Section 1.5: Venn Diagrams - Shading

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Section 1.5: Venn Diagrams - Shading A Venn diagram is a way to graphically represent sets and set operations. Each Venn diagram begins with a rectangle representing the universal set. Then each set is represented by a circle inside the rectangle. We will only be studying with Venn diagrams that have 2 or 3 overlapping circles (sets). There are Venn diagrams that contain more than 3 circles (sets). In this section we will learn how to graphically represent union, intersection and complement of sets using Venn diagrams. We will start with Venn diagrams that have two sets as they are easier. Venn diagrams for two sets: Here is a Venn diagram for two sets A and B. The universal set is depicted with a rectangle. The two sets A and B are depicted with overlapping circles inside the rectangle. This is a Venn diagram associated with the set A. Notice we shade the set that the Venn diagram depicts.

2 Now for some set operations. Example: Create a Venn diagram for A. That is shade the area depicted by the set A. Recall that the complement of A (denoted A ) is everything in the universal set that is not in set A. We shade everything except what's in the A circle. Here is the Venn diagram that depicts set A. Example: Create a Venn diagram for A B. To do this: first create a shaded Venn diagram for each set described in the problem. I will create a Venn diagram for set A and another for set B. Now put them together. Notice that I darkened the area that is shaded in both diagrams. This is a union problem so anything that gets shaded at least once is in the union, so here's the Venn diagram that shows the answer. A B

3 Example: Create a Venn diagram for A B. First create a shaded Venn diagram for each set described in the problem. Now put them together. This is an intersection problem. The final Venn diagram should be shaded only where the two sets cross. Here is the answer: A B

4 There are the basics, now let's try a couple that are more involved. Example: Create a Venn diagram for A B First create a Venn diagram for each set described in the problem. A B Next, put them together. The intersection is the common region that is shaded. Here is my final answer. A B

5 Example: Find a Venn diagram for (A B). First shade what's in the parenthesis, that is A B. (I took this shading from an earlier example.) A B Now take the complement of that set. The complement is the region that is not already shaded. This is my answer. (A B). Homework #1-9: Sketch the region. 1) A B 2) A B 3) A B 4) A B 5) (A B) 6) (A B ) 7) (A B) 8) (A B ) 9) A B

6 Venn Diagrams for 3 Sets: Here's the beginning Venn diagram associated with 3 sets. Complements, unions and intersections are handled in the same way as they were with 2 set Venn diagrams. Here is the Venn diagram associated with the set A. Notice we shade the inside of the A circle. Example: Create a Venn diagram for A. Recall that the complement of A is everything that is in the universal set but not in the set A, so we shade everything except what's in the circle A.

7 Example: Create a Venn diagram that represents A B C. To do a Venn diagram for a union of three sets, first shade each set. A B C Now put them together Anything that gets shaded at least once is in the union, so here's the answer. A B C

8 Example: Create a Venn diagram for A B C. We need to work from left to right. First we will find A B First shade each set. A B Now put them together A B is the region where the two graphs overlap. A B

9 Next put the graphs of A B and of C next to each other. A B C Put the graphs together The union consists of any region that is shaded. This is my answer. A B C

10 Example: Create a Venn diagram for A B C. Let s work from left to right. Find A B. Create a diagram for each set A B Put the sets together. A B is the region where the two graphs overlap. A B

11 Next we put the graphs for A B and C next to each other. A B C Now put them together. We are finding the union of the two sets. Anything that gets shaded is part of my answer. Here is the answer. A B C

12 Example: Sketch (A B) C We need to work on the inside of the parenthesis of (A B) first. We will first graph A B First shade each set A B Now put them together. We are finding the union of the two sets. Anything that gets shaded is part of my answer. This is a diagram for A B Now we can find (A B), which is just the complement of the set A B, which is anything not shaded in our last drawing. (A B)

13 Now we can get back to the problem: (A B) C Put the sets (A B) and C next to each other. (A B) C Now put the graphs together Remember the intersection only includes the region where the shadings overlap. Here is the answer. (A B) C

14 Homework #10-23: Sketch the shaded region. 10) A B C 11) A B C 12) A B C 13) A B C 14) A B C 15) A B C 16) (B C) A 17) (A B) C 18) B (A C) 19) A (B C) 20) B (A C) 21) A (B C) 22) B (A C) 23) A (B C) Answers: 1) 3) 5)

15 7) 9) 11) 13) 15)

16 17) 19) 21) 23)

Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE

Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,

Set Theory: Shading Venn Diagrams Venn diagrams are representations of sets that use pictures. We will work with Venn diagrams involving two sets (two-circle diagrams) and three sets (three-circle diagrams).

Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

LESSON SUMMARY. Set Operations and Venn Diagrams

LESSON SUMMARY CXC CSEC MATHEMATICS UNIT Three: Set Theory Lesson 4 Set Operations and Venn Diagrams Textbook: Mathematics, A Complete Course by Raymond Toolsie, Volumes 1 and 2. (Some helpful exercises

VENN DIAGRAMS. Condition #1 Condition #2 A B C. Answer: B and C have reflection symmetry. C and D have at least one pair of parallel sides.

VENN DIAGRAMS VENN DIAGRAMS AND CLASSIFICATIONS A Venn diagram is a tool used to classify objects. It is usually composed of two or more circles that represent different conditions. An item is placed or

4.1. Sets. Introduction. Prerequisites. Learning Outcomes. Learning Style

ets 4.1 Introduction If we can identify a property which is common to several objects, it is often useful to group them together. uch a grouping is called a set. Engineers for example, may wish to study

The Mathematics Driving License for Computer Science- CS10410

The Mathematics Driving License for Computer Science- CS10410 Venn Diagram, Union, Intersection, Difference, Complement, Disjoint, Subset and Power Set Nitin Naik Department of Computer Science Venn-Euler

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

) ( ) Thus, (, 4.5] [ 7, 6) Thus, (, 3) ( 5, ) = (, 6). = ( 5, 3).

152 Sect 10.1 - Compound Inequalities Concept #1 Union and Intersection To understand the Union and Intersection of two sets, let s begin with an example. Let A = {1, 2,,, 5} and B = {2,, 6, 8}. Union

Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish

2015 Junior Certificate Higher Level Official Sample Paper 1

2015 Junior Certificate Higher Level Official Sample Paper 1 Question 1 (Suggested maximum time: 5 minutes) The sets U, P, Q, and R are shown in the Venn diagram below. (a) Use the Venn diagram to list

Clicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Tuesday, 1/21/14 General course Information Sets Reading: [J] 1.1 Optional: [H] 1.1-1.7 Exercises: Do before next class; not to hand in [J] pp. 12-14:

Math 117 Chapter 7 Sets and Probability

Math 117 Chapter 7 and Probability Flathead Valley Community College Page 1 of 15 1. A set is a well-defined collection of specific objects. Each item in the set is called an element or a member. Curly

THE LANGUAGE OF SETS AND SET NOTATION

THE LNGGE OF SETS ND SET NOTTION Mathematics is often referred to as a language with its own vocabulary and rules of grammar; one of the basic building blocks of the language of mathematics is the language

+ Section 6.2 and 6.3

Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

Lesson 22: Solution Sets to Simultaneous Equations

Student Outcomes Students identify solutions to simultaneous equations or inequalities; they solve systems of linear equations and inequalities either algebraically or graphically. Classwork Opening Exercise

GRDE 7 MTH Lesson 2.1: Union and Intersection of Sets Time: 1.5 hours Pre-requisite Concepts: Whole Numbers, definition of sets, Venn diagrams bout the Lesson: fter learning some introductory concepts

Advanced FX Draw Concepts The Mathematics Teacher's Drawing Program

The Mathematics Teacher's Drawing Program User's Guide by Efofex Software Efofex Software PO Box 7 Waroona WA 6215 Australia Fax: +61 8 9733 2460 Email: info@efofex.com Web: www.efofex.com All rights reserved.

Tessellations. A tessellation is created when a shape is repeated over and over again to cover the plane without any overlaps or gaps.

