# FACTORING LARGE SEMI-PRIMES

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 FACTORING LARGE SEMI-PRIMES It is well known that it is difficult to factor a large semi-prime number N into its two prime components. We look more into this problem here and show ways to factor such numbers making use of the Goldbach Conjecture. Our starting point is the formula- = where p and q are the two prime numbers whose product equals N. To aid in our analysis we apply the Goldbach Conjecture that the sum of two primes will always be equal to an even number. That is- + =2 This means that n is the average integer value of p and q. Next eliminating q from these two equations, yields the quadratic form- 2 + =0 Solving this algebraic expression yields the solutions- = = + provided that p<sqrt(n)<q. One can also rewrite things as the Diophantine Equation = with m=(q-p)/2 and n and m both integers. Fermat first used these integers in his factoring approach to semi-primes. One can also think of n, m and N as parts of a Pythagorean triple represented by the following right triangle-

2 Comparing this triangle with the solution rectangle N=pq=(n-m)(n+m) yields the geometric figure- The ratio of the grey area to the red area is 2sqrt(N)/sqrt(n 2 -N). The solution we are looking for is shown by the blue dot on the following graph-

3 One can now attempt to evaluate the expression for p for a specified N by treating the average value n as a running variable starting with the integer nearest to the sqrt(n). Thus, if we are given N=3763 where sqrt(n)= , we start our evaluation with n=62 followed by n=63 etc. In this case the answer will already follow from the first operation, namely,- = =62 9=53 The value of q follows from 2n-p=N/p=71. For most Ns, especially when they become larger, the analysis will typically require a much larger group of ns before the radical sqrt(n 2 -N) is found to have an integer value. In such cases one can use several approaches. One is to simply carry out an evaluation of the p expression for an n value near the sqrt(n) and just keep operating with ever larger ns stepped off in unit increments. Such a procedure can be nicely implemented on a computer. Take the case of N=5141 where sqrt(n)= The one line program we run for this case using MAPLE is- for n from 72 to 80 do {n, evalf(n-sqrt(n^2-n))}od; At n=75 it spits out the integer answer- [n,m]=[75,22]

4 It thus took just four simple operations to determine the value p=n-m=53 and q=n+m=97. This should be compared with the 16 divisions required by the brute force approach of dividing N in turn by the primes 3,5, 7, 11, through 16. A picture of the hyperbola for 5141=n 2 -m 2 and the integer solution [75,22] follows- It should be pointed out that in most cases simple evaluations as those shown above will no longer be possible, in particular for large Ns such as encountered in cryptography. Under those cases the value of n is likely to be far removed from sqrt(n). This means that if a stepping procedure is to be used then one needs to start with some larger values of n. How can such values be determined? One possible way is to note that ε=n/n 2 =4pq/(p+q) 2 is often a small parameter suggesting a series expansion of the above hyperbolic function n 2 -m 2 =N in powers of ε. Carrying out such an expansion we find- = ! +(1 3) 2 + (1 3 5) 3! 2 + 4! Thus, if ε is small, we have the approximation- 1 2

5 Although in general one won t know the value of n beforehand, one could make an assumption that n=k sqrt(n), where k is a constant with a value of one or greater. Let us demonstrate such an approach by looking at the famous Fermat Number- N= = Fermat thought it to be prime but Euler proved that it wasn t. Indeed, Euler showed that this number is composite with p=641 and q= Here n=( )/2= so that N/n 2 = is indeed small. We can thus estimate that an integer value for m equals approximately m n[1-(n/2n 2 )]. At n= we find m= which is very close to the exact value of m= Searching for an integer solution near n= with the program- for n from to do{n, evalf(n-sqrt(n^ ),10)}od; produces the following- n p=n-sqrt(n^2-n) integer solution From this result we also have that q=2n-p= = The value of k=n/sqrtn to use in this case is about 51 meaning we are a long way from n sqrt(n) for this semi-prime. If we had not known the factors p and q beforehand, a long search would have been required trying ns for many different values of the constant k. That is, the procedure is a little like playing the boardgame battleship where one aims for a point in the range sqrt(n)<n<(n+1)/2. When N has hundreds to several thousand digit length, the search using a large number of different ns becomes essentially impractical even with the use of the fastest existing electronic computers and application of improved factorization methods such as general number field sieving(gnfs) or elliptic curve factorization. I am still waiting for someone to break the following 1084 digit public key- N=

