Example. Finally, Assuming the following access paths. Compute cost for. Compute cost for. Compute cost for

Size: px
Start display at page:

Download "Example. Finally, Assuming the following access paths. Compute cost for. Compute cost for. Compute cost for"

Transcription

1 376a. Database Design Dept. of Computer Science Vassar College Class 18 Cost-based query optimization algorithms News Homework #4 due today Homework # , 18.14, 18.22, 19.14, Don t forget the project. 1 2 Definitions used for costs calculations More definitions Per table r - number of tuples R - average record size (bytes) bfr - blocking factor (records/block) primary access methods and attributes. x - number of level in multi-level index b I1 - number of first-level index blocks D - number of distinct values sl - fraction of records satisfying equality on attribute. s - selection cardinality (sl*r) (avg. # of records selected.) Some values change, some don t. 3 4 Calculate cost for SELECT operation Cost is measured in block accesses For unique values: S1: Linear search for record (b/2) average case, b - worst case S2: Binary search - log 2 b S3: Primary index or hash : x (number of levels in index) Select for non-unique vals S2a: Binary search - log 2 b + «(s/bfr)» -1 (s is number of duplicate records) S4: ordering index and range of values - x+b/2 (assumes 1/2 of records satisfy relation ) which is average but not correct. S5: clustering index: x + «(s/bfr)» blocks accessed S6: B+ tree: x + s (if using <, <=, etc. x+ b l1 /2 + r/2) 6 and Procedural Abstraction 1

2 Finally, S7: Conjuctions: clauses with ands (use any method) then brute force on end result Example EMPLOYEE(Fname, Minit, Lname, SSN, Bdate, Address, Sex, Salary, Superssn, DNO) r = 10,000 records b = 2000 blocks bfr = Assuming the following access paths 1. Clustering index on salary x salary = 3, sl salary = Secondary index on SSN x ssn = 4 3. Secondary index on DNO x dno = 2 B l1dnum =4, d dno = 125, s dno = Secondary index on SEX, x sex = 1, d sex = 2, s sex = 5000 Compute cost for σ ssn= (EMPLOYEE) Calculate: 1. S1 (linear search) = 2000 (non-key) 1000(key) 2. S6 (secondary index) = x ssn + 1 = 5 since secondary index on SSN x ssn = Compute cost for Compute cost for σ DNO>5 (EMPLOYEE) Calculate: 1. S1 = 2000 (non-key) so need to search all. 2. S6 (secondary index) = x dno + (b l1dno /2)+(r/2) or (4 + (4/2) + (10000/2) = 5004) since secondary index on DNO x dno = 2 B l1dnum =4, d dno = 125, s dno = 80 σ DNO=5 (EMPLOYEE) Calculate: 1. S1 = S6 = x dno + s dno =(2+80) since since secondary index on DNO x dno = 2 B l1dnum =4, d dno = 125, s dno = and Procedural Abstraction 2

3 More complicated example Cont. σ DNO=5 and SALARY>30000 and SEX= F (EMPLOYEE) Pick each and optimize (then find cost of brute force on rest) 1. Do DNO=5 first, cost = Do SALARY>30000 first, cost = x salary + (b/2) = = Do SEX= f first, cost = x sex + s sex = Choose DNO=5 first, lowest cost. Then check salary>30000 and sex = f as records are read into memory Prof. Billibon Yoshimi Computing join costs Need an estimate of size of total join = # selected / Cartesian Product (also called the join selectivity) Use R to denote # of tuples in R, js = R c S / R x S Join costs If optimizer has good estimates for js, it can approximate size of join with js* R * S! Typical Algorithm costs If c is equality relation and c is key of R then Js < S and js [ ( 1 / R ) Cost for Nested Loop join Cost for Single-loop join b R - blocks for R, b S -blocks for S J1: Cost = b R +(b R *b S )+ (js* R * S /bfr RS ) assuming only three buffers. S has an x s -level index. s b is average # of records matching select. For secondary index: Cost = b R + ( R *(x B +s B ))+((js* R * S )/bfr RS ) For clustering index: Cost = b R + ( R *(x B +s B /bfr B )+((js* R * S )/bfr RS ) and Procedural Abstraction 3

