Advanced Introduction to Machine Learning CMU-10715

Size: px
Start display at page:

Download "Advanced Introduction to Machine Learning CMU-10715"

Transcription

1 Advanced Introduction to Machine Learning CMU Support Vector Machines Barnabás Póczos, 2014 Fall

2 Linear classifiers which line is better? 2

3 Pick the one with the largest margin! w x + b > 0 Class 1 w Class 2 w x + b < 0 Data: Margin 3

4 Scaling Plus-Plane Classifier Boundary Minus-Plane Classification rule: Classify as.. +1 if w x+ b 1 1 if w x+ b 1 Universe explodes if -1 < w x+ b < 1 How large is the margin of this classifier? Goal: Find the maximum margin classifier 4

5 Computing the margin width x + M =Margin Width = 2 w w x - Let x + and x - be such that w x + + b = +1 w x - + b = -1 x + = x - + λ w x + x - = M=? (Margin) Maximize M minimize w w! 5

6 The Primal Hard SVM This is a QP problem (m-dimensional) (Quadratic cost function, linear constraints) 6

7 Quadratic Programming Find Subject to and to Efficient Algorithms exist for QP. They often solve the dual problem instead of the primal. 7

8 Constrained Optimization 8

9 Lagrange Multiplier Moving the constraint to objective function Lagrangian: Solve: Constraint is active when α > 0 9

10 Lagrange Multiplier Dual Variables Solving: When α > 0, constraint is tight 10

11 Primal problem: From Primal to Dual Lagrange function: 11

12 The Lagrange Problem The Lagrange problem: Proof cont. 12

13 The Dual Problem Proof cont. 13

14 The Dual Hard SVM Quadratic Programming (n-dimensional) Lemma 14

15 The Problem with Hard SVM It assumes samples are linearly separable... What can we do if data is not linearly separable??? 15

16 Hard 1-dimensional Dataset If the data set is notlinearly separable, then adding new features (mapping the data to a larger feature space) the data might become linearly separable 16

17 Hard 1-dimensional Dataset Make up a new feature! Sort of computed from original feature(s) z k = ( x k, x 2 k ) Separable! MAGIC! x=0 Now drop this augmented data into our linear SVM. 17

18 Feature mapping ngeneral! points in an n-1dimensional space is always linearly separable by a hyperspace! it is good to map the data to high dimensional spaces Having ntraining data, is it always enough to map the data into a feature space with dimension n-1? Nope... We have to think about the test data as well! Even if we don t know how many test data we have and what they are... We might want to map our data to a huge ( ) dimensional feature space Overfitting? Generalization error?... We don t care now... 18

19 How to do feature mapping? Use features of features of features of features. 19

20 The Problem with Hard SVM It assumes samples are linearly separable... Solutions: 1. Use feature transformation to a larger space each training samples are linearly separable in the feature space Hard SVM can be applied overfitting Soft margin SVM instead of Hard SVM Slack variables... We will discuss them now 20

21 Hard SVM The Hard SVM problem can be rewritten: where Misclassification, or inside the margin Correct classification and outside of the margin 21

22 From Hard to Soft constraints Instead of using hard constraints (points are linearly separable) We can try solve the soft version of it:. Introduce a λ parameter! (Your loss is only 1 instead of if you misclassify an instance) where Misclassification Correct classification 22

23 Problems with l 0-1 loss It is not convex in yf(x) It is not convex in w, either and we only like convex functions... Let us approximate it with convex functions! 23

24 Approximation of the Heaviside step function Picture is taken from R. Herbrich 24

25 Approximations of l 0-1 loss Piecewise linear approximations (hinge loss, l lin ) Quadratic approximation (l quad ) 25

26 The hinge loss approximation of l 0-1 Where, 26

27 The Slack Variables ξ 2 ξ 1 M = 2 w w ξ7 27

28 The Primal Soft SVM problem where Equivalently, 28

29 The Primal Soft SVM problem Equivalently, We can use this form, too... What is the dual form of primal soft SVM? 29

30 The Dual Soft SVM (using hinge loss) where 30

31 The Dual Soft SVM (using hinge loss) 31

32 The Dual Soft SVM (using hinge loss) 32

33 SVM classification in the dual space Solve the dual problem 33

34 Why is it called Support Vector Machine? KKT conditions

35 Dual SVM Interpretation: Sparsity α j = 0 α j > 0 α j > 0 α j = 0 Only few α j s can be non-zero : where constraint is tight α j > 0 α j = 0 (<w,x j> + b)y j = 1 Support vectors training points j whose α j s are non-zero 35

36 Support Vectors w.x + b > 0 w.x + b < 0 Linear hyperplane defined by support vectors Moving other points a little doesn t effect the decision boundary γ γ only need to store the support vectors to predict labels of new points 36

