important that BI platforms provide opportunities for concurrent work and cooperation, though that is not secured to a maximal degree either. BI platforms need to develop their capabilities in order to meet today s consumer demands. 2. Enhancing the capabilities of BI platforms What allows the vendors of BI solutions to better plan, evaluate and manage their BI solutions is the availability of the BI model of maturity. This is so, because evaluation of the maturity of software solutions enables the creation of quality software 6. In December 2010 Adam Getz 7 offered such a model. This consists of 6 levels (fig. 2) and in it the business value of the device used is measured against its complexity. 103 Fig. 2. Levels of BI maturity 8 6 Eskenazi, A., Software technologies, Manager, Enterprise Business Intelligence Amtrak, ( ). 8 The Figure was adapted from ( ).
7 104 In the presented model, the lowest maturity level equals 0 and is characterized by generating one-off, inconsistent report at different time. For this task different data sources and performance metrics are used in the organization. Thus, an inconsistent and inaccurate view of the organization is created. At the other end of the spectrum is the highest level of maturity (level 5). It is characterized by strategic, tactical and operating decision-making in situations that include a large number of factors and variables. The author of the model concludes that organizations which use level 5 devices can create an effective business model for their companies and accurately predict future results. It is important to note that the first 4 levels of the model refer to capabilities of the BI platforms in the Delivery of Information category, shown above. These platforms employ lower-complexity tools, which, however, bring little value for the business. The last two levels refer to the capabilities of BI platforms in the Analytics category more sophisticated tools and higher business value accordingly. That is to say the BI maturity model offered by Adam Getz is directly related to the BI platforms capabilities as defined by Gartner. The model shown above, however, does not include modern BIS capabilities that today s business needs in the environment of global markets and tough competition. It is necessary, therefore, for the model to be further developed, so that it is up-to-date and provides the foundation for better quality BI decisions. According to the author of this paper, the enhanced model should include not only the two new capabilities Gartner added, but three more: BI cloud-type solutions and software as a service (which can be referred to the Integration category); in-memory analyses; big data analyses (the last two can be referred to the Analytics category). By all means, modern BI solutions need to possess these capabilities. Regarding the BIS capabilities offered by the author, perhaps the greatest hurdles come with moving to cloud decisions, and more precisely, with the data transport within the cloud. This is so because organizations find it difficult to evaluate network security and determine the quality and amount of data to be transferred and analyzed. But when these obstacles are overcome and data is transferred within the cloud, a large number of effective BI tools can be applied with the aim of organizations getting the best from the data contained in the cloud. New computer architectures support more than two terabyte RAM and multicore processors, which results in new opportunities for the development of BIS. One of them is the in memory analyses, suggested by the author. Analytical in-memory tools enable queries generation and RAM data analysis. The result of using such instruments is the fast and easy research executed by BI and analytical applications, i.e. the most outstanding advantage of in-memory processing is speed. Another important point about in-memory technology is the better management of the business, which is due to decision making, based on the results of complex data analyses in real time. The initial development of these technologies started by SAP with the HANA project in-memory database that combines transactional and analytical data
8 Articles processing with logical processing in the memory. More precisely, HANA provides execution of OLAP analyses in real time of OLTP data structures. This way it is possible to overcome the constraints of the conventional data base architecture that have to do with working in real time mode. Other applications use HANA through standard SQL interface. The workflow model set in HANA allows the division of data into sections (groups), where processing of these data groups can be done in parallel, depending on the number of cores. It is important to point out that following the analysis of these solutions we have come to the conclusion that in-memory tools do not replace conventional solutions based on data warehouses, but are used concurrently in order to provide quality BI and analytics. The third and most important new capability, which also encompasses the other two, is the big data analyses. Under the term big data we mean structured, semistructured, unstructured and unprocessed (raw) data in many different formats, over most of which standard SQL instruments cannot be applied. The emergence of this term is linked to the search of new value inside and outside conventional data sources. Big data analyses require a technology or a set of technologies that possess capabilities for: o Scaling for an easy support of petabytes of data. o Distributed processing among thousands of processors that may be heterogeneous and geographically distant. o Embedding of user functions of various levels of sophistication. o Execution of these functions over petabytes of data within several minutes. o Support of a wide range of various types of data. o Loading analysis-ready data. The speed has to be very high (gigabyte per second). o Integration of