Signal analysis in astronomy

Size: px
Start display at page:

Download "Signal analysis in astronomy"

Transcription

1 FYSA21 Mathematical Tools in Science Signal analysis in astronomy Lennart Lindegren Department of Astronomy and Theoretical Physics, Lund University 1 Aim of the project This project will illustrate an application of the discrete Fourier transform (DFT), and in particular the relation between the time and frequency domains, by estimating the amplitude spectra of astronomical time series. 2 Intended learning outcomes Having completed this exercise, the student should have acquired the following skills and abilities: To apply the discrete Fourier transform to regular time series in order to estimate their amplitude spectra To understand the relation between the time and frequency domains, for example by identifying corresponding features in the time series and amplitude spectra To understand how sampling effects distort the amplitude spectra (resolution and aliasing) To understand how measurement noise shows up in the time series and amplitude spectra To interpret amplitude spectra in terms of different kinds of signal (periodic, quasi-periodic, multi-periodic, stochastic) and noise components To estimate Q values for periodic and quasi-periodic phenomena and understand their meaning in terms of coherence times To describe and discuss, in concise writing, different time series with respect to the various concepts mentioned above. 1

2 3 Signal, noise, and signal analysis In physics and engineering, a signal usually means a time-varying physical quantity that is used to transmit information from one point to another. Familiar examples are acoustic signals (sound waves), electromagnetic signals (e.g., radio waves and light) and electrical signals (e.g., from a microphone). Unintentional, or unwanted, variations of the same physical quantity make up what is called noise. Signal processing refers to a wide range of techniques for extracting information from a signal. Very often, this involves (among other things) the suppression of noise. In signal analysis we often do not know exactly what to look for, or even whether there is any signal at all, or just noise. Signal analysis uses a number of tools designed to detect specific certain kinds of signals, if they are present. Tools based on the Fourier transform are especially useful for detecting periodic signals. In astronomy, most of what we know about the universe outside the Earths atmosphere comes from studying electromagnetic radiation received from various objects. Depending on their temperatures and other factors, astronomical objects emit electromagnetic radiation at a broad range of frequencies (radio waves, infrared radiation, visible and ultraviolet light, X-ray and γ-ray radiation). Sometimes the radiation is highly time-variable, and signal analysis can help us to learn more about the objects and the physical processes that are causing the variations. 4 Time series A physical signal can usually be thought of as a continuous function of time, x(t), where x stands for the physical quantity such as the intensity of light or pressure of the sound wave at a certain point. The observation or measurement process converts this into a series of discrete values x 0, x 1, x 2,... called a time series. In the simplest case the time series just represents x(t) at discrete points in time: x 0 = x(t 0 ), x 1 = x(t 1 ), etc. The process of converting a continuous function to a sequence of discrete values is called sampling. The time series considered in this exercise are all regular, i.e., successive points in time are separated by a constant time interval t. Thus t k = t 0 + k t and x k = x(t k ) = x(t 0 + k t). t is called the sampling interval. The number of samples per unit time is given by f s = 1/ t which is called the sampling frequency. For example, if the intensity of a star is measured once every minute, we obtain a time series with sampling interval t = 1 min = 60 s, and sampling frequency f s = 1 min 1 = Hz = mhz. In digital sound recording and transmission, the sound wave (or rather the electrical signal from microphone and amplifier) must be sampled several thousand times per second; for example, the sampling frequency used for audio CDs is f s = 44.1 khz. 2

3 Figures 1 3. Schematic illustration of the amplitude spectra for different kinds of signals. Figure 1 (top): a periodic signal with fundamental frequency f 0. Figure 2 (middle): quasi-periodic oscillations (the broad peaks) superposed on stochastic signals. Figure 3 (bottom): stochastic signals (the solid curve shows an almost white spectrum, the dashed curve a pink spectrum). 3

