Solubility Equilibria

Size: px
Start display at page:

Download "Solubility Equilibria"

Transcription

1 Every electrolyte (in aqueous solution), consists partly of active (in electrical and chemical relation), and partly of inactive molecules... Svante Arrhenius Solubility Equilibria Pure water is actually a solution that contains tiny amounts of hydrogen and hydroxide ions in addition to water molecules. Although mole per liter of these ions may seem insignificant, slight variations in their concentrations can result in major changes in many important properties of the solution. For example, the hydrogen ion concentration in your blood is normally mole per liter, but if it changes to mole per liter, death results in only a few seconds. Clearly, an understanding of these tiny concentrations is an important aspect of chemistry. A similar situation exists in solutions of so-called insoluble salts. Even though these salts were introduced to you as being insoluble, there are actually tiny amounts of the ions that make up the salts in their solutions. For example, you may recall that the solubility rules said that all chlorides are soluble with the exception of certain heavy metal chlorides such as silver chloride. Thus, you classified silver chloride as insoluble. In fact, a concentration of mole per liter of silver and chloride ions exist in such a solution. These small concentrations of dissolved ions can be important to industrial and analytical chemists, as well as in medicine and geology. The Solubility Product Constant If undissolved silver chloride is present in a water solution, some will dissolve. When the process reaches equilibrium, the macroscopic concentrations of silver and chloride ions will remain constant, and the process can be represented by the equation AgCl(s) Ag + (aq) + Cl (aq) Recalling that solids are not included in an equilibrium constant expression, the K expression for this reaction is K sp = [Ag + ] [Cl ] where the subscript sp on the K refers to the term solubility product. K sp is called the solubility product constant. K sp expressions are written in the same manner as any other equilibrium expression. Just keep in mind that solids are not included in those expressions. If we have a solution with lead(ii) chloride, the dissolving equation and solubility product constant expression are

2 PbCl 2 (s) Pb 2+ (aq) + 2 Cl (aq) K sp = [Pb 2+ ] [Cl ] 2 Recall that ion concentrations are raised to the power of their stoichiometric coefficient in equilibrium constant expressions. As with all equilibrium constant expressions, the solubility product constant is temperature dependent. We will restrict our interest to reactions occurring at 25 C, the standard thermodynamic temperature, in this lesson. Determination of Solubility Product Constant Values If we know the solubility of a salt in water, we can calculate its K sp value. We follow a four-step procedure: 1. Write the balanced equation representing the dissolving process. 2. Write the K sp expression, based on the equation from Step Calculate the mole per liter (M) concentration of each of the ions represented in the K sp expression. 4. Substitute the ion concentrations into the K sp expression and calculate its value. EXAMPLE 1 It is experimentally determined that g of silver bromide will dissolve in ml of water at 25 C. What is the solubility product constant for silver bromide? SOLUTION The first step is to write the balanced equation for dissolving silver bromide: AgBr(s) Ag + (aq) + Br (aq) Now we write the solubility product constant expression: K sp = [Ag + ] [Br ] The third step requires changing concentration in g/100 ml to mol/l: g AgBr 100 ml 1 mol AgBr g AgBr 1 mol Ag + 1 mol AgBr 1000 ml L = mol Ag + L = M Ag + Since one bromide ion is formed for each silver ion formed, [Br ] = [Ag + ] = M.