4 Single-loop join cont Finally cost of sort-merge join If B is the primary index: Cost = b R + (R * ( x B + 1)) + ((js* R * S )/bfr RS ) If hash key exists for A or B Cost = b R + ( R *h) + ((js* R * S )/bfr RS ) Where h>=1 is average # of blocks required to retrieve record given a hashkey. If files are already sorted then Cost = br + bs + ((js* R * S )/bfr RS ) (worst case since the attribute could be the same for all tuples ) If unsorted (2*b R *(1+log 2 b R ) + (2*b S +(1+log 2 b S )+ above Example from book Optimize this query EMPLOYEE(Fname, Minit, Lname, SSN, Bdate, Address, Sex, Salary, Superssn, DNO) And DEPARTMENT(Dname, Dnumber, Mgrssn, Mgrstartdate) EMPLOYEE = 10,000 b EMPLOYEE =13 DEPARTMENT = 125 b DEPARTMENT = 13 EMPLOYEE Dno=Dnumber DEPARTMENT Primary index on Dnumber for DEPARTMENT. x Dnumber = 1 Secondary index on Mgrssn for DEPARTMENT. x Mgrssn =2 and s Mgrssn =1 Js = (1/ DEPARTMENT ) = 1/125 And bfr ED = 4 records/block Calculations Calculations For nested loop join, 2 cases. 1. Using EMPLOYEE in outer loop. be + (be *bd) + ((js * r E *r D )/bfr ED ) (2000*13) + ((1/125 * 10000*125)/4) 30,500 block accesses 2. Using DEPARTMENT in outer loop (13 * 2000) + ((1/125 * 10000*125)/4) 28,513 block accesses For single loop join, EMPLOYEE as outer loop. b E + (r E * (x Dnumber + 1)) +((js * r E *r D )/bfr ED ) (10,000*(1+1)) + ((1/125 * 10000*125)/4) 24, and Procedural Abstraction 4

5 Calculations Remember secondary index on non key DNO for EMPLOYEE with x Dno = 2 and b I1Dno = 4 and d Dno = 125 and s Dno =80 For single loop join, DEPARTMENT as OL. b D + (r D * (x Dno + S Dno )) +((js * r E *r D )/bfr ED ) 13 + (10,000*(2+80)) + ((1/125 * 10000*125)/4) 12,763 block accesses 25 Points to note Single loop join with DEPARTMENT as outerloop and EMPLOYEE as inter loop makes fewest disk accesses. But, if # of memory buffers allowed for DEPARTMENT went up to 15, ALL of DEPARTMENT could be read into memory! Nested loop join with DEPT as outer loop would be 4513 disk accesses! 26 Multiple relation queries (join ordering) Joins can be manipulated through commutability and associativity rules. Large number of join order permutations. QO - join ordering Put query tree in left-deep order (if a node has a right child, the child is a base relation) Left child is the outer loop, right child is the probe. Left-deep ordering is amenable to pipelining Note for materialization Write this query on board If intermediate tables are generated, optimizer s goal is to minimize size of intermediate tables. SELECT Pnumber, Dnum, Lname, Address, Bdate FROM PROJECT, DEPARTMENT, EMPLOYEE WHERE Dnum=Dnumber AND Mgrssn=SSN AND PLOCATION= Stafford ; and Procedural Abstraction 5

6 What are the joins without CP Given EMPLOYEE(Fname, Minit, Lname, SSN, Bdate, Address, Sex, Salary, Superssn, DNO) DEPARTMENT(Dname, Dnumber, Mgrssn, Mgrstartdate) PROJECT(Pname, Pnumber, Plocation,Dnum) Initial tree looks like (copy to board) π P.Pnumber, P.Dnum, P.Lname, E.Address, E.Bdate P.Plocation = Stafford P P.Dnum=D.Dnumber D.MgrSSN=E.SSN D E Stats about the database Analyze PROJECT DEPARTMENT EMPLOYEE Look at tables, determine join method and access methods. 33 DEPARTMENT has no index. Can only do table scan. Do SELECT on PROJECT table first though! 34 Analyze PROJECT In materialized approach Estimate # of records returned from PROJECT 2000/200 = 10 Requires 2 disk accesses to get index then at most 10 to get record. Table scan (on the other hand takes 100 blocks) Estimate space required for result of Select on PROJECT NUM_ROWS/BLOCKS =bfr for PROJECTlike records. = 20. Average # of records with same location = 2000/200 (10 records) (can fit in 1block) and Procedural Abstraction 6

7 Now calculate first JOIN First join continued PROJECT DEPARTMENT Type of join (only nested) 1 read for temp. 5 reads for DEPARTMENT (total cost 6 blocks) Cost to write out results (total number of matches?) Using key attribute (must be <= temp ) (at most 10 tuples) Assume bfr for temp2 is 5 then takes 2 blocks to write results And so on an so forth Oracle optimization Rule based heuristics Cost-based analysis - using tables like we just did. 39 DB programmer can give optimizer hints. If distributions are not even then indicies can be very useful for narrowing some information. (can also specify access paths, join order, optimization approach, type of joins.) 40 Semantic query optimization Some queries have no valid tuples due to constraints. Select e.fname, e.lname From EMPLOYEE as E, EMPLOYEE as F Where E.superssn = F.ssn and e.salary>f.salary; If we impose constraint that no employee earns more than immediate supervisor. We can reject query outright. (semantics) and Procedural Abstraction 7

Part A: Data Definition Language (DDL) Schema and Catalog CREAT TABLE. Referential Triggered Actions. CSC 742 Database Management Systems

Part A: Data Definition Language (DDL) Schema and Catalog CREAT TABLE. Referential Triggered Actions. CSC 742 Database Management Systems CSC 74 Database Management Systems Topic #0: SQL Part A: Data Definition Language (DDL) Spring 00 CSC 74: DBMS by Dr. Peng Ning Spring 00 CSC 74: DBMS by Dr. Peng Ning Schema and Catalog Schema A collection