4 5 Spectra for different kinds of variations A very common task in signal analysis is to find and characterize periodic (or not so periodic) variations in the signal. This is usually done by calculating the spectrum of the signal. The spectrum shows the decomposition of the signal into its various frequencies. The amplitude spectrum shows the amplitude of the components versus frequency. In a power spectrum one usually plots a different quantity versus frequency, namely the power spectral density, which is proportional to the square of the amplitude. In this exercise we use amplitude spectra. With reference to Figs. 1 3, we shall distinguish between three basic types of variations in regard to their periodicity: periodic, quasi-periodic, and non-periodic signals. This does not by any means cover all possible kinds of signals, but it is a useful first-order classification of astronomical signals. A periodic signal repeats itself cyclically with a certain period P. Its amplitude spectrum (Fig. 1) consists of a single narrow peak at the fundamental frequency f 0 = 1/P, plus additional peaks at the harmonics (overtones) nf 0, where n > 1 are integers. Only a purely sinusoidal signal has no harmonics. In astronomy, a strictly periodic signal is usually associated with a rotating body, or a body orbiting around another body, in which case f 0 can be identified with the basic rotation or orbital frequency. In some cases there are multiple periods that do not form a harmonic series. A quasi-periodic signal has a peak at a certain frequency, but it is much wider than for a periodic signal (Fig. 2), meaning that the frequency is not very well defined. This is common in physical systems where the oscillations depend on local factors, for example ionized gas (plasma) surrounding a star may oscillate with a frequency that varies with the density of the plasma. A stochastic signal has no recognizable peaks at all, although the amplitude often increases towards lower frequencies (Fig. 3). Such a spectrum is called white (if it is flat) or pink (if it increases towards zero frequency). Noise is nearly always stochastic, but stochastic variations are not necessarily noise. There are many astronomical objects that emit radiation varying in a stochastic manner. Observational noise is often white (e.g., photon noise). In practice one often has a combination of stochastic and periodic or quasi-periodic components, including stochastic noise. It should also be remembered that real, computed spectra do not at all look as smooth and clean as Figs They are always very ragged, due to the fact that the calculated amplitude at each frequency has some uncertainty. Figure 4 shows an example of a real calculated amplitude spectrum for an astronomical X-ray source. A useful concept in connection with periodic and quasi-periodic signals is the Q factor, which is the ratio of the central frequency to the bandwidth: Q = f 0 /B. The bandwidth B is usually defined as the full width of the quasi-periodic peak at half maximum intensity. A periodic signal has a large or very large Q factor; a quasi- 4

5 Figure 4. The computed amplitude spectrum for an X-ray variable. It shows a pink noise component intrinsic to the object (best seen at f < 10 Hz), a flat photon noise component (best seen ay f > 50 Hz), and a quasi-periodic variation with a central frequency around 25 Hz. All other features seen in the spectrum are statistical fluctuations. periodic signal has moderate or small Q factor. The signal in Fig. 4 has Q 5. The Q factor is approximately equal to the number of oscillation periods during which the amplitude and phase of the oscillation remains roughly the same. 6 Resolution, aliasing, etc There are two important properties of the time series that determine how well the spectrum can be determined: the sampling interval t (i.e., the time between successive points) and the total length of the time series. The total length is given by N, the number of samples, or equivalently by the total length in time T = N t. (Note that the time interval from the first to the last sample is (N 1) t.) The total length T of the time series determines the frequency resolution f = 1 T = 1 (1) N t This tells us how close in frequency two signal components can be and still be (just) recognized as two components. The sampling interval determines the sampling frequency f s = 1/ t and the Nyquist frequency f Ny = 1 2 f s = 1 2 t 5 (2)