3 Solubility Equilibria Now we can substitute the mole per liter concentrations into the K sp expression and solve: K sp = [Ag + ] [Br ] = ( ) ( ) = Determination of Solubility Solubility product constant values are known for a large number of compounds, so in the majority of cases, they can be obtained from reference sources. Therefore, a more common calculation is to find solubility from known K sp values. The procedure for determining solubility from K sp is: 1. Write the balanced equation representing the dissolving process. 2. Write the K sp expression, based on the equation from Step Assign the algebraic variable x to one of the ions on the right side of the equilibrium equation that has the same stoichiometric coefficient as the solid on the left side of the equation. 4. Assign algebraic variables for the other ions on the right side of the equilibrium equation in terms of their relationship to the ion from Step Substitute the algebraic variables into the K sp expression, solve for x, and determine the solubility in the units requested in the problem statement. EXAMPLE 2 Determine the g/100 cm 3 solubility of lead(ii) bromide, given that one reference source gives its K sp as SOLUTION The first two steps are to write the equation and K sp expression: PbBr 2 (s) Pb 2+ (aq) + 2 Br (aq) K sp = [Pb 2+ ] [Br ] 2 We want to know the solubility of PbBr 2 (s). There is a 1:1 stoichiometric relationship between PbBr 2 (s) and Pb 2+ (aq), so if we find the [Pb 2+ ], we have the solubility of PbBr 2 (s). Thus we let x = [Pb 2+ ]. Since the coefficient on Br (aq) is twice that on Pb 2+ (aq), [Br ] = 2x. This completes Steps 3 and 4. Now we substitute and solve: K sp = [Pb 2+ ] [Br ] 2 = = (x) (2x) = 4x 3 x = mol/l = [Pb 2+ ] = solubility of PbBr 2 (s) To complete the problem, we need to convert moles per liter to grams per 100 cm 3 :

4 0.013 mol PbBr 2 L g PbBr 2 mol PbBr L [100 cm 3 ] = 0.5 g PbBr 2 /100 cm 3 The Ion Product The ion product, IP, for a slightly soluble salt has the same form as the expression for the solubility product constant, but it is free from the restriction of only applying to an equilibrium situation. The ion product is valid whether or not an equilibrium situation exists, whereas K sp, an equilibrium constant, only refers to an equilibrium situation. Returning to our silver chloride example, we have AgCl(s) Ag + (aq) + Cl (aq) K sp = [Ag + ] [Cl ] IP = [Ag + ] [Cl ] The ion product is particularly useful in predicting whether or not precipitation will occur when solutions containing ions that, when combined, will form a slightly soluble salt. If we allow a saturated solution of silver chloride to come to equilibrium, IP will be equal to K sp : IP = [Ag + ] [Cl ] = K sp In other words, the ion product and the equilibrium constant are the same for an equilibrium situation. On the other hand, if we were to begin with a non-equilibrium condition, and then give the system time to come to equilibrium, that equilibrium will occur at concentrations such that IP = K sp. What about when the system is not at equilibrium? First, let s consider the case when IP is less than K sp, IP < K sp. In this case, the solution is unsaturated because there is not a great enough concentration of ions for crystallization to exceed dissolving. No precipitate will form. The other potential nonequilibrium situation occurs when the ion product is greater than the equilibrium constant, IP > K sp. In this case, the concentration of the aqueous ions in solution is greater than the equilibrium concentration. Therefore, for the system to come to equilibrium, the solution ion concentrations must decrease. Solid will precipitate until IP = K sp. Thus if solutions are combined such that IP > K sp, precipitation will occur. In summary, if solutions are combined such that the IP is greater than K sp, the slightly soluble salt will precipitate. If the ion product does not exceed K sp, no precipitation will occur. EXAMPLE 3 In Example 1, we determined that the K sp of silver bromide is If 50.0 ml M silver nitrate and ml M potassium bromide are combined, will a precipitate form?