More information

Chapter 8. SQL-99: SchemaDefinition, Constraints, and Queries and Views

Chapter 8. SQL-99: SchemaDefinition, Constraints, and Queries and Views Chapter 8 SQL-99: SchemaDefinition, Constraints, and Queries and Views Data Definition, Constraints, and Schema Changes Used to CREATE, DROP, and ALTER the descriptions of the tables (relations) of a database

More information

Part 4: Database Language - SQL

Part 4: Database Language - SQL Part 4: Database Language - SQL Junping Sun Database Systems 4-1 Database Languages and Implementation Data Model Data Model = Data Schema + Database Operations + Constraints Database Languages such as

More information

Relational Schema. CS 4700/6700 A Sample of Small Database Design Using Microsoft Access

Relational Schema. CS 4700/6700 A Sample of Small Database Design Using Microsoft Access CS 4700/6700 A Sample of Small Database Design Using Microsoft Access Company relational database schema from the textbook (Fundamentals of Database systems, 6 th Edition, by Ramez Elmasri and Shamkant

More information

CSC 443 Data Base Management Systems. Basic SQL

CSC 443 Data Base Management Systems. Basic SQL CSC 443 Data Base Management Systems Lecture 6 SQL As A Data Definition Language Basic SQL SQL language Considered one of the major reasons for the commercial success of relational databases SQL Structured

More information

Summary on Chapter 4 Basic SQL

Summary on Chapter 4 Basic SQL Summary on Chapter 4 Basic SQL SQL Features Basic SQL DDL o Includes the CREATE statements o Has a comprehensive set of SQL data types o Can specify key, referential integrity, and other constraints Basic

More information

The Relational Algebra

The Relational Algebra The Relational Algebra Relational set operators: The data in relational tables are of limited value unless the data can be manipulated to generate useful information. Relational Algebra defines the theoretical

More information

Introduction to SQL: Data Retrieving

Introduction to SQL: Data Retrieving Introduction to SQL: Data Retrieving Ruslan Fomkin Databasdesign för Ingenjörer 1056F Structured Query Language (SQL) History: SEQUEL (Structured English QUery Language), earlier 70 s, IBM Research SQL

More information

CS 338 Join, Aggregate and Group SQL Queries

CS 338 Join, Aggregate and Group SQL Queries CS 338 Join, Aggregate and Group SQL Queries Bojana Bislimovska Winter 2016 Outline SQL joins Aggregate functions in SQL Grouping in SQL HAVING clause SQL Joins Specifies a table resulting from a join

More information

Chapter 13: Query Processing. Basic Steps in Query Processing

Chapter 13: Query Processing. Basic Steps in Query Processing Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing

More information

SQL Query Evaluation. Winter 2006-2007 Lecture 23

SQL Query Evaluation. Winter 2006-2007 Lecture 23 SQL Query Evaluation Winter 2006-2007 Lecture 23 SQL Query Processing Databases go through three steps: Parse SQL into an execution plan Optimize the execution plan Evaluate the optimized plan Execution

More information

ER & EER to Relational Mapping. Chapter 9 1

ER & EER to Relational Mapping. Chapter 9 1 ER & EER to Relational Mapping Chapter 9 1 Figure 3.2 ER schema diagram for the company database. Fname Minit Lname Number Name Address N 1 WORKS_FOR Name Locations Sex Salary Ssn Bdate EMPLOYEE NumberOfEmployees

More information

Lab Assignment 0. 1. Creating a Relational Database Schema from ER Diagram, Populating the Database and Querying over the database with SQL

Lab Assignment 0. 1. Creating a Relational Database Schema from ER Diagram, Populating the Database and Querying over the database with SQL SS Chung Lab Assignment 0 1. Creating a Relational Database Schema from ER Diagram, Populating the Database and Querying over the database with SQL 1. Creating the COMPANY database schema using SQL (DDL)

More information

SQL-99: Schema Definition, Basic Constraints, and Queries

SQL-99: Schema Definition, Basic Constraints, and Queries 8 SQL-99: Schema Definition, Basic Constraints, and Queries The SQL language may be considered one of the major reasons for the success of relational databases in the commercial world. Because it became

More information

How To Create A Table In Sql 2.5.2.2 (Ahem)

How To Create A Table In Sql 2.5.2.2 (Ahem) Database Systems Unit 5 Database Implementation: SQL Data Definition Language Learning Goals In this unit you will learn how to transfer a logical data model into a physical database, how to extend or

More information

Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Physical Design. Phases of database design. Physical design: Inputs.

Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Physical Design. Phases of database design. Physical design: Inputs. Phases of database design Application requirements Conceptual design Database Management Systems Conceptual schema Logical design ER or UML Physical Design Relational tables Logical schema Physical design

More information

SQL Nested & Complex Queries. CS 377: Database Systems

SQL Nested & Complex Queries. CS 377: Database Systems SQL Nested & Complex Queries CS 377: Database Systems Recap: Basic SQL Retrieval Query A SQL query can consist of several clauses, but only SELECT and FROM are mandatory SELECT FROM

More information

Comp 5311 Database Management Systems. 16. Review 2 (Physical Level)

Comp 5311 Database Management Systems. 16. Review 2 (Physical Level) Comp 5311 Database Management Systems 16. Review 2 (Physical Level) 1 Main Topics Indexing Join Algorithms Query Processing and Optimization Transactions and Concurrency Control 2 Indexing Used for faster

More information

b. Examine the following histories. Draw their serialization graph and identify which of them is serializable given reasons.

b. Examine the following histories. Draw their serialization graph and identify which of them is serializable given reasons. SELECTED SOLUTIONS TO THE EVISION EECISES: 1. In the following questions the operations are as follows rn() transaction n reads data item, wn () transaction n writes data item, cn transactions n commits,

More information

CIS 631 Database Management Systems Sample Final Exam

CIS 631 Database Management Systems Sample Final Exam CIS 631 Database Management Systems Sample Final Exam 1. (25 points) Match the items from the left column with those in the right and place the letters in the empty slots. k 1. Single-level index files

More information

Chapter 9, More SQL: Assertions, Views, and Programming Techniques

Chapter 9, More SQL: Assertions, Views, and Programming Techniques Chapter 9, More SQL: Assertions, Views, and Programming Techniques 9.2 Embedded SQL SQL statements can be embedded in a general purpose programming language, such as C, C++, COBOL,... 9.2.1 Retrieving

More information

Chapter 8: Structures for Files. Truong Quynh Chi tqchi@cse.hcmut.edu.vn. Spring- 2013

Chapter 8: Structures for Files. Truong Quynh Chi tqchi@cse.hcmut.edu.vn. Spring- 2013 Chapter 8: Data Storage, Indexing Structures for Files Truong Quynh Chi tqchi@cse.hcmut.edu.vn Spring- 2013 Overview of Database Design Process 2 Outline Data Storage Disk Storage Devices Files of Records

More information

Query Processing C H A P T E R12. Practice Exercises

Query Processing C H A P T E R12. Practice Exercises C H A P T E R12 Query Processing Practice Exercises 12.1 Assume (for simplicity in this exercise) that only one tuple fits in a block and memory holds at most 3 blocks. Show the runs created on each pass

More information

New York University Computer Science Department Courant Institute of Mathematical Sciences

New York University Computer Science Department Courant Institute of Mathematical Sciences New York University Computer Science Department Courant Institute of Mathematical Sciences Homework #5 Solutions Course Title: Database Systems Instructor: Jean-Claude Franchitti Course Number: CSCI-GA.2433-001

More information

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

CHAPTER 8: SQL-99: SCHEMA DEFINITION, BASIC CONSTRAINTS, AND QUERIES

CHAPTER 8: SQL-99: SCHEMA DEFINITION, BASIC CONSTRAINTS, AND QUERIES Chapter 8: SQL-99: Schema Definition, Basic Constraints, and Queries 1 CHAPTER 8: SQL-99: SCHEMA DEFINITION, BASIC CONSTRAINTS, AND QUERIES Answers to Selected Exercises 8. 7 Consider the database shown

More information

Lecture 6: Query optimization, query tuning. Rasmus Pagh

Lecture 6: Query optimization, query tuning. Rasmus Pagh Lecture 6: Query optimization, query tuning Rasmus Pagh 1 Today s lecture Only one session (10-13) Query optimization: Overview of query evaluation Estimating sizes of intermediate results A typical query

More information

Datenbanksysteme II: Implementation of Database Systems Implementing Joins

Datenbanksysteme II: Implementation of Database Systems Implementing Joins Datenbanksysteme II: Implementation of Database Systems Implementing Joins Material von Prof. Johann Christoph Freytag Prof. Kai-Uwe Sattler Prof. Alfons Kemper, Dr. Eickler Prof. Hector Garcia-Molina

More information

Databases and Information Systems 1 Part 3: Storage Structures and Indices

Databases and Information Systems 1 Part 3: Storage Structures and Indices bases and Information Systems 1 Part 3: Storage Structures and Indices Prof. Dr. Stefan Böttcher Fakultät EIM, Institut für Informatik Universität Paderborn WS 2009 / 2010 Contents: - database buffer -

More information

Physical Data Organization

Physical Data Organization Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor

More information

Lab Manual. Database Systems COT-313 & Database Management Systems Lab IT-216

Lab Manual. Database Systems COT-313 & Database Management Systems Lab IT-216 Lab Manual Database Systems COT-313 & Database Management Systems Lab IT-216 Lab Instructions Several practicals / programs? Whether an experiment contains one or several practicals /programs One practical

More information

DATABASE DESIGN - 1DL400

DATABASE DESIGN - 1DL400 DATABASE DESIGN - 1DL400 Spring 2015 A course on modern database systems!! http://www.it.uu.se/research/group/udbl/kurser/dbii_vt15/ Kjell Orsborn! Uppsala Database Laboratory! Department of Information