6 Figure 5. Aliasing: in the calculated amplitude spectrum of a sampled signal it is not possible to know which of the peaks A represents the true oscillation frequency (and similarly for the peaks at B). which is half the sampling frequency. The significance of the Nyquist frequency is shown by the sampling theorem: If a continuous signal does not contain any frequency components above f Ny, then no information is lost by the sampling. Conversely, if the signal does contain components at frequencies f > f Ny, then in the sampled time series it is not possible to distinguish such components from other components with f < f Ny. This phenomenon is called aliasing. In the amplitude spectrum it appears as if the frequency f > f Ny is mirrored in the Nyquist frequency and therefore is seen also at f s f (Fig. 5). The opposite is also true: any real frequency f < f Ny is mirrored at f s f above the Nyquist frequency. As a result, the computed spectrum is always symmetric around f Ny. 7 Calculating spectra using MATLAB Sampling the continuous signal x(t) at t = 0, t, 2 t,..., (N 1) t results in the time series x 0, x 1, x 2,..., x N 1. The amplitude spectrum is given by X k, where X k = 1 N N 1 j=0 x j exp( i2πjk/n) (3) is the discrete Fourier transform calculated for k = 0, 1,..., N 1. The index k can be interpreted as frequency expressed in the number of periods per N points, so that f = k f = k (4) N t In practice Eq. (3) is never used to compute the discrete Fourier transform. Instead, use the Fast Fourier Tranform (FFT), which gives the same result with much less 6

7 computation (especially if N is large). In MATLAB you can use the function fft (Fig. 6), which however differs from Eq. (3) in two respects: 1. Elements of arrays (vectors) in MATLAB are referenced by an index starting at 1, which the indices j och k in Eq. (3) starts at 0. The frequency components in MATLAB have indices 1, 2,..., N, corresponding to k = 0, 1,..., N 1 in our equations. 2. The factor 1/N in Eq. (3) is not included in the transform calculated by MATLAB. (It is instead included in the inverse FFT, ifft.) To calculate the amplitudes according to Eq. (3) you therefore need to apply the factor 1/N to the FFT returned by MATLAB. 8 Data to be used: Astronomical time series Astronomical objects may vary on very different time scales, from fractions of a second to hundreds of years. Some stars vary considerably in intensity; they are called variable stars. But even apparently stable stars such as our Sun show tiny variations in intensity when measured with high accuracy. Some very different examples of astronomical time series can be found on the web page lennart/teaching: sunspot numbers over a few hundred years, the variable star V834 Cen observed in visible light, X-ray radiations for the active nucleus of the galaxy NGC5506, X-ray radiation from the pulsar Her X 1, and solar intensity variations measured with the SOHO satellite. For each object there is a short text file explaining the data. It contains, among other things, information about the number of data points (N) and the sampling interval ( t). 9 Tasks to be performed Examine the time series for the five different objects on the web page indicated above. Calculate their amplitude spectra. For some of the objects several segments of the time series are given. Use any one of them. (The segments are adjacent in time, so that they can be concatenated into a single, long time series. This increases the frequency resolution as discussed in Sect. 5. But it may also be instructive to compute separate amplitude spectra for the different segments and compare them.) For each time series, plot the data values versus time (or plot just a small part of it in order to show the details better). Then plot the amplitude spectrum, or part of it (depending on where the interesting bit is). Make sure that the time axis for the time series and the frequency axis for the spectrum are correctly plotted, using sensible and consistent units. For example, if the time series is shown with a time axis expressed in seconds, then the spectrum should have a frequency axis in Hz. Use convenient units (e.g, seconds, hours, years, and the corresponding frequency units) to avoid very large/small numerical values. 7

8 Figure 6. The MATLAB manual page for fft. Describe and compare the different time series. In particular, classify each series as periodic, quasi-periodic or stochastic, and motivate the choice. For periodic and quasi-periodic series, estimate the Q value and what it means e.g. in terms of how well the variations can be predicted. Discuss if there are several superposed signal components, and which part of the spectrum is likely to be noise. 10 The written report The written report should contain a brief description of the aims of the exercise and how it was done. For each time series, include at least two diagrams showing (part of) the time series and (part of) the amplitude spectrum, with correctly labelled axes and units. In each case, the time series and spectrum should be concisely described and interpreted in terms of the different signal and noise components that can be discerned in the spectrum. The report can be handed in on paper (Astronomihuset, reception desk on 1st floor), or sent by as a PDF file (no other format accepted) to lennart@astro.lu.se. 8

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically. Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

More information

Examples of Uniform EM Plane Waves

Examples of Uniform EM Plane Waves Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling

More information

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Lab 1. The Fourier Transform

Lab 1. The Fourier Transform Lab 1. The Fourier Transform Introduction In the Communication Labs you will be given the opportunity to apply the theory learned in Communication Systems. Since this is your first time to work in the