5 Solubility Equilibria SOLUTION As with all problems involving slightly soluble salts, we start with the equilibrium equation and the K sp expression. This time, however, the reaction for the potential precipitation of the slightly soluble salt is not immediately obvious. Let s consider what ions we have in solution: Ag + (aq) and NO 3 (aq) from the silver nitrate solution and K + (aq) and Br (aq) from the potassium bromide solution. A double replacement reaction is possible, forming AgBr and KNO 3. From the solubility rules, we know that potassium and nitrate salts are soluble, and that bromide salts are generally soluble, but AgBr is an exception. Thus the precipitation is Ag + (aq) + Br (aq) AgBr(s) K sp = [Ag + ] [Br ] = The ion product expression follows from the K sp expression: IP = [Ag + ] [Br ] Next, we need the concentrations of the silver and bromide ions. When the two solutions are combined, each original solution is diluted, and thus we use the formula for calculating a dilution, M c V c = M d V d, where the subscript c stands for concentrated and the subscript d stands for dilute, M is molarity, and V is volume. For silver ion, M d = M c V c V d = M Ag ml ml = M Ag + For bromide ion, M d = M c V c V d = M Br ml ml = M Br Note that the total volume of solution after the two solutions are combined, V d, is the sum of the solution volumes: 50.0 Ml ml = ml. Now we can calculate the ion product and compare it to the K sp value: IP = [Ag + ] [Br ] = (0.033) (0.0013) = > = K sp IP > K sp, therefore, we predict that a precipitate of AgBr will form when the solutions are combined.

6 Worksheet: Solubility Equilibria I Name(s) 1. An experiment is conducted to determine the solubility of magnesium fluoride, and it is found that g of the compound will dissolve in ml water. What is K sp for MgF 2? 2. The solubility product constant for silver sulfate is at 25 C. What is the solubility (g/100 ml water) of the compound? 3. A solution that is M in barium chloride is added to a solution that is M in sodium sulfate. Equal volumes of both solutions were combined. Given that K sp = for barium sulfate, will precipitation occur or will the solution remain unsaturated?

7 Solubility Equilibria Worksheet: Solubility Equilibria II Name(s) 1. A number of factors can complicate calculations of equilibria involving slightly soluble salts, and these complications form the theme of this workshop. In this question, we want you to consider how the solubility of a salt is effected when it is dissolved in pure water versus when it is dissolved in a solution that contains one of the ions found in the slightly soluble salt. K sp = for copper(ii) carbonate. (a) What is the solubility of copper(ii) carbonate in pure water? Express your answer in g/100 ml. (b) Use Le Chatelier s principle to predict the shift that would occur in the copper(ii) carbonate equilibrium if carbonate ion were added to the system. (c) What is the solubility of copper(ii) carbonate in M sodium carbonate? (d) How does your prediction from Part (b) correspond with the numerical results from Parts (a) and (c)?

8 2. The solubility of slightly soluble salts can be effected by the formation of complex ions. A complex ion is composed of a central positively charged ion and attached electron-pair donor species. In a solution containing silver and chloride ions, for example, the dichloroargentate(i) ion forms: Ag + (aq) + 2 Cl (aq) AgCl 2 (aq) K = Of course, the equilibrium between the slightly soluble salt and its ions occurs simultaneously in the solution: AgCl(s) Ag + (aq) + Cl (aq) K sp = How will the solubility of a slightly soluble salt be effected if its ions form a complex ion? To answer this question, perform the following calculations: (a) Determine the g/100 ml solubility of silver chloride neglecting the effect of the complex ion formation. (b) Add the two equations to get the net overall reaction and calculate the resulting equilibrium constant. (c) Determine the g/100 ml solubility for the overall process. (d) Compare the solubilities. What effect does complex ion formation have on the solubility of the salt?

9 Solubility Equilibria 3. Consider these qualitative experimental results: (1) Very dilute solutions of Ba(NO 3 ) 2 (aq) and Na 2 CO 3 (aq) are poured into a large beaker half filled with pure water. A hazy cloud forms. (2) Very dilute solutions of Ba(NO 3 ) 2 (aq) and Na 2 CO 3 (aq) are poured into a large beaker half filled with KCl(aq) solution. The solution remains clear. a) What causes the hazy cloud in Experiment 1? b) Experiment 2 is an example of a phenomenon called the salt effect, where the solubility of a slightly soluble salt is increased by the presence of ions in the solution that are not common with the slightly soluble salt. In this case, potassium ions are attracted to the carbonate ions in the solution. Similarly, chloride ions are attracted to the barium ions. This keeps the barium and carbonate ions from combining to form a precipitate, as long as they are in low concentration relative to their solubility limit. Sketch a particulate-level diagram of this effect, and explain how your sketch illustrates the salt effect.