6 which I constructed about a year ago using a new prime number generating formula. It took me about an hour to generate the primes p and q and then to construct N. It s time for NSA (or anyone else capable of factoring large semi-primes) to get busy on trying to crack this number. My bet is that they won t be able to, at least not anytime soon. Finally I leave you with three semi-primes N= , N= , and N= all of which are very easy to factor. For the first one the analysis starts with n=10008>sqrt( )= One finds at once via a single evaluation that p=10007 and from this follows q= It is an example of having the values of p and q too close to each other for key security. In the second example a single division of by the lowest odd prime p=3 yields a q= It is an example of having the value of p too small. The third number is a number often used to show how Lenstra Elliptic Curve Factorization works (see Wikepedia). For this example it is much faster and easier to simply use the present running n approach. Indeed we have here that sqrt(n)= so that we start the evaluation of n-sqrt(n^2-n) using n=676. Already at n=680 we find the integer factor p=599 so that q=761. Good secure public keys require N in the several hundred digit range while at the same time having the ratio q/p neither near one or approaching very large values. Already an eleven digit semiprime such as N= requires 2203 operations using the n variation (also known in the literature as Fermat factorization) approach starting with n= sqrt(n). The first integer solution pair found is [n,m]=[274595,34716] to yield the factor [p,q]=[239879,309311]. See if you can factor the 19 digit number- into its prime factors - N= p= and q= using the n variation approach for a good choice for k. You can go to-

7 to find a calculator which solves n 2 -m 2 =N for smaller semi-primes N out to about ten digit length. It is just necessary to set n=x, m=y, a=1, b=0, c=-1, d=0, e=0 and f=-n in the generalized Diophantine equation ax 2 +bxy+cy 2 +dx+ey+f=0. The program is based on the elliptic curve factorization method. April 2012

### An introduction to number theory and Diophantine equations

An introduction to number theory and Diophantine equations Lillian Pierce April 20, 2010 Lattice points and circles What is the area of a circle of radius r? You may have just thought without hesitation

### SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Pythagorean Triples Pythagorean triple similar primitive

Pythagorean Triples One of the most far-reaching problems to appear in Diophantus Arithmetica was his Problem II-8: To divide a given square into two squares. Namely, find integers x, y, z, so that x 2

### Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

### MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2016 47 4. Diophantine Equations A Diophantine Equation is simply an equation in one or more variables for which integer (or sometimes rational) solutions

### Objectives. By the time the student is finished with this section of the workbook, he/she should be able

QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Outline. Cryptography. Bret Benesh. Math 331

Outline 1 College of St. Benedict/St. John s University Department of Mathematics Math 331 2 3 The internet is a lawless place, and people have access to all sorts of information. What is keeping people

### MORE ON PRIME NUMBERS

MORE O PRIME UMBERS It is known that all prime numbers, with the exception of, must take the form of an odd number n+1, n0,1,,3, However it is only for special values of n that is a prime. A convenient

### 7. The solutions of a quadratic equation are called roots. SOLUTION: The solutions of a quadratic equation are called roots. The statement is true.

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The axis of symmetry of a quadratic function can be found by using the equation x =. The

### EULER S THEOREM. 1. Introduction Fermat s little theorem is an important property of integers to a prime modulus. a p 1 1 mod p.

EULER S THEOREM KEITH CONRAD. Introduction Fermat s little theorem is an important property of integers to a prime modulus. Theorem. (Fermat). For prime p and any a Z such that a 0 mod p, a p mod p. If

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### Solutions to Practice Problems

Solutions to Practice Problems March 205. Given n = pq and φ(n = (p (q, we find p and q as the roots of the quadratic equation (x p(x q = x 2 (n φ(n + x + n = 0. The roots are p, q = 2[ n φ(n+ ± (n φ(n+2

### THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

### Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2

Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the

### Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### The Equation x 2 + y 2 = z 2

The Equation x 2 + y 2 = z 2 The equation x 2 + y 2 = z 2 is associated with the Pythagorean theorem: In a right triangle the sum of the squares on the sides is equal to the square on the hypotenuse. We

### Math 002 Intermediate Algebra

Math 002 Intermediate Algebra Student Notes & Assignments Unit 4 Rational Exponents, Radicals, Complex Numbers and Equation Solving Unit 5 Homework Topic Due Date 7.1 BOOK pg. 491: 62, 64, 66, 72, 78,