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

More information

Analog Representations of Sound

Analog Representations of Sound Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone

More information

Various Technics of Liquids and Solids Level Measurements. (Part 3)

Various Technics of Liquids and Solids Level Measurements. (Part 3) (Part 3) In part one of this series of articles, level measurement using a floating system was discusses and the instruments were recommended for each application. In the second part of these articles,

More information

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

More information

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,

More information

Introduction to Digital Audio

Introduction to Digital Audio Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Principle of Thermal Imaging

Principle of Thermal Imaging Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging

More information

Analog and Digital Signals, Time and Frequency Representation of Signals

Analog and Digital Signals, Time and Frequency Representation of Signals 1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19 Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

More information

Auto-Tuning Using Fourier Coefficients

Auto-Tuning Using Fourier Coefficients Auto-Tuning Using Fourier Coefficients Math 56 Tom Whalen May 20, 2013 The Fourier transform is an integral part of signal processing of any kind. To be able to analyze an input signal as a superposition

More information

The Fourier Analysis Tool in Microsoft Excel

The Fourier Analysis Tool in Microsoft Excel The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier

More information

SR2000 FREQUENCY MONITOR

SR2000 FREQUENCY MONITOR SR2000 FREQUENCY MONITOR THE FFT SEARCH FUNCTION IN DETAILS FFT Search is a signal search using FFT (Fast Fourier Transform) technology. The FFT search function first appeared with the SR2000 Frequency

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Matlab GUI for WFB spectral analysis

Matlab GUI for WFB spectral analysis Matlab GUI for WFB spectral analysis Jan Nováček Department of Radio Engineering K13137, CTU FEE Prague Abstract In the case of the sound signals analysis we usually use logarithmic scale on the frequency

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

PHYS 331: Junior Physics Laboratory I Notes on Noise Reduction

PHYS 331: Junior Physics Laboratory I Notes on Noise Reduction PHYS 331: Junior Physics Laboratory I Notes on Noise Reduction When setting out to make a measurement one often finds that the signal, the quantity we want to see, is masked by noise, which is anything

More information

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Lab 1: The Digital Oscilloscope

Lab 1: The Digital Oscilloscope PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

More information

Sound absorption and acoustic surface impedance

Sound absorption and acoustic surface impedance Sound absorption and acoustic surface impedance CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Sound absorption and acoustic surface impedance

More information

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201 Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem

More information

A New Look at an Old Tool the Cumulative Spectral Power of Fast-Fourier Transform Analysis

A New Look at an Old Tool the Cumulative Spectral Power of Fast-Fourier Transform Analysis A New Look at an Old Tool the Cumulative Spectral Power of Fast-Fourier Transform Analysis Sheng-Chiang Lee a and Randall D. Peters Physics Department, Mercer University, Macon, GA 31207 As an old and

More information

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

More information

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative

More information

Spectrum Level and Band Level

Spectrum Level and Band Level Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic

More information

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

More information

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

More information

Rate Equations and Detailed Balance

Rate Equations and Detailed Balance Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal

More information

Optimizing IP3 and ACPR Measurements

Optimizing IP3 and ACPR Measurements Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.

More information

Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note

Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox Application Note Introduction Of all the signal engines in the N7509A, the most complex is the multi-tone engine. This application

More information

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

How to avoid typical pitfalls when measuring Variable Frequency Drives

How to avoid typical pitfalls when measuring Variable Frequency Drives How to avoid typical pitfalls when measuring Variable Frequency Drives Author: Dipl.-Ing. Thomas Jäckle, Head of R&D Increased political and public focus on optimizing resource utilization has been one

More information

Acceleration levels of dropped objects

Acceleration levels of dropped objects Acceleration levels of dropped objects cmyk Acceleration levels of dropped objects Introduction his paper is intended to provide an overview of drop shock testing, which is defined as the acceleration

More information

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

More information

SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS

SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS Dennis H. Shreve IRD Mechanalysis, Inc Columbus, Ohio November 1995 ABSTRACT Effective vibration analysis first begins with acquiring an accurate time-varying