Tessellations Katherine Sheu A tessellation is created when a shape is repeated over and over again to cover the plane without any overlaps or gaps. 1. The picture below can be extended to a tessellation

7. Solving Linear Inequalities and Compound Inequalities

7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing

Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then

Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance

Coimisiún na Scrúduithe Stáit State Examinations Commission. Junior Certificate Examination 2015 Sample Paper. Mathematics

2015. S34 S Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination 2015 Mathematics Paper 1 Higher Level Time: 2 hours, 30 minutes 300 marks Examination number Running

7-6: Solving Open Sentences Involving Absolute Value. 7-6: Solving Open Sentences Involving Absolute Value

OBJECTIVE: You will be able to solve open sentences involving absolute value and graph the solutions. We need to start with a discussion of what absolute value means. Absolute value is a means of determining

The Language of Mathematics

CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

Multiplying a Fraction by a Whole Number

Key Concepts Multiplying Fractions Objective Teach students to multiply fractions. Lesson - Note to the Teacher Multiplying fractions is a little more difficult conceptually than adding fractions, but

3-6 Solving Compound Inequalities

Warm Up Solve each inequality. 1. x + 3 10 2. 23 < 2x + 3 Solve each inequality and graph the solutions. 3. 4x + 1 25 4. 0 3x + 3 Learning Targets Solve compound inequalities with one variable. Graph solution

Packet: Sets and Venn Diagrams

Packet: Sets and Venn Diagrams Standards covered: *MA.912.D.7.1 Perform set operations such as union and intersection, complement, and cross product. *MA.912.D.7.2 Use Venn diagrams to explore relationships

DO NOW Geometry Regents Lomac Date. due. Coordinate Plane: Equation of a Circle

DO NOW Geometry Regents Lomac 2014-2015 Date. due. Coordinate Plane: Equation of a Circle 8.5 (DN) TEAR OFF The Circle PAGE AND THEN DO THE DO NOW ON BACK OF PACKET (1) What do right triangles have to

Module: Mathematical Reasoning

Module: Mathematical Reasoning Lesson Title: Using Nets for Finding Surface Area Objectives and Standards Students will: Draw and construct nets for 3-D objects. Determine the surface area of rectangular

Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.

Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in

5 Systems of Equations

Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

Florida Department of Education/Office of Assessment January 2012. Algebra 1 End-of-Course Assessment Achievement Level Descriptions

Florida Department of Education/Office of Assessment January 2012 Algebra 1 End-of-Course Assessment Achievement Level Descriptions Algebra 1 EOC Assessment Reporting Category Functions, Linear Equations,

Sets and set operations

CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used

The Sibling Experience

The Sibling Experience Every member of the family plays an important role. For any child (or grown-up!), sometimes it s hard to be a sibling! That s why it s so important to have ongoing communication

What is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13

What is a set? Sets CS 231 Dianna Xu set is a group of objects People: {lice, ob, Clara} Colors of a rainbow: {red, orange, yellow, green, blue, purple} States in the S: {labama, laska, Virginia, } ll

Compound Inequalities. AND/OR Problems

Compound Inequalities AND/OR Problems There are two types of compound inequalities. They are conjunction problems and disjunction problems. These compound inequalities will sometimes appear as two simple

3.1/3.2: Solving Inequalities and Their Graphs

3.1/3.2: Solving Inequalities and Their Graphs - Same as solving equations - adding or subtracting a number will NOT change the inequality symbol. - Always go back and check your solution - Solutions are

An inequality is a mathematical statement containing one of the symbols <, >, or.

Further Concepts for Advanced Mathematics - FP1 Unit 3 Graphs & Inequalities Section3c Inequalities Types of Inequality An inequality is a mathematical statement containing one of the symbols , or.

Sections 2.1, 2.2 and 2.4

SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete

GRADE 4 FLORIDA Multiplication WORKSHEETS Multiplication facts 5 and 0 times tables The 5 and 0 times tables are easier if you learn them together. Answer the 5 times table: Count in 5s down the ladders:

Chapter 4 Introduction to Probability

Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of Probability Conditional Probability Probability as

Algebra I Notes Relations and Functions Unit 03a

OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

CHAPTER 2. Set, Whole Numbers, and Numeration

CHAPTER 2 Set, Whole Numbers, and Numeration 2.1. Sets as a Basis for Whole Numbers A set is a collection of objects, called the elements or members of the set. Three common ways to define sets: (1) A

MAT12X Intermediate Algebra

MAT1X Intermediate Algebra Workshop I Quadratic Functions LEARNING CENTER Overview Workshop I Quadratic Functions General Form Domain and Range Some of the effects of the leading coefficient a The vertex

Classifying Triangles. Lesson 1 VOCABULARY TARGET. right angle. acute angle. obtuse angle congruent isosceles. I can classify triangles.