10 4. If we use the solubility product constant to predict the solubility of silver bromide in pure water, the result of the theoretically-based calculation matches the experimental result. On the other hand the experimentally determined solubility of silver carbonate does not match the solubility determined from a K sp calculation. a) K sp = for silver carbonate. Use this value to determine the theoretical solubility (g/100 ml) in pure water. b) Bromide ion is the conjugate base of a strong acid; carbonate ion is the conjugate base of a weak acid. How do these facts correlate with the theory/experiment results for silver bromide and silver carbonate? Do you expect silver carbonate to be more or less soluble than the K sp calculation would predict? Why? c) Assume that the carbonate ion reacts to form its conjugate acid in solution: CO 3 2 (aq) + H 2 O(l) HCO 3 (aq) + OH (aq) K = Calculate the g/100 ml solubility that should result from the combination of the two equilibrium systems.

11 Solubility Equilibria 5. Reconsider dissolving silver bromide and silver carbonate. If your objective was to get each of these slightly soluble compounds to dissolve, and you had available concentrated solutions of hydrochloric acid and hydrobromic acid, what would be the effect on each of the salts? Qualitatively consider all four possible combinations.

12 6. Another complicating factor in predicting solubilities from K sp values involves the formation of ion pairs in solution. An ion pair is an aqueous pair of ions that acts like a single particle in solution. The pair is formed by oppositely charged ions in the solution. When solid calcium sulfate is placed in pure water and allowed to come to equilibrium, the expected dissolving occurs to a small extent: CaSO 4 (s) Ca 2+ (aq) + SO 4 2 (aq) In addition, the solid dissolves to form ion pairs: CaSO 4 (s) Ca 2+ SO 4 2 (aq) where Ca 2+ SO 4 2 (aq) represents the ion pair formed from the calcium and sulfate ion. The ions in solution can also form ion pairs: Ca 2+ (aq) + SO 4 2 (aq) Ca 2+ SO 4 2 (aq) All three equilibria must be considered in order to understand the solubility of calcium sulfate. a) Does ion-pair formation increase or decrease the solubility of a slightly soluble salt? Explain. b) Ion-pair formation is greatest for highly charged ions and for small ions. List a few slightly soluble salts that you would expect to have a relatively large ion-pair effect and a few for which you would expect this effect to be relatively small.

Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria

Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria Chemistry 13 NT The most difficult thing to understand is the income tax. Albert Einstein 1 Chem 13 NT Solubility and Complex-ion Equilibria Module 1 Solubility Equilibria The Solubility Product Constant

More information

Molarity of Ions in Solution

Molarity of Ions in Solution APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.

More information

Solubility Product Constant

Solubility Product Constant Solubility Product Constant Page 1 In general, when ionic compounds dissolve in water, they go into solution as ions. When the solution becomes saturated with ions, that is, unable to hold any more, the

More information

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution. T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient

More information

Common Ion Effects. CH 3 CO 2 (aq) + Na + (aq)

Common Ion Effects. CH 3 CO 2 (aq) + Na + (aq) Common Ion Effects If two reactions both involve the same ion, then one reaction can effect the equilibrium position of the other reaction. The ion that appears in both reactions is the common ion. Buffers

More information

Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved. Sample Exercise 17.1 Calculating the ph When a Common Ion is Involved What is the ph of a solution made by adding 0.30 mol of acetic acid and 0.30 mol of sodium acetate to enough water to make 1.0 L of

More information

6 Reactions in Aqueous Solutions

6 Reactions in Aqueous Solutions 6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface

More information

General Chemistry II Chapter 20

General Chemistry II Chapter 20 1 General Chemistry II Chapter 0 Ionic Equilibria: Principle There are many compounds that appear to be insoluble in aqueous solution (nonelectrolytes). That is, when we add a certain compound to water

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent. TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present

More information

MOLARITY = (moles solute) / (vol.solution in liter units)

MOLARITY = (moles solute) / (vol.solution in liter units) CHEM 101/105 Stoichiometry, as applied to Aqueous Solutions containing Ionic Solutes Lect-05 MOLES - a quantity of substance. Quantities of substances can be expressed as masses, as numbers, or as moles.