multiple-source data, also at a very high speed (gigabyte per second); o Loading data before their structure is declared or identified. o Execution of analytical queries in real time upon booting the data, etc. So far, there are two architectures for big data analyses extended relational database management system (RDBMS) and MapReduce/Hadoop. They are implemented as separate systems, but there are hybrid models including both architectures. The development of big data analyses can be speeded up thanks to cloud services, which provide instant scalability without considerable investments in hardware. One of the important characteristics of big data is that they are often used to store and process unstructured data such as web contents, text, social media contents. In order to make the use of such data practically possible, organizations have to link them to existing structured data from their in-company OLTP (Online Transaction Processing) systems, data warehouses and other systems in the organization, such as CRM ( Customer relationship management), ERP (Enterprise resource planning). Linking these data enables the identification of new models and associations. Before being used, these data have to be cleansed. It is impossible for data to be cleansed the moment they are used or when they have already been collected in 105
9 106 enormous data repositories. The right approach is for data to be cleansed where they are located when the systems transaction flow starts. For example, when the consumer clicks OK in the web site, or when RSS informs of new publications in a blog in real time. Information from many systems has to be collated. The author of this paper believes that another level of BI maturity has to be added to the BI maturity model offered by Adam Getz in 2010, and namely a level 6 big data analyses. This new level is characterized by capabilities for: Working with large volumes of data, distributed over a large number of systems and execution of parallel analyses in a cloud environment; Access to transactional information at the moment the transaction is executed; Finalizing business deals at high speed and quicker response to events that influence business activities; Identifying trends and models in order to enhance planning and forecasting; Reducing response time for clients demands and complaints; Getting hold of up-to-date information that is needed to clinch deals. Thus all kind of organizations can create new products and services, improve existing ones and come up with completely new business models. The Big data analyses level brings together the following capabilities: Cloud type BI solutions, in-memory analyses and big data analyses. The aim of this level of BI solutions is to facilitate decision-making, make work faster, increase productivity and efficiency. Inevitably, as a result of the fast development of technologies, vendors of BI solutions will aim to reach this new level. To achieve it, they will have to rely on the enhanced capabilities of BI platforms that the author offered. TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Abstract The aim of the present article is to trace the movement of the market of BI solutions, as well as the trends in their development. There are presented the main capabilities which those systems should provide, there are also put forward some new ones. There is analysed the maturity model of business intelligence solutions of Adam Getz 1. In addition to that there is made a suggestion for updating his model by way of adding another level.
Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers
60 Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative
Business Intelligence with SharePoint 2010
Business Intelligence with SharePoint 2010 August 2011 Asad Mahmood Head Of Business Analytics Consulting E: asad.mahmood@contemporary.co.uk T: @MrAsadMahmood Symon Garfield Chief Technology Officer E:
SIGNIFICANCE OF BUSINESS INTELLIGENCE APPLICATIONS FOR BETTER DECISION MAKING & BUSINESS PERFORMANCE
SIGNIFICANCE OF BUSINESS INTELLIGENCE APPLICATIONS FOR BETTER DECISION MAKING & BUSINESS PERFORMANCE Dr. Nitin P. Mankar Professor (Director), Jayawantrao Sawant Institute of Management & Research (JSIMR).
Common Situations. Departments choosing best in class solutions for their specific needs. Lack of coordinated BI strategy across the enterprise
Common Situations Lack of coordinated BI strategy across the enterprise Departments choosing best in class solutions for their specific needs Acquisitions of companies using different BI tools 2 3-5 BI
Armanino McKenna LLP Welcomes You To Today s Webinar:
Armanino McKenna LLP Welcomes You To Today s Webinar: Business Intelligence Are You Data Rich & Information Poor? The presentation will begin in a few moments About the Presenter(s) John Horner, Director
Integrating SAP and non-sap data for comprehensive Business Intelligence
WHITE PAPER Integrating SAP and non-sap data for comprehensive Business Intelligence www.barc.de/en Business Application Research Center 2 Integrating SAP and non-sap data Authors Timm Grosser Senior Analyst
Comparative Analysis of the Main Business Intelligence Solutions
148 Informatica Economică vol. 17, no. 2/2013 Comparative Analysis of the Main Business Intelligence Solutions Alexandra RUSANEANU Faculty of Cybernetics, Statistics and Economic Informatics Bucharest
"The performance driven Enterprise" Emerging trends in Enterprise BI Platforms
1 Month, Day, Year Venue City "The performance driven Enterprise" Emerging trends in Enterprise BI Platforms Kostiantyn Stupak Oracle BI representative in Ukraine 2 The Race to Gain Insight 2014? 50% 2009
BUSINESS INTELLIGENCE. Keywords: business intelligence, architecture, concepts, dashboards, ETL, data mining
BUSINESS INTELLIGENCE Bogdan Mohor Dumitrita 1 Abstract A Business Intelligence (BI)-driven approach can be very effective in implementing business transformation programs within an enterprise framework.