Classifying Lesson 1 VOCABULARY TARGET acute angle right angle obtuse angle congruent isosceles scalene Venn diagram equilateral I can classify triangles. You classify many things around you. For example,

(Refer Slide Time: 1:41)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

2-8: Square Roots and Real Numbers. 2-8: Square Roots and Real Numbers

OBJECTIVE: You must be able to find a square root, classify numbers, and graph solution of inequalities on number lines. square root - one of two equal factors of a number A number that will multiply by

Primary 6 Chapter 7 Circles Practice 6

Primary 6 Chapter 7 Circles Practice 6 1) Match the figures that have the same shaded area. P6 Chapter 7 Circles Practice 6-1- Just Education Tuition Centre Pte Ltd Solve the following problem sums. All

Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District

Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve

GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

Lecture 1. Basic Concepts of Set Theory, Functions and Relations

September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2

Mathematical Expressions in Alice

Some of the information about an Alice world, and its objects, is stored in properties. In general, only the properties used in setting up the world (e.g., color or opacity) are listed. There are many

2.1 Symbols and Terminology

2.1 Symbols and Terminology Definitions: set is a collection of objects. The objects belonging to the set are called elements, ormembers, oftheset. Sets can be designated in one of three different ways:

Developing Entity Relationship Diagrams (ERDs)

Developing Entity Relationship Diagrams (ERDs) Introduction This document seeks to give expanded explanation and examples of how to produce entity relationship diagrams. It is based on material adapted

L01 - Set Theory. CSci/Math May 2015

L01 - Set Theory CSci/Math 2112 06 May 2015 1 / 10 Elements and Subsets of a Set a A means a is an element of the set A a / A means a is not an element of the set A A B means A is a subset of B (all elements

Name Date. Goal: Understand and represent the intersection and union of two sets.

F Math 12 3.3 Intersection and Union of Two Sets p. 162 Name Date Goal: Understand and represent the intersection and union of two sets. A. intersection: The set of elements that are common to two or more

3.3. Parabola and parallel lines

3.3. Parabola and parallel lines This example is similar in spirit to the last, except this time the parabola is held fixed and a line of slope is moved parallel to itself. The objective is to see how

Properties of Special Parallelograms

Properties of Special Parallelograms Lab Summary: This lab consists of four activities that lead students through the construction of a parallelogram, a rectangle, a square, and a rhombus. Students then

Notes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Sets Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference

1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various

Algebra: Real World Applications and Problems

Algebra: Real World Applications and Problems Algebra is boring. Right? Hopefully not. Algebra has no applications in the real world. Wrong. Absolutely wrong. I hope to show this in the following document.

Lesson 1: Exploring Polygons

Lesson 1: Exploring Polygons Objectives: Students will be able to identify whether a given shape is a polygon using the properties of polygons. Students will be able to identify and name polygons that

Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by

MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x

INTEGRATION FINDING AREAS

INTEGRTIN FINDING RES Created b T. Madas Question 1 (**) = 4 + 10 3 The figure above shows the curve with equation = 4 + 10, R. Find the area of the region, bounded b the curve the coordinate aes and the

Chapter 2: Systems of Linear Equations and Matrices:

At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

Numerator Denominator

Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3

Sets, Venn Diagrams & Counting

MT 142 College Mathematics Sets, Venn Diagrams & Counting Module SC Terri Miller revised January 5, 2011 What is a set? Sets set is a collection of objects. The objects in the set are called elements of

Section 3.2. Graphing linear equations

Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

Linear Systems of Inequalities

Mathematical Models with Applications, Quarter 2, Unit 2.2 Linear Systems of Inequalities Overview Number of instruction days: 5-7 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be

Chapter 5: Probability: What are the Chances? Probability: What Are the Chances? 5.1 Randomness, Probability, and Simulation

Chapter 5: Probability: What are the Chances? Section 5.1 Randomness, Probability, and Simulation The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 5 Probability: What Are

Chapter 4 - Systems of Equations and Inequalities

Math 233 - Spring 2009 Chapter 4 - Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5

Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.

Exam 2 Study Guide and Review Problems

Exam 2 Study Guide and Review Problems Exam 2 covers chapters 4, 5, and 6. You are allowed to bring one 3x5 note card, front and back, and your graphing calculator. Study tips: Do the review problems below.

Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)

The Addition Rule and Complements Page 1. Blood Types. The purpose of this activity is to introduce you to the addition rules of probability.