More information

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:

More information

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11 SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

SAMPLE PROBLEM 8.1. Solutions of Electrolytes and Nonelectrolytes SOLUTION STUDY CHECK

SAMPLE PROBLEM 8.1. Solutions of Electrolytes and Nonelectrolytes SOLUTION STUDY CHECK Solutions of Electrolytes and Nonelectrolytes SAMPLE PROBLEM 8.1 Indicate whether solutions of each of the following contain only ions, only molecules, or mostly molecules and a few ions: a. Na 2 SO 4,

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions. Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT PURPOSE: 1. To determine experimentally the molar solubility of potassium acid tartrate in water and in a solution of potassium nitrate. 2. To examine the effect of a common ion on the solubility of slightly

More information

Chapter 16: Tests for ions and gases

Chapter 16: Tests for ions and gases The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the

More information

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ Experiment 5 Chemical Reactions OBJECTIVES 1. To observe the various criteria that are used to indicate that a chemical reaction has occurred. 2. To convert word equations into balanced inorganic chemical

More information

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties

More information

W1 WORKSHOP ON STOICHIOMETRY

W1 WORKSHOP ON STOICHIOMETRY INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of

More information

Name period Unit 9: acid/base equilibrium

Name period Unit 9: acid/base equilibrium Name period Unit 9: acid/base equilibrium 1. What is the difference between the Arrhenius and the BronstedLowry definition of an acid? Arrhenious acids give H + in water BronstedLowry acids are proton

More information

Experiment 1 Chemical Reactions and Net Ionic Equations

Experiment 1 Chemical Reactions and Net Ionic Equations Experiment 1 Chemical Reactions and Net Ionic Equations I. Objective: To predict the products of some displacement reactions and write net ionic equations. II. Chemical Principles: A. Reaction Types. Chemical

More information

Solubility of Salts - Ksp. Ksp Solubility

Solubility of Salts - Ksp. Ksp Solubility Solubility of Salts - Ksp We now focus on another aqueous equilibrium system, slightly soluble salts. These salts have a Solubility Product Constant, K sp. (We saw this in 1B with the sodium tetraborate

More information

Chemical Equations and Chemical Reactions. Chapter 8.1

Chemical Equations and Chemical Reactions. Chapter 8.1 Chemical Equations and Chemical Reactions Chapter 8.1 Objectives List observations that suggest that a chemical reaction has taken place List the requirements for a correctly written chemical equation.

More information

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V 44 CALCULATIONS INVOLVING SOLUTIONS INTRODUCTION AND DEFINITIONS Many chemical reactions take place in aqueous (water) solution. Quantities of such solutions are measured as volumes, while the amounts

More information

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe: Like a recipe: Balancing Eqns Reactants Products 2H 2 (g) + O 2 (g) 2H 2 O(l) coefficients subscripts Balancing Eqns Balancing Symbols (s) (l) (aq) (g) or Yields or Produces solid liquid (pure liquid)

More information

80. Testing salts for anions and cations

80. Testing salts for anions and cations Classic chemistry experiments 203 80. Testing salts for anions and cations Topic Qualitative analysis. Timing Description 12 hours. Students attempt to identify the anions and cations present in a salt

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules

More information

Chemistry Ch 15 (Solutions) Study Guide Introduction

Chemistry Ch 15 (Solutions) Study Guide Introduction Chemistry Ch 15 (Solutions) Study Guide Introduction Name: Note: a word marked (?) is a vocabulary word you should know the meaning of. A homogeneous (?) mixture, or, is a mixture in which the individual

