Section 3.4. is itself a function from R n to R. The partial derivatives of f

Size: px
Start display at page:

Download "Section 3.4. is itself a function from R n to R. The partial derivatives of f"

Transcription

1 The Calculus of Functions of Several Variables Section 3.4 Second-Order Approximations In one-variable calculus, Taylor polynomials provide a natural way to extend best affine approximations to higher-order polynomial approximations. It is possible to generalize these ideas to scalar-valued functions of two or more variables, but the theory rapidly becomes involved technical. In this section we will be content merely to point the way with a discussion of second-degree Taylor polynomials. Even at this level, it is best to leave full explanations for a course in advanced calculus. Higher-order derivatives The first step is to introduce higher order derivatives. If f : R n R has partial derivatives which exist on an open set U, then, for any i = 1, 2, 3,..., n, f x i is itself a function from R n to R. The partial derivatives of f x i, if they exist, are called second-order partial derivatives f of f. We may denote the partial derivative of x i with respect to x j, j = 1, 2, 3,..., evaluated at a point x, by either 2 x j x i fx), or f xi x j x), or D xi x j fx). Note the order in which the variables are written; it is possible that differentiating first with respect to x i second with respect x j will yield a different result than if the order were reversed. If j = i, we will write 2 fx) for 2 x 2 x i i x i fx). It is, of course, possible to extend this notation to third, fourth, higher-order derivatives. so Suppose fx, y) = x 2 y 3x sin2y). Then f x x, y) = 2xy 3 sin2y) f y x, y) = x 2 6x cos2y), f xx x, y) = 2y, f xy x, y) = 2x 6 cos2y), f yy x, y) = 12x sin2y), f yx x, y) = 2x 6 cos2y). Note that, in this example, f xy x, y) = f yx x, y). For an example of a third-order derivative, f yxy x, y) = 12 sin2y). 1 Copyright c by Dan Sloughter 2001

2 2 Second-Order Approximations Section 3.4 Also, so Suppose w = xy 2 z 3 4xy logz). Then, for example, w y x = ) w = y x y y2 z 3 4y logz)) = 2yz 3 4 logz) w z 2 = z w x y = x ) w = 3xy 2 z 2 4xy ) = 6xy 2 z + 4xy z z z z 2. ) w = y x 2xyz3 4x logz)) = 2yz 3 4 logz), w y x = 2 w x y. In both of our examples we have seen instances where mixed second partial derivatives, that is, second-order partial derivatives with respect to two different variables, taken in different orders are equal. This is not always the case, but does follow if we assume that both of the mixed partial derivatives in question are continuous. Definition We say a function f : R n R is C 2 on an open set U if f xj x i is continuous on U for each i = 1, 2,..., n j = 1, 2,..., n. Theorem If f is C 2 on an open ball containing a point c, then for i = 1, 2,..., n j = 1, 2,..., n. x j x i fc) = 2 x i x j fc) Although we have the tools to verify this result, we will leave the justification for a more advanced course. We shall see that it is convenient to use a matrix to arrange the second partial derivatives of a function f. If f : R n R, there are n 2 second partial derivatives this matrix will be n n. Definition Suppose the second-order partial derivatives of f : R n R all exist at the point c. We call the n n matrix x 2 fc) fc) fc) fc) 1 x 2 x 1 x 3 x 1 x n x 1 fc) x 1 x 2 x 2 fc) fc) fc) 2 x 3 x 2 x n x 2 Hfc) = fc) fc) x 1 x 3 x 2 x 3 x 2 fc) fc) 3.4.1) 3 x n x fc) fc) fc) fc) x 1 x n x 2 x n x 3 x n the Hessian of f at c. x 2 n

3 Section 3.4 Second-Order Approximations 3 Put another way, the Hessian of f at c is the n n matrix whose ith row is f xi c). Suppose fx, y) = x 2 y 3x sin2y). Then, using our results from above, [ ] fxx x, y) f Hfx, y) = xy x, y) 2y 2x 6 cosy) =. f yx x, y) f yy x, y) 2x 6 cos2y) 12x sin2y) Thus, for example, Hf2, 0) = Suppose f : R n R is C 2 on an open ball B 2 c, r) let h = h 1, h 2 ) be a point with h < r. If we define ϕ : R R by ϕt) = fc + th), then ϕ0) = fc) ϕ1) = fc+h). From the one-variable calculus version of Taylor s theorem, we know that ϕ1) = ϕ0) + ϕ 0) ϕ s), 3.4.2) where s is a real number between 0 1. Using the chain rule, we have ϕ t) = fc + th) d dt c + th) = fc + th) h = f xc + th)h 1 + f y c + th)h ) where we have used the notation ϕ t) = h 1 f x c + th) h + h 2 f y c + th) h = h 1 f x c + th) + h 2 f y c + th) h fxx c + th) f = [ h 1 h 2 ] xy c + th) h1 f yx c + th) f yy c + th) = h T Hfc + th)h, 3.4.4) h = [ h1 h 2 ] h T = [ h 1 h 2 ], the latter being called the transpose of h see Problem 12 of Section 1.6). Hence ϕ 0) = fc) h 3.4.5) h 2 ϕ s) = 1 2 ht Hfc + sh)h, 3.4.6) so, substituting into 3.4.2), we have fc + h) = ϕ1) = fc) + fc) h ht Hfc + sh)h ) This result, a version of Taylor s theorem, is easily generalized to higher dimensions.