More information

Unit 4.3 - Storage Structures 1. Storage Structures. Unit 4.3

Unit 4.3 - Storage Structures 1. Storage Structures. Unit 4.3 Storage Structures Unit 4.3 Unit 4.3 - Storage Structures 1 The Physical Store Storage Capacity Medium Transfer Rate Seek Time Main Memory 800 MB/s 500 MB Instant Hard Drive 10 MB/s 120 GB 10 ms CD-ROM

More information

VIEWS virtual relation data duplication consistency problems

VIEWS virtual relation data duplication consistency problems VIEWS A virtual relation that is defined from other preexisting relations Called the defining relations of the view A view supports multiple user perspectives on the database corresponding to different

More information

Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Query optimization. DBMS Architecture. Query optimizer. Query optimizer.

Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Query optimization. DBMS Architecture. Query optimizer. Query optimizer. DBMS Architecture INSTRUCTION OPTIMIZER Database Management Systems MANAGEMENT OF ACCESS METHODS BUFFER MANAGER CONCURRENCY CONTROL RELIABILITY MANAGEMENT Index Files Data Files System Catalog BASE It

More information

Query Optimization for Distributed Database Systems Robert Taylor Candidate Number : 933597 Hertford College Supervisor: Dr.

Query Optimization for Distributed Database Systems Robert Taylor Candidate Number : 933597 Hertford College Supervisor: Dr. Query Optimization for Distributed Database Systems Robert Taylor Candidate Number : 933597 Hertford College Supervisor: Dr. Dan Olteanu Submitted as part of Master of Computer Science Computing Laboratory

More information

Chapter 13: Query Optimization

Chapter 13: Query Optimization Chapter 13: Query Optimization Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 13: Query Optimization Introduction Transformation of Relational Expressions Catalog

More information

Advanced Database Models

Advanced Database Models Advanced Database Models Dr.-Ing. Eike Schallehn OvG Universität Magdeburg Fakultät für Informatik Institut für Technische und Betriebliche Informationssysteme 2015 Organization Lecture slides http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/adbm

More information

File Management. Chapter 12

File Management. Chapter 12 Chapter 12 File Management File is the basic element of most of the applications, since the input to an application, as well as its output, is usually a file. They also typically outlive the execution

More information

COURSE CODE: CIT 844 COURSE TITLE: ADVANCED DATABASE MANAGEMENT SYSTEM

COURSE CODE: CIT 844 COURSE TITLE: ADVANCED DATABASE MANAGEMENT SYSTEM NATIONAL OPEN UNIVERSITY OF NIGERIA COURSE CODE: CIT 844 COURSE TITLE: ADVANCED DATABASE MANAGEMENT SYSTEM CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM COURSE GIUDE ADVANCED DATABASE MANAGEMENT SYSTEM Course

More information

{ PreviousEducation ( CollegeName, StartDate, EndDate, { Degree (DegreeName, Month, Year) }, { Transcript (CourseName, Semester, Year, Grade) } ) }

{ PreviousEducation ( CollegeName, StartDate, EndDate, { Degree (DegreeName, Month, Year) }, { Transcript (CourseName, Semester, Year, Grade) } ) } Tutorial 3 Solution Exercise1: Exercise 2: { PreviousEducation ( CollegeName, StartDate, EndDate, { Degree (DegreeName, Month, Year) }, { Transcript (CourseName, Semester, Year, Grade) } ) } Exercise 3:

More information

Oracle Database 11g: SQL Tuning Workshop

Oracle Database 11g: SQL Tuning Workshop Oracle University Contact Us: + 38516306373 Oracle Database 11g: SQL Tuning Workshop Duration: 3 Days What you will learn This Oracle Database 11g: SQL Tuning Workshop Release 2 training assists database

More information

Relational Normalization: Contents. Relational Database Design: Rationale. Relational Database Design. Motivation

Relational Normalization: Contents. Relational Database Design: Rationale. Relational Database Design. Motivation Relational Normalization: Contents Motivation Functional Dependencies First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form Decomposition Algorithms Multivalued Dependencies and

More information

Advanced Oracle SQL Tuning

Advanced Oracle SQL Tuning Advanced Oracle SQL Tuning Seminar content technical details 1) Understanding Execution Plans In this part you will learn how exactly Oracle executes SQL execution plans. Instead of describing on PowerPoint

More information

Symbol Tables. Introduction

Symbol Tables. Introduction Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The

More information

Inside the PostgreSQL Query Optimizer

Inside the PostgreSQL Query Optimizer Inside the PostgreSQL Query Optimizer Neil Conway neilc@samurai.com Fujitsu Australia Software Technology PostgreSQL Query Optimizer Internals p. 1 Outline Introduction to query optimization Outline of

More information

Database Systems. Session 8 Main Theme. Physical Database Design, Query Execution Concepts and Database Programming Techniques