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### 2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2

00 Problem If a and b are nonzero real numbers such that a b, compute the value of the expression ( ) ( b a + a a + b b b a + b a ) ( + ) a b b a + b a +. b a a b Answer: 8. Solution: Let s simplify the

### CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

### Solving Systems of Equations Algebraically Examples

Solving Systems of Equations Algebraically Examples 1. Graphing a system of equations is a good way to determine their solution if the intersection is an integer. However, if the solution is not an integer,

### ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

### 4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn

I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### 8.7 Mathematical Induction

8.7. MATHEMATICAL INDUCTION 8-135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### In a triangle with a right angle, there are 2 legs and the hypotenuse of a triangle.

PROBLEM STATEMENT In a triangle with a right angle, there are legs and the hypotenuse of a triangle. The hypotenuse of a triangle is the side of a right triangle that is opposite the 90 angle. The legs

### Using the ac Method to Factor

4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

### Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

### Course Title: Honors Algebra Course Level: Honors Textbook: Algebra 1 Publisher: McDougall Littell

Course Title: Honors Algebra Course Level: Honors Textbook: Algebra Publisher: McDougall Littell The following is a list of key topics studied in Honors Algebra. Identify and use the properties of operations

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

[Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

### Geometry: Classifying, Identifying, and Constructing Triangles

Geometry: Classifying, Identifying, and Constructing Triangles Lesson Objectives Teacher's Notes Lesson Notes 1) Identify acute, right, and obtuse triangles. 2) Identify scalene, isosceles, equilateral

### THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

### PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers

### Math Content

2012-2013 Math Content PATHWAY TO ALGEBRA I Unit Lesson Section Number and Operations in Base Ten Place Value with Whole Numbers Place Value and Rounding Addition and Subtraction Concepts Regrouping Concepts

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Number Theory Homework.

Number Theory Homework. 1. Pythagorean triples and rational points on quadratics and cubics. 1.1. Pythagorean triples. Recall the Pythagorean theorem which is that in a right triangle with legs of length

### 10 k + pm pm. 10 n p q = 2n 5 n p 2 a 5 b q = p

Week 7 Summary Lecture 13 Suppose that p and q are integers with gcd(p, q) = 1 (so that the fraction p/q is in its lowest terms) and 0 < p < q (so that 0 < p/q < 1), and suppose that q is not divisible

### n ancient Greece mathematicians used geometric terms to explain number relationships such as prime

Quest One Factors and Primes in Dimensions of Rectangles I n ancient Greece mathematicians used geometric terms to explain number relationships such as prime numbers. While there are an infinite number

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Continued fractions and good approximations.

Continued fractions and good approximations We will study how to find good approximations for important real life constants A good approximation must be both accurate and easy to use For instance, our

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### Algebra 1-2. A. Identify and translate variables and expressions.

St. Mary's College High School Algebra 1-2 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used

### The application of prime numbers to RSA encryption

The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered

### Introduction to Diophantine Equations

Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field

5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

### Notes for Recitation 5

6.042/18.062J Mathematics for Computer Science September 24, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 5 1 Exponentiation and Modular Arithmetic Recall that RSA encryption and decryption

### vertex, 369 disjoint pairwise, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 466 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

### Mathematical induction. Niloufar Shafiei

Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### Understanding and Applying Quadratic Relationships

Grade: 8 (Algebra & Geometry 1) Duration: 6 Weeks Summary: Students will identify, compute with, and factor polynomial expressions. Students will learn to recognize the special products of polynomials,

### Congruent Number Problem

University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases

### Math 115 Spring 2014 Written Homework 3 Due Wednesday, February 19

Math 11 Spring 01 Written Homework 3 Due Wednesday, February 19 Instructions: Write complete solutions on separate paper (not spiral bound). If multiple pieces of paper are used, they must be stapled with

### Pythagorean Theorem. Inquiry Based Unit Plan

Pythagorean Theorem Inquiry Based Unit Plan By: Renee Carey Grade: 8 Time: 5 days Tools: Geoboards, Calculators, Computers (Geometer s Sketchpad), Overhead projector, Pythagorean squares and triangle manipulatives,

### pp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64

Semester 1 Text: Chapter 1: Tools of Algebra Lesson 1-1: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 1-2: Algebraic Expressions

### Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

### PowerScore Test Preparation (800) 545-1750

Question 1 Test 1, Second QR Section (version 2) Two triangles QA: x QB: y Geometry: Triangles Answer: Quantity A is greater 1. The astute student might recognize the 0:60:90 and 45:45:90 triangle right

### Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

### Introduction. Appendix D Mathematical Induction D1

Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

### Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### 1. What is the smallest four-digit positive integer which has four different digits? A 1032 B 2012 C 1021 D 1234 E 1023

UK JUNIOR MATHEMATICAL CHALLENGE April 6th 0 SOLUTIONS These solutions augment the printed solutions that we send to schools. For convenience, the solutions sent to schools are confined to two sides of

### Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Number Theory: A Mathemythical Approach. Student Resources. Printed Version

Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................

### TYPES Workshop, 12-13 june 2006 p. 1/22. The Elliptic Curve Factorization method

Ä ÙÖ ÒØ ÓÙ Ð ÙÖ ÒØ ÓÑ Ø ºÒ Ø TYPES Workshop, 12-13 june 2006 p. 1/22 ÄÇÊÁ ÍÒ Ú Ö Ø À ÒÖ ÈÓ Ò Ö Æ ÒÝÁ. The Elliptic Curve Factorization method Outline 1. Introduction 2. Factorization method principle 3.

### Math Common Core Sampler Test

High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

### p 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)

.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other

### Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture. Brad Groff

Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture Brad Groff Contents 1 Congruent Numbers... 1.1 Basic Facts............................... and Elliptic Curves.1

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

### Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Translate between the geometric

### MATH 105: PRACTICE PROBLEMS FOR SERIES: SPRING Problems

MATH 05: PRACTICE PROBLEMS FOR SERIES: SPRING 20 INSTRUCTOR: STEVEN MILLER (SJM@WILLIAMS.EDU).. Sequences and Series.. Problems Question : Let a n =. Does the series +n+n 2 n= a n converge or diverge?

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### PYTHAGOREAN TRIPLES PETE L. CLARK

PYTHAGOREAN TRIPLES PETE L. CLARK 1. Parameterization of Pythagorean Triples 1.1. Introduction to Pythagorean triples. By a Pythagorean triple we mean an ordered triple (x, y, z) Z 3 such that x + y =

### A Non-Existence Property of Pythagorean Triangles with a 3-D Application

A Non-Existence Property of Pythagorean Triangles with a 3-D Application Konstantine Zelator Department of Mathematics and Computer Science Rhode Island College 600 Mount Pleasant Avenue Providence, RI

### ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

### Is this number prime? Berkeley Math Circle Kiran Kedlaya

Is this number prime? Berkeley Math Circle 2002 2003 Kiran Kedlaya Given a positive integer, how do you check whether it is prime (has itself and 1 as its only two positive divisors) or composite (not

### Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

### Collatz Sequence. Fibbonacci Sequence. n is even; Recurrence Relation: a n+1 = a n + a n 1.

Fibonacci Roulette In this game you will be constructing a recurrence relation, that is, a sequence of numbers where you find the next number by looking at the previous numbers in the sequence. Your job

### Polynomials Classwork

Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th -degree polynomial function Def.: A polynomial function of degree n in the vaiable

### Introduction to the Quantitative Reasoning Measure

share Adding and Subtracting Expressions with Radicals Student Outcomes Students use the distributive property to simplify expressions that contain radicals. Lesson Notes In this lesson, students add and

### Maple Mini-Course, Summer 2001

Maple Mini-Course, Summer 2001 Jim Carlson June 10, 2001 Contents 1 Introduction 2 2 Loops 4 3 Functions 8 4 Primes 11 5 Diophantine Equations I 14 6 Diophantine Equations II 18 1 1 Introduction Maple

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### Pythagorean Triples and Fermat s Last Theorem

Pythagorean Triples and Fermat s Last Theorem A. DeCelles Notes for talk at the Science Speakers Series at Goshen College Document created: 05/10/011 Last updated: 06/05/011 (graphics added) It is an amazing

### SIXTH GRADE MATH. Quarter 1

Quarter 1 SIXTH GRADE MATH Numeration - Place value - Comparing and ordering whole numbers - Place value of exponents - place value of decimals - multiplication and division by 10, 100, 1,000 - comparing

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.