4 4 Second-Order Approximations Section 3.4 Theorem Suppose f : R n R is C 2 on an open ball B n c, r) let h be a point with h < r. Then there exists a real number s between 0 1 such that fc + h) = fc) + fc) h ht Hfc + sh)h ) If we let x = c + h evaluate the Hessian at c, 3.4.8) becomes a polynomial approximation for f. Definition If f : R n R is C 2 on an open ball about the point c, then we call P 2 x) = fc) + fc) x c) x c)t Hfc)x c) 3.4.9) the second-order Taylor polynomial for f at c. compute To find the second-order Taylor polynomial for fx, y) = e 2x+y at 0, 0), we from which it follows that Then fx, y) = 2e 2x+y, e 2x+y ) [ 4e 2x+y 2e Hfx, y) = 2x+y 2e 2x+y f0, 0) = 2, 1) Hf0, 0) = e 2x+y P 2 x, y) = f0, 0) + f0, 0) x, y) + 1 x 2 [ x y ] Hf0, 0) y = 1 + 2, 1) x, y) x 2 [ x y ] 2 1 y = 1 2x + y = 1 4x 2y 2 [ x y ] 2x + y = 1 2x + y x2 2xy 2xy + y 2 ) = 1 2x + y + 2x 2 2xy y2. ], Symmetric matrices Note that if f : R 2 R is C 2 on an open ball about the point c, then the entry in the ith row jth column of Hfc) is equal to the entry in the jth row ith column of Hfc) since x j x i fc) = 2 x i x j fc).

5 Section 3.4 Second-Order Approximations 5 Definition We call a matrix [a ij ] with the property that a ij = a ji for all i j a symmetric matrix. The matrices are both symmetric, while the matrices are not symmetric The Hessian of any C 2 scalar valued function is a symmetric matrix. For example, the Hessian of fx, y) = e 2x+y, namely, is symmetric for any value of x, y). [ 4e 2x+y 2e Hfx, y) = 2x+y 2e 2x+y e 2x+y Given an n n symmetric matrix M, the function q : R n R defined by qx) = x T Mx is a quadratic polynomial. When M is the Hessian of some function f, this is the form of the quadratic term in the second-order Taylor polynomial for f. In the next section it will be important to be able to determine when this term is positive for all x 0 or negative for all x 0. ], Definition Let M be an n n symmetric matrix define q : R n R by qx) = x T Mx. We say M is positive definite if qx) > 0 for all x 0 in R n, negative definite if qx) < 0 for all x 0 in R n, indefinite if there exists an x 0 for which qx) > 0 an x 0 for which qx) < 0. Otherwise, we say M is nondefinite.

6 6 Second-Order Approximations Section 3.4 In general it is not easy to determine to which of these categories a given symmetric matrix belongs. However, the important special case of 2 2 matrices is straightforward. Consider a b b c let qx, y) = [ x y ] M If a 0, then we may complete the square in ) to obtain qx, y) = a x 2 + 2b ) a xy + cy 2 = a x + b ) ) 2 a y b2 a 2 y2 + cy 2 = a x + b ) 2 a y + = a x + ba ) 2 y + = a x = ax 2 + 2bxy + cy ) y c b2 a ac b2 y 2 a ) y 2 x + b ) 2 a y + detm) y ). a Now suppose detm) > 0. Then from ) we see that qx, y) > 0 for all x, y) 0, 0) if a > 0 qx, y) < 0 for all x, y) 0, 0) if a < 0. That is, M is positive definite if a > 0 negative definite if a < 0. If detm) < 0, then q1, 0) q b a, 1) will have opposite signs, so M is indefinite. Finally, suppose detm) = 0. Then qx, y) = a x + b ) 2 a y, so qx, y) = 0 when x = b ay. Moreover, qx, y) has the same sign as a for all other values of x, y). Hence in this case M is nondefinite. Similar analyses for the case a = 0 give us the following result. Theorem Suppose a b. b c If detm) > 0, then M is positive definite if a > 0 negative definite if a < 0. detm) < 0, then M is indefinite. If detm) = 0, then M is nondefinite. The matrix is positive definite since detm) = 5 > 0 2 > 0. If