Database Systems. Session 8 Main Theme. Physical Database Design, Query Execution Concepts and Database Programming Techniques Database Systems Session 8 Main Theme Physical Database Design, Query Execution Concepts and Database Programming Techniques Dr. Jean-Claude Franchitti New York University Computer Science Department Courant

More information

Answer Key. UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division

Answer Key. UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division Answer Key UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division CS186 Fall 2003 Eben Haber Midterm Midterm Exam: Introduction to Database Systems This exam has

More information

Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child

Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child Binary Search Trees Data in each node Larger than the data in its left child Smaller than the data in its right child FIGURE 11-6 Arbitrary binary tree FIGURE 11-7 Binary search tree Data Structures Using

More information

10CS54: DATABASE MANAGEMENT SYSTEM

10CS54: DATABASE MANAGEMENT SYSTEM CS54: DATABASE MANAGEMENT SYSTEM QUESTION BANK Chapter 1: Introduction to Database Systems Objective: Databases and data base system have become an essential component of everyday life in modern society.

More information

EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES

EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES ABSTRACT EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES Tyler Cossentine and Ramon Lawrence Department of Computer Science, University of British Columbia Okanagan Kelowna, BC, Canada tcossentine@gmail.com

More information

Oracle Database 11g: SQL Tuning Workshop Release 2

Oracle Database 11g: SQL Tuning Workshop Release 2 Oracle University Contact Us: 1 800 005 453 Oracle Database 11g: SQL Tuning Workshop Release 2 Duration: 3 Days What you will learn This course assists database developers, DBAs, and SQL developers to

More information

Access Path Selection in a Relational Database Management System

Access Path Selection in a Relational Database Management System Access Path Selection in a Relational Database Management System P. Griffiths Selinger M. M. Astrahan D. D. Chamberlin R. A. Lorie T. G. Price IBM Research Division, San Jose, California 95193 ABSTRACT:

More information

COMP 5138 Relational Database Management Systems. Week 5 : Basic SQL. Today s Agenda. Overview. Basic SQL Queries. Joins Queries

COMP 5138 Relational Database Management Systems. Week 5 : Basic SQL. Today s Agenda. Overview. Basic SQL Queries. Joins Queries COMP 5138 Relational Database Management Systems Week 5 : Basic COMP5138 "Relational Database Managment Systems" J. Davis 2006 5-1 Today s Agenda Overview Basic Queries Joins Queries Aggregate Functions

More information

How To Use The Database In Jdbc.Com On A Microsoft Gdbdns.Com (Amd64) On A Pcode (Amd32) On An Ubuntu 8.2.2 (Amd66) On Microsoft

How To Use The Database In Jdbc.Com On A Microsoft Gdbdns.Com (Amd64) On A Pcode (Amd32) On An Ubuntu 8.2.2 (Amd66) On Microsoft CS 7700 Transaction Design for Microsoft Access Database with JDBC Purpose The purpose of this tutorial is to introduce the process of developing transactions for a Microsoft Access Database with Java

More information

University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao

University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao CMPSCI 445 Midterm Practice Questions NAME: LOGIN: Write all of your answers directly on this paper. Be sure to clearly

More information

Why Query Optimization? Access Path Selection in a Relational Database Management System. How to come up with the right query plan?

Why Query Optimization? Access Path Selection in a Relational Database Management System. How to come up with the right query plan? Why Query Optimization? Access Path Selection in a Relational Database Management System P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price Peyman Talebifard Queries must be executed and execution

More information

In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR

In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR 1 2 2 3 In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary key is defined on the columns NAME,VORNAME,STR The uniqueness of the primary key ensures that

More information

www.gr8ambitionz.com

www.gr8ambitionz.com Data Base Management Systems (DBMS) Study Material (Objective Type questions with Answers) Shared by Akhil Arora Powered by www. your A to Z competitive exam guide Database Objective type questions Q.1

More information

Storage and File Structure

Storage and File Structure Storage and File Structure Chapter 10: Storage and File Structure Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage Storage Access File Organization Organization of Records in Files

More information

Performance Tuning for the Teradata Database

Performance Tuning for the Teradata Database Performance Tuning for the Teradata Database Matthew W Froemsdorf Teradata Partner Engineering and Technical Consulting - i - Document Changes Rev. Date Section Comment 1.0 2010-10-26 All Initial document

More information

University of Aarhus. Databases 2009. 2009 IBM Corporation

University of Aarhus. Databases 2009. 2009 IBM Corporation University of Aarhus Databases 2009 Kirsten Ann Larsen What is good performance? Elapsed time End-to-end In DB2 Resource consumption CPU I/O Memory Locks Elapsed time = Sync. I/O + CPU + wait time I/O

More information

The Structured Query Language. De facto standard used to interact with relational DB management systems Two major branches

The Structured Query Language. De facto standard used to interact with relational DB management systems Two major branches CSI 2132 Tutorial 6 The Structured Query Language (SQL) The Structured Query Language De facto standard used to interact with relational DB management systems Two major branches DDL (Data Definition Language)