Introduction to Oracle Business Intelligence Standard Edition One. Mike Donohue Senior Manager, Product Management Oracle Business Intelligence
Introduction to Oracle Business Intelligence Standard Edition One Mike Donohue Senior Manager, Product Management Oracle Business Intelligence The following is intended to outline our general product direction.
An Enterprise Framework for Business Intelligence
An Enterprise Framework for Business Intelligence Colin White BI Research May 2009 Sponsored by Oracle Corporation TABLE OF CONTENTS AN ENTERPRISE FRAMEWORK FOR BUSINESS INTELLIGENCE 1 THE BI PROCESSING
DATA MINING AND WAREHOUSING CONCEPTS
CHAPTER 1 DATA MINING AND WAREHOUSING CONCEPTS 1.1 INTRODUCTION The past couple of decades have seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation
Vendor briefing Business Intelligence and Analytics Platforms Gartner 15 capabilities
Vendor briefing Business Intelligence and Analytics Platforms Gartner 15 capabilities April, 2013 gaddsoftware.com Table of content 1. Introduction... 3 2. Vendor briefings questions and answers... 3 2.1.
Oracle BI Standard Edition One The Right BI Foundation for the Emerging Enterprise
Oracle BI Standard Edition One The Right BI Foundation for the Emerging Enterprise Business Intelligence is the #1 Priority the most important technology in 2007 is business intelligence
Understanding the Value of In-Memory in the IT Landscape
February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
Business Intelligence Discover a wider perspective for your business
Business Intelligence Discover a wider perspective for your business The tasks facing Business Intelligence The growth of information in recent years has reached an unprecedented level. Companies are intensely
BI Market Dynamics and Future Directions
Inaugural Keynote Address Business Intelligence Conference Nov 19, 2011, New Delhi BI Market Dynamics and Future Directions Shashikant Brahmankar Head Business Intelligence & Analytics, HCL Content Evolution
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania ruxandra_stefania.petre@yahoo.com Over
Oracle Business Intelligence 11g Business Dashboard Management
Oracle Business Intelligence 11g Business Dashboard Management Thomas Oestreich Chief EPM STrategist Tool Proliferation is Inefficient and Costly Disconnected Systems; Competing Analytic
ORACLE BUSINESS INTELLIGENCE SUITE ENTERPRISE EDITION PLUS
ORACLE BUSINESS INTELLIGENCE SUITE ENTERPRISE EDITION PLUS PRODUCT FACTS & FEATURES KEY FEATURES Comprehensive, best-of-breed capabilities 100 percent thin client interface Intelligence across multiple
QlikView Business Discovery Platform. Algol Consulting Srl
QlikView Business Discovery Platform Algol Consulting Srl Business Discovery Applications Application vs. Platform Application Designed to help people perform an activity Platform Provides infrastructure
CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University
CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University Given today s business environment, at times a corporate executive
Safe Harbor Statement
Safe Harbor Statement "Safe Harbor" Statement: Statements in this presentation relating to Oracle's future plans, expectations, beliefs, intentions and prospects are "forward-looking statements" and are
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Wienand Omta Fabiano Dalpiaz 1 drs. ing. Wienand Omta Learning Objectives Describe how the problems of managing data resources
Microsoft Business Intelligence solution. What makes Microsoft BI difference
Business Intelligence today Microsoft Business Intelligence solution What makes Microsoft BI difference Case study and Demo Gartner BI Platform Software Revenue (in $Billions) CIO Priorities: Data Analysis
Enterprise Solutions. Data Warehouse & Business Intelligence Chapter-8
Enterprise Solutions Data Warehouse & Business Intelligence Chapter-8 Learning Objectives Concepts of Data Warehouse Business Intelligence, Analytics & Big Data Tools for DWH & BI Concepts of Data Warehouse
Powerful analytics. and enterprise security. in a single platform. microstrategy.com 1