7 Section 3.4 Second-Order Approximations 7 The matrix is negative definite since detm) = 7 > 0 2 < 0. The matrix is indefinite since detm) = 7 < 0. The matrix is nondefinite since detm) = 0. In the next section we will see how these ideas help us identify local extreme values for scalar valued functions of two variables. Problems 1. Let fx, y) = x 3 y 2 4x 2 e 3y. Find the following. a) x y fx, y) b) fx, y) y x c) x 2 fx, y) d) 3 fx, y) x y x e) 3 x y 2 fx, y) f) 3 fx, y) y3 g) f yy x, y) h) f yxy x, y) xy 2. Let fx, y, z) = x 2 + y 2. Find the following. + z2 a) z x fx, y, z) b) fx, y, z) y z c) z 2 fx, y, z) d) 3 fx, y, z) x y z e) f zyx x, y, z) f) f yyy x, y, z) 3. Find the Hessian of each of the following functions. a) fx, y) = 3x 2 y 4xy 3 b) gx, y) = 4e x cos3y) c) gx, y, z) = 4xy 2 z 3 d) fx, y, z) = logx 2 + y 2 + z 2 ) 4. Find the second-order Taylor polynomial for each of the following at the point c. a) fx, y) = xe y, c = 0, 0) b) gx, y) = x sinx + y), c = 0, 0)

8 8 Second-Order Approximations Section 3.4 c) fx, y) = 1 x + y, c = 1, 1) d) gx, y, z) = ex 2y+3z, c = 0, 0, 0) 5. Classify each of the following symmetric 2 2 matrices as either positive definite, negative definite, indefinite, or nondefinite a) b) c) d) e) f) Let M be an n n symmetric nondefinite matrix define q : R n R by qx) = x T Mx. Explain why 1) there exists a vector a 0 such that qa) = 0 2) either qx) 0 for all x in R n or qx) 0 for all x in R n. 7. Suppose f : R n R is C 2 on an open ball B n c, r), fc) = 0, Hfx) is positive definite for all x in B n c, r). Show that fc) < fx) for all x in B n c, r). What would happen if Hfx) were negative definite for all x in B n c, r)? What does this say in the case n = 1? 8. Let a) Show that f x 0, y) = y for all y. b) Show that f y x, 0) = x for all x. c) Show that f yx 0, 0) f xy 0, 0). d) Is f C 2? xyx 2 y 2 ) fx, y) = x 2 + y 2, if x, y) 0, 0), 0, if x, y) = 0, 0).

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

F Matrix Calculus F 1

F Matrix Calculus F 1 F Matrix Calculus F 1 Appendix F: MATRIX CALCULUS TABLE OF CONTENTS Page F1 Introduction F 3 F2 The Derivatives of Vector Functions F 3 F21 Derivative of Vector with Respect to Vector F 3 F22 Derivative

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

Inner products on R n, and more

Inner products on R n, and more Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Solving square systems of linear equations; inverse matrices. Linear algebra is essentially about solving systems of linear equations,

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

Recognizing Types of First Order Differential Equations E. L. Lady

Recognizing Types of First Order Differential Equations E. L. Lady Recognizing Types of First Order Differential Equations E. L. Lady Every first order differential equation to be considered here can be written can be written in the form P (x, y)+q(x, y)y =0. This means

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

Polynomial Invariants

Polynomial Invariants Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

Theory of Matrices. Chapter 5

Theory of Matrices. Chapter 5 Chapter 5 Theory of Matrices As before, F is a field We use F[x] to represent the set of all polynomials of x with coefficients in F We use M m,n (F) and M m,n (F[x]) to denoted the set of m by n matrices

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

British Columbia Institute of Technology Calculus for Business and Economics Lecture Notes

British Columbia Institute of Technology Calculus for Business and Economics Lecture Notes British Columbia Institute of Technology Calculus for Business and Economics Lecture Notes Kevin Wainwright PhD August 17, 2012 Contents 1 Matrix Algebra 4 1.1 Matrices and Vectors.........................

More information

Notes on Matrix Calculus

Notes on Matrix Calculus Notes on Matrix Calculus Paul L. Fackler North Carolina State University September 27, 2005 Matrix calculus is concerned with rules for operating on functions of matrices. For example, suppose that an

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R 12

QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R 12 QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R 12 JOAN C. ARTÉS1, JAUME LLIBRE 1 AND NICOLAE VULPE 2 Abstract. A quadratic polynomial

More information

15. Symmetric polynomials

15. Symmetric polynomials 15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

CURVE FITTING LEAST SQUARES APPROXIMATION

CURVE FITTING LEAST SQUARES APPROXIMATION CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

More information

1 3 4 = 8i + 20j 13k. x + w. y + w

1 3 4 = 8i + 20j 13k. x + w. y + w ) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations 1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those 1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1 5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information