More information

Physical Database Design and Tuning

Physical Database Design and Tuning Chapter 20 Physical Database Design and Tuning Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1. Physical Database Design in Relational Databases (1) Factors that Influence

More information

1. Physical Database Design in Relational Databases (1)

1. Physical Database Design in Relational Databases (1) Chapter 20 Physical Database Design and Tuning Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1. Physical Database Design in Relational Databases (1) Factors that Influence

More information

Chapter 14: Query Optimization

Chapter 14: Query Optimization Chapter 14: Query Optimization Database System Concepts 5 th Ed. See www.db-book.com for conditions on re-use Chapter 14: Query Optimization Introduction Transformation of Relational Expressions Catalog

More information

MapReduce examples. CSE 344 section 8 worksheet. May 19, 2011

MapReduce examples. CSE 344 section 8 worksheet. May 19, 2011 MapReduce examples CSE 344 section 8 worksheet May 19, 2011 In today s section, we will be covering some more examples of using MapReduce to implement relational queries. Recall how MapReduce works from

More information

Question 1. Relational Data Model [17 marks] Question 2. SQL and Relational Algebra [31 marks]

Question 1. Relational Data Model [17 marks] Question 2. SQL and Relational Algebra [31 marks] EXAMINATIONS 2005 MID-YEAR COMP 302 Database Systems Time allowed: Instructions: 3 Hours Answer all questions. Make sure that your answers are clear and to the point. Write your answers in the spaces provided.

More information

Unique column combinations

Unique column combinations Unique column combinations Arvid Heise Guest lecture in Data Profiling and Data Cleansing Prof. Dr. Felix Naumann Agenda 2 Introduction and problem statement Unique column combinations Exponential search

More information

Overview of Storage and Indexing

Overview of Storage and Indexing Overview of Storage and Indexing Chapter 8 How index-learning turns no student pale Yet holds the eel of science by the tail. -- Alexander Pope (1688-1744) Database Management Systems 3ed, R. Ramakrishnan

More information

First, here are our three tables in a fictional sales application:

First, here are our three tables in a fictional sales application: Introduction to Oracle SQL Tuning Bobby Durrett Introduction Tuning a SQL statement means making the SQL query run as fast as you need it to. In many cases this means taking a long running query and reducing

More information

Performance Evaluation of Natural and Surrogate Key Database Architectures

Performance Evaluation of Natural and Surrogate Key Database Architectures Performance Evaluation of Natural and Surrogate Key Database Architectures Sebastian Link 1, Ivan Luković 2, Pavle ogin *)1 1 Victoria University of Wellington, Wellington, P.O. Box 600, New Zealand sebastian.link@vuw.ac.nz

More information

ICAB4136B Use structured query language to create database structures and manipulate data

ICAB4136B Use structured query language to create database structures and manipulate data ICAB4136B Use structured query language to create database structures and manipulate data Release: 1 ICAB4136B Use structured query language to create database structures and manipulate data Modification

More information

Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)

Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2) Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse

More information

Physical DB design and tuning: outline

Physical DB design and tuning: outline Physical DB design and tuning: outline Designing the Physical Database Schema Tables, indexes, logical schema Database Tuning Index Tuning Query Tuning Transaction Tuning Logical Schema Tuning DBMS Tuning

More information

D B M G Data Base and Data Mining Group of Politecnico di Torino

D B M G Data Base and Data Mining Group of Politecnico di Torino Database Management Data Base and Data Mining Group of tania.cerquitelli@polito.it A.A. 2014-2015 Optimizer objective A SQL statement can be executed in many different ways The query optimizer determines

More information

Data Structure [Question Bank]

Data Structure [Question Bank] Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:

More information

Partitioning under the hood in MySQL 5.5

Partitioning under the hood in MySQL 5.5 Partitioning under the hood in MySQL 5.5 Mattias Jonsson, Partitioning developer Mikael Ronström, Partitioning author Who are we? Mikael is a founder of the technology behind NDB

More information

Theory of Relational Database Design and Normalization

Theory of Relational Database Design and Normalization Theory of Relational Database Design and Normalization (Based on Chapter 14 and some part of Chapter 15 in Fundamentals of Database Systems by Elmasri and Navathe) 1 Informal Design Guidelines for Relational

More information

Analysis of Algorithms I: Binary Search Trees

Analysis of Algorithms I: Binary Search Trees Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Database System Concepts, 5th Ed. See www.db book.com for conditions on re use Chapter 1: Introduction Purpose of Database Systems View of Data Database Languages Relational Databases

More information

History of Database Systems

History of Database Systems History of Database Systems By Kaushalya Dharmarathna(030087) Sandun Weerasinghe(040417) Early Manual System Before-1950s Data was stored as paper records. Lot of man power involved. Lot of time was wasted.