Powerful analytics and enterprise security in a single platform microstrategy.com 1 Make faster, better business decisions with easy, powerful, and secure tools to explore data and share insights. Enterprise-grade
www.sryas.com Analance Data Integration Technical Whitepaper
Analance Data Integration Technical Whitepaper Executive Summary Business Intelligence is a thriving discipline in the marvelous era of computing in which we live. It s the process of analyzing and exploring
WELCOME TO TECH IMMERSION
WELCOME TO TECH IMMERSION Track: Performance Point Services 2010 Presenter: Kathrine Lord Agenda o Microsoft Business Intelligence Offering o Overview of SharePoint Services o Dashboards, Scorecards, and
Enterprise Reporting Solution
Background Current Reporting Challenges: Difficulty extracting various levels of data from AgLearn Limited ability to translate data into presentable formats Complex reporting requires the technical staff
A Knowledge Management Framework Using Business Intelligence Solutions
www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For
Tableau Visual Intelligence Platform Rapid Fire Analytics for Everyone Everywhere
Tableau Visual Intelligence Platform Rapid Fire Analytics for Everyone Everywhere Agenda 1. Introductions & Objectives 2. Tableau Overview 3. Tableau Products 4. Tableau Architecture 5. Why Tableau? 6.
MicroStrategy Intelligence MICROSTRATEGY ANALYTICS PLATFORM
MicroStrategy Intelligence MICROSTRATEGY ANALYTICS PLATFORM The World s Most Comprehensive Business Analytics Platform Christian Langmayr Director Marketing DACH 21.03.2013 About MicroStrategy Comprehensive
ORACLE BUSINESS INTELLIGENCE SUITE ENTERPRISE EDITION PLUS
Oracle Fusion editions of Oracle's Hyperion performance management products are currently available only on Microsoft Windows server platforms. The following is intended to outline our general product
Chapter 6 8/12/2015. Foundations of Business Intelligence: Databases and Information Management. Problem:
Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Chapter 6 Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:
W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract
W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the
Business Analytics and Data Visualization. Decision Support Systems Chattrakul Sombattheera
Business Analytics and Data Visualization Decision Support Systems Chattrakul Sombattheera Agenda Business Analytics (BA): Overview Online Analytical Processing (OLAP) Reports and Queries Multidimensionality
Hexaware E-book on Predictive Analytics
Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
Integrate and Deliver Trusted Data and Enable Deep Insights
SAP Technical Brief SAP s for Enterprise Information Management SAP Data Services Objectives Integrate and Deliver Trusted Data and Enable Deep Insights Provide a wide-ranging view of enterprise information
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
Data Search. Searching and Finding information in Unstructured and Structured Data Sources
1 Data Search Searching and Finding information in Unstructured and Structured Data Sources Erik Fransen Senior Business Consultant 11.00-12.00 P.M. November, 3 IRM UK, DW/BI 2009, London Centennium BI
BI Platforms User Survey, 2011: Customers Rate Their BI Platform Vendors
BI Platforms User Survey, 2011: Customers Rate Their BI Platform Vendors Gartner RAS Core Research Note G00211769, Rita L. Sallam, 4 April 2011, RA1 07132011 Gartner recently surveyed business intelligence
ORACLE HYPERION PLANNING
ORACLE HYPERION PLANNING ENTERPRISE WIDE PLANNING, BUDGETING, AND FORECASTING KEY FEATURES Hybrid data model facilitates planning, analysis and commentary Flexible workflow capabilities Reliability with
A Comprehensive Review of Self-Service Data Visualization in MicroStrategy. Vijay Anand January 28, 2014
A Comprehensive Review of Self-Service Data Visualization in MicroStrategy Vijay Anand January 28, 2014 Speaker Bio Vijay Anand Product Manager Vijay Anand is a Product Manager for Self-Service and High
Oracle Business Intelligence EE. Prab h akar A lu ri