The Addition Rule and Complements Page 1 Blood Types The purpose of this activity is to introduce you to the addition rules of probability. The addition rules of probability are used to find the probabilities

Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets

CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.3-2.6 Homework 2 due Tuesday Recitation 3 on Friday

Solving and Graphing Inequalities

Algebra I Pd Basic Inequalities 3A What is the answer to the following questions? Solving and Graphing Inequalities We know 4 is greater than 3, so is 5, so is 6, so is 7 and 3.1 works also. So does 3.01

3.4 Limits at Infinity - Asymptotes

3.4 Limits at Infinity - Asymptotes Definition 3.3. If f is a function defined on some interval (a, ), then f(x) = L means that values of f(x) are very close to L (keep getting closer to L) as x. The line

Basic concepts in probability. Sue Gordon

Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

1 of 6 10/17/2009 2:32 PM

1 of 6 10/17/2009 2:32 PM Chapter 9 Homework Due: 9:00am on Monday, October 19, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

Interactive Student Notebook. Your Key to Success in American History

Interactive Student Notebook Your Key to Success in American History I can't find my... notes, homework, old I can't remember what we did in class yesterday. quizzes... I'm sure its in... mom s car...

Statistics 100A Homework 1 Solutions

Chapter 1 tatistics 100A Homework 1 olutions Ryan Rosario 1. (a) How many different 7-place license plates are possible if the first 2 places are for letters and the other 5 for numbers? The first two

CHAPTER 35 GRAPHICAL SOLUTION OF EQUATIONS

CHAPTER 35 GRAPHICAL SOLUTION OF EQUATIONS EXERCISE 143 Page 369 1. Solve the simultaneous equations graphically: y = 3x 2 y = x + 6 Since both equations represent straight-line graphs, only two coordinates

Introduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim

6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can

Session 6 Number Theory

Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

COURSE SYLLABUS -----------------------------------------------------------------------------------

Last Reviewed by: Leslie Wurst Date Approved: Date Revised: Fall 2012 COURSE SYLLABUS Syllabus for: MATH 1010 Math for General Studies Former Course and Title: Former Quarter Course(s): Mat 1260 Contemporary

Desert or Rain Forest?

Desert or Rain Forest? Photo Credit: Duggar11 Photo Credit: John Fowler Deserts are special places in our world. Tropical rain forests are special places too. Both places are homes to animals. Both places

2.1 The Algebra of Sets

Chapter 2 Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations

axiomatic vs naïve set theory

ED40 Discrete Structures in Computer Science 1: Sets Jörn W. Janneck, Dept. of Computer Science, Lund University axiomatic vs naïve set theory s Zermelo-Fraenkel Set Theory w/choice (ZFC) extensionality

We are going to investigate what happens when we draw the three angle bisectors of a triangle using Geometer s Sketchpad.

Krystin Wright Geometer s Sketchpad Assignment Name Date We are going to investigate what happens when we draw the three angle bisectors of a triangle using Geometer s Sketchpad. First, open up Geometer

Absolute Value Equations and Inequalities

Key Concepts: Compound Inequalities Absolute Value Equations and Inequalities Intersections and unions Suppose that A and B are two sets of numbers. The intersection of A and B is the set of all numbers

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS

EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the

3.1 Solving Systems Using Tables and Graphs

Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

Literature Discussion Strategies

1 Kathy G. Short From Creating Classrooms for Authors and Inquirers, Kathy G. Short and Jerome Harste, Heinemann, 1996. FREE WRITES (Connection) After reading the book, set a timer for anywhere from 5-15minutes.

1. The sample space S is the set of all possible outcomes. 2. An event is a set of one or more outcomes for an experiment. It is a sub set of S.

1 Probability Theory 1.1 Experiment, Outcomes, Sample Space Example 1 n psychologist examined the response of people standing in line at a copying machines. Student volunteers approached the person first

2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

5-4 Solving Compound Inequalities. Solve each compound inequality. Then graph the solution set. 6. f 6 < 5 and f 4 2 SOLUTION: and

Solve each compound inequality. Then graph the solution set. 6. f 6 < 5 f 4 2 8. y 1 7 y + 3 < 1 The solution set is {f 6 f < 11}. To graph the solution set, graph 6 f graph f < 11. Then find the intersection.