More information

Properties of Aqueous Solutions of Acids and Bases. CHAPTER 10 Acids, Bases and Salts. Properties of Aqueous Solutions of Acids and Bases

Properties of Aqueous Solutions of Acids and Bases. CHAPTER 10 Acids, Bases and Salts. Properties of Aqueous Solutions of Acids and Bases CAPTER Acids, Bases and Salts Properties of Aqueous Solutions of Acids and Bases Strong and Weak Acids Acids are substances that generate in aqueous solutions. Strong acids ionize 0% in water. That is,

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Unit 10A Stoichiometry Notes

Unit 10A Stoichiometry Notes Unit 10A Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations

More information

UNIT (6) ACIDS AND BASES

UNIT (6) ACIDS AND BASES UNIT (6) ACIDS AND BASES 6.1 Arrhenius Definition of Acids and Bases Definitions for acids and bases were proposed by the Swedish chemist Savante Arrhenius in 1884. Acids were defined as compounds that

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base A4 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA 1. LEWIS acid electron pair acceptor H, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N BF 3 see

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

Chemical Reactions in Water Ron Robertson

Chemical Reactions in Water Ron Robertson Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds

More information

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19) Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H

More information

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution. Chapter 8 Acids and Bases Definitions Arrhenius definitions: An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

More information

Description of the Mole Concept:

Description of the Mole Concept: Description of the Mole Concept: Suppose you were sent into the store to buy 36 eggs. When you picked them up you would get 3 boxes, each containing 12 eggs. You just used a mathematical device, called

More information

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, Chemistry 11, McGraw-Hill Ryerson, 2001 SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001 1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin? 2. A sample

More information

MOLES AND MOLE CALCULATIONS

MOLES AND MOLE CALCULATIONS 35 MOLES ND MOLE CLCULTIONS INTRODUCTION The purpose of this section is to present some methods for calculating both how much of each reactant is used in a chemical reaction, and how much of each product

More information

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points) CHEMISTRY 123-07 Midterm #1 Answer key October 14, 2010 Statistics: Average: 74 p (74%); Highest: 97 p (95%); Lowest: 33 p (33%) Number of students performing at or above average: 67 (57%) Number of students

More information

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

Chemistry 3202. Unit 2 Acids and Bases

Chemistry 3202. Unit 2 Acids and Bases Chemistry 3202 Unit 2 Acids and Bases Definitions of Acids and Bases An operational definition is one that is based on the observable properties, behaviours or uses of an entity. The earliest definitions

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base 2816 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA LEWIS acid electron pair acceptor H +, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N + BF

More information

Chapter 4 Chemical Reactions

Chapter 4 Chemical Reactions Chapter 4 Chemical Reactions I) Ions in Aqueous Solution many reactions take place in water form ions in solution aq solution = solute + solvent solute: substance being dissolved and present in lesser

More information

Writing Chemical Equations

Writing Chemical Equations Writing Chemical Equations Chemical equations for solution reactions can be written in three different forms; molecular l equations, complete ionic i equations, and net ionic equations. In class, so far,

More information

Mole Notes.notebook. October 29, 2014

Mole Notes.notebook. October 29, 2014 1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the

More information

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 1. Is H 3 O + polar or non-polar? (1 point) a) Polar b) Non-polar CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 2. The bond strength is considerably greater in HF than in the other three hydrogen halides

More information

ATOMS. Multiple Choice Questions

ATOMS. Multiple Choice Questions Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)

More information

Stoichiometry and Aqueous Reactions (Chapter 4)

Stoichiometry and Aqueous Reactions (Chapter 4) Stoichiometry and Aqueous Reactions (Chapter 4) Chemical Equations 1. Balancing Chemical Equations (from Chapter 3) Adjust coefficients to get equal numbers of each kind of element on both sides of arrow.