More information

Fallacies of the Cost Based Optimizer

Fallacies of the Cost Based Optimizer Fallacies of the Cost Based Optimizer Wolfgang Breitling breitliw@centrexcc.com Who am I Independent consultant since 1996 specializing in Oracle and Peoplesoft setup, administration, and performance tuning

More information

DB2 for Linux, UNIX, and Windows Performance Tuning and Monitoring Workshop

DB2 for Linux, UNIX, and Windows Performance Tuning and Monitoring Workshop DB2 for Linux, UNIX, and Windows Performance Tuning and Monitoring Workshop Duration: 4 Days What you will learn Learn how to tune for optimum performance the IBM DB2 9 for Linux, UNIX, and Windows relational

More information

Physical Database Design Process. Physical Database Design Process. Major Inputs to Physical Database. Components of Physical Database Design

Physical Database Design Process. Physical Database Design Process. Major Inputs to Physical Database. Components of Physical Database Design Physical Database Design Process Physical Database Design Process The last stage of the database design process. A process of mapping the logical database structure developed in previous stages into internal

More information

CSE 562 Database Systems

CSE 562 Database Systems UB CSE Database Courses CSE 562 Database Systems CSE 462 Database Concepts Introduction CSE 562 Database Systems Some slides are based or modified from originals by Database Systems: The Complete Book,

More information

LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24

LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24 LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24 1. A database schema is a. the state of the db b. a description of the db using a

More information

SQL Tuning Proven Methodologies

SQL Tuning Proven Methodologies SQL Tuning Proven Methodologies V.Hariharaputhran V.Hariharaputhran o Twelve years in Oracle Development / DBA / Big Data / Cloud Technologies o All India Oracle Users Group (AIOUG) Evangelist o Passion

More information

Query Processing. Q Query Plan. Example: Select B,D From R,S Where R.A = c S.E = 2 R.C=S.C. Himanshu Gupta CSE 532 Query Proc. 1

Query Processing. Q Query Plan. Example: Select B,D From R,S Where R.A = c S.E = 2 R.C=S.C. Himanshu Gupta CSE 532 Query Proc. 1 Q Query Plan Query Processing Example: Select B,D From R,S Where R.A = c S.E = 2 R.C=S.C Himanshu Gupta CSE 532 Query Proc. 1 How do we execute query? One idea - Do Cartesian product - Select tuples -

More information

Chapter 6: Physical Database Design and Performance. Database Development Process. Physical Design Process. Physical Database Design

Chapter 6: Physical Database Design and Performance. Database Development Process. Physical Design Process. Physical Database Design Chapter 6: Physical Database Design and Performance Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden Robert C. Nickerson ISYS 464 Spring 2003 Topic 23 Database

More information

Chapter 10 Functional Dependencies and Normalization for Relational Databases

Chapter 10 Functional Dependencies and Normalization for Relational Databases Chapter 10 Functional Dependencies and Normalization for Relational Databases Copyright 2004 Pearson Education, Inc. Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of

More information

Binary Heap Algorithms

Binary Heap Algorithms CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009 Glenn G. Chappell

More information

6. Storage and File Structures

6. Storage and File Structures ECS-165A WQ 11 110 6. Storage and File Structures Goals Understand the basic concepts underlying different storage media, buffer management, files structures, and organization of records in files. Contents

More information

Run$me Query Op$miza$on

Run$me Query Op$miza$on Run$me Query Op$miza$on Robust Op$miza$on for Graphs 2006-2014 All Rights Reserved 1 RDF Join Order Op$miza$on Typical approach Assign es$mated cardinality to each triple pabern. Bigdata uses the fast

More information

B-Trees. Algorithms and data structures for external memory as opposed to the main memory B-Trees. B -trees

B-Trees. Algorithms and data structures for external memory as opposed to the main memory B-Trees. B -trees B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:

More information

Efficient Data Access and Data Integration Using Information Objects Mica J. Block

Efficient Data Access and Data Integration Using Information Objects Mica J. Block Efficient Data Access and Data Integration Using Information Objects Mica J. Block Director, ACES Actuate Corporation mblock@actuate.com Agenda Information Objects Overview Best practices Modeling Security

More information

More SQL: Assertions, Views, and Programming Techniques

More SQL: Assertions, Views, and Programming Techniques 9 More SQL: Assertions, Views, and Programming Techniques In the previous chapter, we described several aspects of the SQL language, the standard for relational databases. We described the SQL statements

More information

Oracle EXAM - 1Z0-117. Oracle Database 11g Release 2: SQL Tuning. Buy Full Product. http://www.examskey.com/1z0-117.html

Oracle EXAM - 1Z0-117. Oracle Database 11g Release 2: SQL Tuning. Buy Full Product. http://www.examskey.com/1z0-117.html Oracle EXAM - 1Z0-117 Oracle Database 11g Release 2: SQL Tuning Buy Full Product http://www.examskey.com/1z0-117.html Examskey Oracle 1Z0-117 exam demo product is here for you to test the quality of the

More information

Oracle 10g PL/SQL Training

Oracle 10g PL/SQL Training Oracle 10g PL/SQL Training Course Number: ORCL PS01 Length: 3 Day(s) Certification Exam This course will help you prepare for the following exams: 1Z0 042 1Z0 043 Course Overview PL/SQL is Oracle's Procedural

More information