More information

CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC

CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC 1. INTRODUCTION The CBS Records CD-1 Test Disc is a highly accurate signal source specifically designed for those interested in making

More information

Yerkes Summer Institute 2002

Yerkes Summer Institute 2002 Before we begin our investigations into radio waves you should review the following material on your trip up to Yerkes. For some of you this will be a refresher, but others may want to spend more time

More information

Predictive Indicators for Effective Trading Strategies By John Ehlers

Predictive Indicators for Effective Trading Strategies By John Ehlers Predictive Indicators for Effective Trading Strategies By John Ehlers INTRODUCTION Technical traders understand that indicators need to smooth market data to be useful, and that smoothing introduces lag

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

Command-induced Tracking Jitter Study I D. Clark November 24, 2009

Command-induced Tracking Jitter Study I D. Clark November 24, 2009 Command-induced Tracking Jitter Study I D. Clark November 24, 2009 Introduction Reports of excessive tracking jitter on the MMT elevation axis have lately been theorized to be caused by the input command

More information

MATRIX TECHNICAL NOTES

MATRIX TECHNICAL NOTES 200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR

More information

NRZ Bandwidth - HF Cutoff vs. SNR

NRZ Bandwidth - HF Cutoff vs. SNR Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP

More information

How To Understand The Discrete Fourier Transform

How To Understand The Discrete Fourier Transform The Fast Fourier Transform (FFT) and MATLAB Examples Learning Objectives Discrete Fourier transforms (DFTs) and their relationship to the Fourier transforms Implementation issues with the DFT via the FFT

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Applications of the DFT

Applications of the DFT CHAPTER 9 Applications of the DFT The Discrete Fourier Transform (DFT) is one of the most important tools in Digital Signal Processing. This chapter discusses three common ways it is used. First, the DFT

More information

Basic Acoustics and Acoustic Filters

Basic Acoustics and Acoustic Filters Basic CHAPTER Acoustics and Acoustic Filters 1 3 Basic Acoustics and Acoustic Filters 1.1 The sensation of sound Several types of events in the world produce the sensation of sound. Examples include doors

More information

B3. Short Time Fourier Transform (STFT)

B3. Short Time Fourier Transform (STFT) B3. Short Time Fourier Transform (STFT) Objectives: Understand the concept of a time varying frequency spectrum and the spectrogram Understand the effect of different windows on the spectrogram; Understand

More information

Basics of Digital Recording

Basics of Digital Recording Basics of Digital Recording CONVERTING SOUND INTO NUMBERS In a digital recording system, sound is stored and manipulated as a stream of discrete numbers, each number representing the air pressure at a

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Exercise: Estimating the Mass of Jupiter Difficulty: Medium

Exercise: Estimating the Mass of Jupiter Difficulty: Medium Exercise: Estimating the Mass of Jupiter Difficulty: Medium OBJECTIVE The July / August observing notes for 010 state that Jupiter rises at dusk. The great planet is now starting its grand showing for

More information

PCM Encoding and Decoding:

PCM Encoding and Decoding: PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

More information

Application Note Noise Frequently Asked Questions

Application Note Noise Frequently Asked Questions : What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

More information

Trigonometric functions and sound

Trigonometric functions and sound Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

More information

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

Timing Analysis of X-ray Lightcurves

Timing Analysis of X-ray Lightcurves Timing Analysis of X-ray Lightcurves Michael Nowak, mnowak@space.mit.edu X-ray Astronomy School; Aug. 1-5, 2011 Introduction This exercise is designed to give a brief introduction to one aspect of timing

More information

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

More information

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Experiment 3: Double Sideband Modulation (DSB)

Experiment 3: Double Sideband Modulation (DSB) Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict

More information

Statistical Studies of the Solar Radio Emission in the Years 1985 2000 at 220 MHz

Statistical Studies of the Solar Radio Emission in the Years 1985 2000 at 220 MHz A N N A L E S U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N P O L O N I A VOL. LV/LVI, 3 SECTIO AAA 2000/2001 Faculty of Mathematics and Physics, Maria Curie-Skłodowska

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information