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Name: Class: Date: 2 4 (aq)

Name: Class: Date: 2 4 (aq) Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of

More information

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g) 1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)

More information

CHEMICAL REACTIONS. Chemistry 51 Chapter 6

CHEMICAL REACTIONS. Chemistry 51 Chapter 6 CHEMICAL REACTIONS A chemical reaction is a rearrangement of atoms in which some of the original bonds are broken and new bonds are formed to give different chemical structures. In a chemical reaction,

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

Formulae, stoichiometry and the mole concept

Formulae, stoichiometry and the mole concept 3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be

More information

Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change

Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change Chemical Reactions Chemical Equations Chemical reactions describe processes involving chemical change The chemical change involves rearranging matter Converting one or more pure substances into new pure

More information

Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!!

Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!! Acid/Base Reactions some covalent compounds have weakly bound H atoms and can lose them to water (acids) some compounds produce OH in water solutions when they dissolve (bases) acid/base reaction are very

More information

Chapter 14 - Acids and Bases

Chapter 14 - Acids and Bases Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry

More information

Calculating Atoms, Ions, or Molecules Using Moles

Calculating Atoms, Ions, or Molecules Using Moles TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

More information

Chemistry: Chemical Equations

Chemistry: Chemical Equations Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

More information

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS 4.1 Formula Masses Recall that the decimal number written under the symbol of the element in the periodic table is the atomic mass of the element. 1 7 8 12

More information

Answer Key, Problem Set 5 (With explanations)--complete

Answer Key, Problem Set 5 (With explanations)--complete Chemistry 122 Mines, Spring 2016 Answer Key, Problem Set 5 (With explanations)complete 1. NT1; 2. NT2; 3. MP; 4. MP (15.38); 5. MP (15.40); 6. MP (15.42); 7. NT3; 8. NT4; 9. MP; 10. NT5; 11. NT6; 12. MP;

More information

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN - QUESTION (2012:3) (i) Complete the table below showing the conjugate acids and bases. Conjugate acid Conjugate base - HCO 3 2 CO 3 H 2 O OH HCN CN - (ii) HPO 4 2 (aq) Write equations for the reactions

More information

Santa Monica College Chemistry 11

Santa Monica College Chemistry 11 Types of Reactions Objectives The objectives of this laboratory are as follows: To perform and observe the results of a variety of chemical reactions. To become familiar with the observable signs of chemical

More information

Aqueous Ions and Reactions

Aqueous Ions and Reactions Aqueous Ions and Reactions (ions, acids, and bases) Demo NaCl(aq) + AgNO 3 (aq) AgCl (s) Two clear and colorless solutions turn to a cloudy white when mixed Demo Special Light bulb in water can test for

More information

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present. Chapter 16 Acids and Bases Concept Check 16.1 Chemists in the seventeenth century discovered that the substance that gives red ants their irritating bite is an acid with the formula HCHO 2. They called

More information

Physical Changes and Chemical Reactions

Physical Changes and Chemical Reactions Physical Changes and Chemical Reactions Gezahegn Chaka, Ph.D., and Sudha Madhugiri, Ph.D., Collin College Department of Chemistry Objectives Introduction To observe physical and chemical changes. To identify

More information

Stoichiometry. Can You Make 2.00 Grams of a Compound?

Stoichiometry. Can You Make 2.00 Grams of a Compound? Introduction Stoichiometry... Can You Make 2.00 Grams of a Compound? Catalog No. AP4554 Publication No. 4554 Use your skills of predicting chemical reactions, balancing equations, and calculating molar

More information

Atomic mass is the mass of an atom in atomic mass units (amu)

Atomic mass is the mass of an atom in atomic mass units (amu) Micro World atoms & molecules Laboratory scale measurements Atomic mass is the mass of an atom in atomic mass units (amu) By definition: 1 atom 12 C weighs 12 amu On this scale 1 H = 1.008 amu 16 O = 16.00

More information

WRITING CHEMICAL FORMULA

WRITING CHEMICAL FORMULA WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.