Oracle Business Intelligence EE Prab h akar A lu ri Agenda 1.Overview 2.Components 3.Oracle Business Intelligence Server 4.Oracle Business Intelligence Dashboards 5.Oracle Business Intelligence Answers
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
Management Consulting Systems Integration Managed Services WHITE PAPER DATA DISCOVERY VS ENTERPRISE BUSINESS INTELLIGENCE
Management Consulting Systems Integration Managed Services WHITE PAPER DATA DISCOVERY VS ENTERPRISE BUSINESS INTELLIGENCE INTRODUCTION Over the past several years a new category of Business Intelligence
Reporting and Business Intelligence Tools. Prasad Veeramachaneni DBMS Consulting 10 October 2010 Tutorial Session Session T09
Reporting and Business Intelligence Tools Prasad Veeramachaneni DBMS Consulting 10 October 2010 Tutorial Session Session T09 Acknowledgements Many thanks to the OHSUG for this opportunity to present to
VisionWaves : Delivering next generation BI by combining BI and PM in an Intelligent Performance Management Framework
VisionWaves : Delivering next generation BI by combining BI and PM in an Intelligent Performance Management Framework VisionWaves Bergweg 173 3707 AC Zeist T 030 6981010 F 030 6914967 2010 VisionWaves
Big Data Analytics with IBM Cognos BI Dynamic Query IBM Redbooks Solution Guide
Big Data Analytics with IBM Cognos BI Dynamic Query IBM Redbooks Solution Guide IBM Cognos Business Intelligence (BI) helps you make better and smarter business decisions faster. Advanced visualization
www.ducenit.com Analance Data Integration Technical Whitepaper
Analance Data Integration Technical Whitepaper Executive Summary Business Intelligence is a thriving discipline in the marvelous era of computing in which we live. It s the process of analyzing and exploring
BI Platforms User Survey, 2011: Customers Rate their BI Platform Functionality
Research Publication Date: 31 March 2011 ID Number: G00211770 BI Platforms User Survey, 2011: Customers Rate their BI Platform Functionality Rita L. Sallam This research details business intelligence (BI)
MicroStrategy Course Catalog
MicroStrategy Course Catalog 1 microstrategy.com/education 3 MicroStrategy course matrix 4 MicroStrategy 9 8 MicroStrategy 10 table of contents MicroStrategy course matrix MICROSTRATEGY 9 MICROSTRATEGY
Turnkey Hardware, Software and Cash Flow / Operational Analytics Framework
Turnkey Hardware, Software and Cash Flow / Operational Analytics Framework With relevant, up to date cash flow and operations optimization reporting at your fingertips, you re positioned to take advantage
Enterprise Resource Planning Analysis of Business Intelligence & Emergence of Mining Objects
Enterprise Resource Planning Analysis of Business Intelligence & Emergence of Mining Objects Abstract: Build a model to investigate system and discovering relations that connect variables in a database
DECISION SUPPORT SYSTEMS OR BUSINESS INTELLIGENCE. WHICH IS THE BEST DECISION MAKER?
DECISION SUPPORT SYSTEMS OR BUSINESS INTELLIGENCE. WHICH IS THE BEST DECISION MAKER? [1] Sachin Kashyap Research Scholar Singhania University Rajasthan (India) [2] Dr. Pardeep Goel, Asso. Professor Dean
OLAP (Online Analytical Processing) G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT
OLAP (Online Analytical Processing) G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT OVERVIEW INTRODUCTION OLAP CUBE HISTORY OF OLAP OLAP OPERATIONS DATAWAREHOUSE DATAWAREHOUSE ARCHITECHTURE DIFFERENCE
SAP BusinessObjects SOLUTIONS FOR ORACLE ENVIRONMENTS
SAP BusinessObjects SOLUTIONS FOR ORACLE ENVIRONMENTS BUSINESS INTELLIGENCE FOR ORACLE APPLICATIONS AND TECHNOLOGY SAP Solution Brief SAP BusinessObjects Business Intelligence Solutions 1 SAP BUSINESSOBJECTS
Oracle Hyperion Planning
Oracle Hyperion Planning Oracle Hyperion Planning is an agile planning solution that supports enterprise wide planning, budgeting, and forecasting using desktop, mobile and Microsoft Office interfaces.
RUN BETTER FOR COMPETITIVE ADVANTAGE. Timo Elliott
RUN BETTER FOR COMPETITIVE ADVANTAGE Timo Elliott HOW DO YOU BUILD COMPETITIVE ADVANTAGE? 1 Customer Intimacy 2 Product Leadership 3 Category Renewal 4 Operational Excellence 2011 SAP AG. All rights reserved.