More information

Writing and Balancing Chemical Equations

Writing and Balancing Chemical Equations Name Writing and Balancing Chemical Equations Period When a substance undergoes a chemical reaction, chemical bonds are broken and new bonds are formed. This results in one or more new substances, often

More information

Unit 2: Quantities in Chemistry

Unit 2: Quantities in Chemistry Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find

More information

Chapter 7: Chemical Reactions

Chapter 7: Chemical Reactions Chapter 7 Page 1 Chapter 7: Chemical Reactions A chemical reaction: a process in which at least one new substance is formed as the result of a chemical change. A + B C + D Reactants Products Evidence that

More information

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro

More information

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which statement concerning Arrhenius acid-base theory is not correct? A) Acid-base reactions must

More information

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.

More information

Solubility Product. Application of Equilibrium concepts

Solubility Product. Application of Equilibrium concepts Solubility Product Application of Equilibrium concepts Introduction In even the most insoluble compounds, a few ions at the least dissolve. We can treat dissolving as a mini reaction in which the cation(s)

More information

Unit 9 Stoichiometry Notes (The Mole Continues)

Unit 9 Stoichiometry Notes (The Mole Continues) Unit 9 Stoichiometry Notes (The Mole Continues) is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations

More information

Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V.

Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V. Voltaic Cells Introduction In this lab you will first prepare a set of simple standard half-cells and then measure the voltage between the half-cells with a voltmeter. From this data you will be able to

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme

Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme AQA Qualifications AS Chemistry Paper (7404/): Inorganic and Physical Chemistry Mark scheme 7404 Specimen paper Version 0.6 MARK SCHEME AS Chemistry Specimen paper Section A 0. s 2 2s 2 2p 6 3s 2 3p 6

More information

HOMEWORK 4A. Definitions. Oxidation-Reduction Reactions. Questions

HOMEWORK 4A. Definitions. Oxidation-Reduction Reactions. Questions HOMEWORK 4A Oxidation-Reduction Reactions 1. Indicate whether a reaction will occur or not in each of following. Wtiring a balcnced equation is not necessary. (a) Magnesium metal is added to hydrochloric

More information

CHM1 Review for Exam 12

CHM1 Review for Exam 12 Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and

More information

CP Chemistry Review for Stoichiometry Test

CP Chemistry Review for Stoichiometry Test CP Chemistry Review for Stoichiometry Test Stoichiometry Problems (one given reactant): 1. Make sure you have a balanced chemical equation 2. Convert to moles of the known substance. (Use the periodic

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation.

H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation. CEMICAL REACTIONS 1 ydrogen + Oxygen Water 2 + O 2 2 O reactants product(s) reactant substance before chemical change product substance after chemical change Conservation of Mass During a chemical reaction,

More information

4.1 Aqueous Solutions. Chapter 4. Reactions in Aqueous Solution. Electrolytes. Strong Electrolytes. Weak Electrolytes

4.1 Aqueous Solutions. Chapter 4. Reactions in Aqueous Solution. Electrolytes. Strong Electrolytes. Weak Electrolytes Chapter 4 Reactions in Aqueous Solution 4.1 Aqueous Solutions Solution homogeneous mixture of 2 or more substances Solute the substance present in a smaller amount (usually solid in Chap. 4) Solvent the

More information

Experiment 3 Limiting Reactants

Experiment 3 Limiting Reactants 3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The

More information

Chapter 8: Chemical Equations and Reactions

Chapter 8: Chemical Equations and Reactions Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical

More information

4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2

4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2 4. Stoichiometry 1. Stoichiometric Equations 2. Limiting Reagent Problems 3. Percent Yield 4. Limiting Reagent Problems 5. Concentrations of Solutes 6. Solution Stoichiometry 7. ph and Acid Base Titrations

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations

Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations Chem 31 Fall 2002 Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Writing and Balancing Chemical Equations 1. Write Equation in Words -you cannot write an equation unless you

More information

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase.

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase. Skills Worksheet Concept Review Section: Calculating Quantities in Reactions Complete each statement below by writing the correct term or phrase. 1. All stoichiometric calculations involving equations

More information