Adobe Insight, powered by Omniture
Adobe Insight, powered by Omniture Accelerating government intelligence to the speed of thought 1 Challenges that analysts face 2 Analysis tools and functionality 3 Adobe Insight 4 Summary Never before
CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved
CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information
Business Intelligence / Big Data Consulting Service
Business Intelligence / Big Data Consulting Service DATASHEET Business Problem Enterprises and IT businesses have been accumulating an enormous amount of data for years (according to IDC data is growing
Data warehouse and Business Intelligence Collateral
Data warehouse and Business Intelligence Collateral Page 1 of 12 DATA WAREHOUSE AND BUSINESS INTELLIGENCE COLLATERAL Brains for the corporate brawn: In the current scenario of the business world, the competition
1 2 The standard narration text is : After completing this lesson, you will be able to: < > SAP Visual Intelligence is our latest innovation
III JORNADAS DE DATA MINING
III JORNADAS DE DATA MINING EN EL MARCO DE LA MAESTRÍA EN DATA MINING DE LA UNIVERSIDAD AUSTRAL PRESENTACIÓN TECNOLÓGICA IBM Alan Schcolnik, Cognos Technical Sales Team Leader, IBM Software Group. IAE
Oracle Data Integrator 12c (ODI12c) - Powering Big Data and Real-Time Business Analytics. An Oracle White Paper October 2013
An Oracle White Paper October 2013 Oracle Data Integrator 12c (ODI12c) - Powering Big Data and Real-Time Business Analytics Introduction: The value of analytics is so widely recognized today that all mid
Business Intelligence Solutions for Gaming and Hospitality
Business Intelligence Solutions for Gaming and Hospitality Prepared by: Mario Perkins Qualex Consulting Services, Inc. Suzanne Fiero SAS Objective Summary 2 Objective Summary The rise in popularity and
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES MUHAMMAD KHALEEL (0912125) SZABIST KARACHI CAMPUS Abstract. Data warehouse and online analytical processing (OLAP) both are core component for decision
Business Intelligence for Excel
Business Intelligence for Excel White Paper Business Intelligence Technologies, Inc. Copyright 2002 All Rights Reserved Business Intelligence for Excel This white paper concerns business intelligence for
Innovation. Simplifying BI. On-Demand. Mobility. Quality. Innovative
Innovation Simplifying BI On-Demand Mobility Quality Innovative BUSINESS INTELLIGENCE FACTORY Advantages of using our technologies and services: Huge cost saving for BI application development. Any small
Using Tableau Software with Hortonworks Data Platform
Using Tableau Software with Hortonworks Data Platform September 2013 2013 Hortonworks Inc. http:// Modern businesses need to manage vast amounts of data, and in many cases they have accumulated this data
Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance.
Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analytics
Business Intelligence Systems
12 Business Intelligence Systems Business Intelligence Systems Bogdan NEDELCU University of Economic Studies, Bucharest, Romania bogdannedelcu@hotmail.com The aim of this article is to show the importance
Enabling Business Transformation with a Modern Approach to Data Management
SAP Overview Brochure SAP Technology Enabling Business Transformation with a Modern Approach to Data Management Table of Contents 4 Reenvisioning the Data Management Landscape Deliver Real-Time Insight
SAP and Hortonworks Reference Architecture
SAP and Hortonworks Reference Architecture Hortonworks. We Do Hadoop. June Page 1 2014 Hortonworks Inc. 2011 2014. All Rights Reserved A Modern Data Architecture With SAP DATA SYSTEMS APPLICATIO NS Statistical
Design of Electricity & Energy Review Dashboard Using Business Intelligence and Data Warehouse
Design of Electricity & Energy Review Dashboard Using Business Intelligence and Data Warehouse Atharva Girish Puranik, Abhijit Gohokar, Ravi Batheja, Nirman Rathod, Ojasvini Bali Abstract The advances
Turning Big Data into Big Insights
mwd a d v i s o r s Turning Big Data into Big Insights Helena Schwenk A special report prepared for Actuate May 2013 This report is the fourth in a series and focuses principally on explaining what s needed
MDM and Data Warehousing Complement Each Other
Master Management MDM and Warehousing Complement Each Other Greater business value from both 2011 IBM Corporation Executive Summary Master Management (MDM) and Warehousing (DW) complement each other There
MicroStrategy Cloud Reduces the Barriers to Enterprise BI...
MicroStrategy Cloud Reduces the Barriers to Enterprise BI... MicroStrategy Cloud reduces the traditional barriers that organizations face when implementing enterprise business intelligence solutions. MicroStrategy
SAP HANA FAQ. A dozen answers to the top questions IT pros typically have about SAP HANA
? SAP HANA FAQ A dozen answers to the top questions IT pros typically have about SAP HANA??? Overview If there s one thing that CEOs, CFOs, CMOs and CIOs agree on, it s the importance of collecting data.
Extending Hyperion BI with the Oracle BI Server
Extending Hyperion BI with the Oracle BI Server Mark Ostroff Sr. BI Solutions Consultant Agenda Hyperion BI versus Hyperion BI with OBI Server Benefits of using Hyperion BI with the
Enhancing Sales and Operations Planning with Forecasting Analytics and Business Intelligence WHITE PAPER
Enhancing Sales and Operations Planning with Forecasting Analytics and Business Intelligence WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Analytics.... 1 Forecast Cycle Efficiencies...
Harnessing the power of advanced analytics with IBM Netezza
IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced
Business Intelligence In SAP Environments
Business Intelligence In SAP Environments BARC Business Application Research Center 1 OUTLINE 1 Executive Summary... 3 2 Current developments with SAP customers... 3 2.1 SAP BI program evolution... 3 2.2
Adopting the DMBOK. Mike Beauchamp Member of the TELUS team Enterprise Data World 16 March 2010
Adopting the DMBOK Mike Beauchamp Member of the TELUS team Enterprise Data World 16 March 2010 Agenda The Birth of a DMO at TELUS TELUS DMO Functions DMO Guidance DMBOK functions and TELUS Priorities Adoption
Business Intelligence (BI) Implementation for a Leading Insurance Provider
Business Intelligence (BI) Implementation for a Leading Insurance Provider The client, a leading insurance provider serving both corporate and individual accounts across five countries, sought a partner
Finding the signals in the noise. Niklas Packendorff @packendorff Solution Expert Analytics & Data Platform
Finding the signals in the noise Niklas Packendorff @packendorff Solution Expert Analytics & Data Platform Legal disclaimer The information in this presentation is confidential and proprietary to SAP and
Maximizing Your Storage Investment with the EMC Storage Inventory Dashboard
Maximizing Your Storage Investment with the EMC Storage Inventory Dashboard Glenn Thomas Senior Consultant t Copyright 2008 EMC Corporation. All rights reserved. Today s Agenda Complexity Of Today s Storage
Running Analytics on SAP HANA and BW with MicroStrategy
Running Analytics on SAP HANA and BW with MicroStrategy Presented by: Trishla Maru Agenda Overview Relationship and Certification with SAP Integration to SAP BW Overview with SAP BW Import process and
ANALYTICS BUILT FOR INTERNET OF THINGS
ANALYTICS BUILT FOR INTERNET OF THINGS Big Data Reporting is Out, Actionable Insights are In In recent years, it has become clear that data in itself has little relevance, it is the analysis of it that
Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc.
Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Introduction Abstract warehousing has been around for over a decade. Therefore, when you read the articles
SAP BusinessObjects BI Clients
SAP BusinessObjects BI Clients April 2015 Customer Use this title slide only with an image BI Use Cases High Level View Agility Data Discovery Analyze and visualize data from multiple sources Data analysis
Next Generation Business Performance Management Solution
Next Generation Business Performance Management Solution Why Existing Business Intelligence (BI) Products are Inadequate Changing Business Environment In the face of increased competition, complex customer
Online Courses. Version 9 Comprehensive Series. What's New Series
Version 9 Comprehensive Series MicroStrategy Distribution Services Online Key Features Distribution Services for End Users Administering Subscriptions in Web Configuring Distribution Services Monitoring
Breadboard BI. Unlocking ERP Data Using Open Source Tools By Christopher Lavigne
Breadboard BI Unlocking ERP Data Using Open Source Tools By Christopher Lavigne Introduction Organizations have made enormous investments in ERP applications like JD Edwards, PeopleSoft and SAP. These