37 Support vectors in Soft SVM

38 Support vectors in Soft SVM Margin support vectors Nonmargin support vectors

39 SVM classification in the dual space Without b With b 39

40 SVM with Linear Programs QP: Max margin LP: Min support vectors

41 SVM for Regression 41

42 Ridge Regression Linear regression: Primal: Dual for a given λ:...after some calculations... This can be solved in closed form:

43 Kernel Ridge Regression Algorithm

44 SVM vs. Logistic Regression SVM : Hinge loss Logistic Regression : Log loss ( log conditional likelihood) Log loss Hinge loss 0-1 loss

45 Difference between SVMs and Logistic Regression SVMs Logistic Regression Loss function Hinge loss Log-loss High dimensional features with kernels Yes! No (but there is kernel logistic regression too) Solution sparse Often yes! Almost always no! Semantics of output Margin Real probabilities

46 Constructing Kernels

47 Common Kernels Polynomials of degree d Polynomials of degree up to d Gaussian/Radial kernels Sigmoid 47

48 Designing new kernels from kernels are also kernels. Picture is taken from R. Herbrich

49 Designing new kernels from kernels Picture is taken from R. Herbrich

50 Designing new kernels from kernels

51 Higher Order Polynomials m input features d degree of polynomial grows fast! d = 6, m = 100 about 1.6 billion terms 51

52 Dot Product of Polynomials d=1 d=2 d 52

53 Picture is taken from R. Herbrich

54 The RBF kernel Note: Proof: Note:

55 Overfitting Huge feature space with kernels, what about overfitting??? Maximizing margin leads to sparse set of support vectors Some interesting theory says that SVMs search for simple hypothesis with large margin Often robust to overfitting 55

56 String kernels P-spectrum kernel: P=3: s= statistics t= computation They contain the following substrings of length 3 sta, tat, ati, tis, ist, sti, tic, ics com, omp, mpu, put, uta, tat, ati, tio, ion Common substrings: tat, ati k(s,t)=2

57 Distribution kernels Euclidean: Bhattacharyya's affinity: Mean map:

58 Set kernels Mean map: Intersection kernel: Union complement kernel:

59 What about multiple classes? 59

60 One against all Learn 3 classifiers separately: Class k vs. rest (w k, b k ) k=1,2,3 y = arg max w k.x + b k k But w k s may not be based on the same scale. Note: (aw).x + (ab) is also a solution 60

61 Learn 1 classifier: Multi-class SVM Simultaneously learn 3 sets of weights Margin - gap between correct class and nearest other class y = arg max w (k).x + b (k) 61

62 Learn 1 classifier: Multi-class SVM Simultaneously learn 3 sets of weights y = arg max w (k).x + b (k) Joint optimization: w k s have the same scale. 62

63 Steve Gunn s svm toolbox Results, Iris 2vs13, Linear kernel 63

64 Results, Iris 1vs23, 2 nd order kernel 64

65 Results, Iris 1vs23, 2nd order kernel 65

66 Results, Iris 1vs23, RBF kernel 66

67 Results, Iris 1vs23, RBF kernel 67

68 Results, Iris 1vs23, RBF kernel 68

69 Results, Chessboard, Poly kernel 69

70 Results, Chessboard, Poly kernel 70

71 Results, Chessboard, Poly kernel 71

72 Results, Chessboard, Poly kernel 72

73 Results, Chessboard, poly kernel 73

74 Results, Chessboard, RBF kernel 74

75 Sinc=sin(π x)/ (π x), RBF kernel

76 Sinc=sin(π x)/ (π x), RBF kernel

77 Sinc=sin(π x)/ (π x), RBF kernel

78 Sinc=sin(π x)/ (π x), RBF kernel

79 Sinc=sin(π x)/ (π x), RBF kernel

80 Sinc=sin(π x)/ (π x), RBF kernel

81 Sinc=sin(π x)/ (π x), poly kernel

82 Sinc=sin(π x)/ (π x), poly kernel

83 Sinc=sin(π x)/ (π x), poly kernel

84 Sinc=sin(π x)/ (π x), poly kernel

85 Sinc=sin(π x)/ (π x), poly kernel

86 Sinc=sin(π x)/ (π x), poly kernel

87 What you need to know Dual SVM formulation How it s derived Common kernels Differences between SVMs and logistic regression 87

88 Thanks for your attention 88

Support Vector Machine (SVM)

Support Vector Machine (SVM) Support Vector Machine (SVM) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

More information

Support Vector Machines Explained

Support Vector Machines Explained March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

Support Vector Machines for Classification and Regression

Support Vector Machines for Classification and Regression UNIVERSITY OF SOUTHAMPTON Support Vector Machines for Classification and Regression by Steve R. Gunn Technical Report Faculty of Engineering, Science and Mathematics School of Electronics and Computer

More information

Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval

Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Lecture 2: The SVM classifier

Lecture 2: The SVM classifier Lecture 2: The SVM classifier C19 Machine Learning Hilary 2015 A. Zisserman Review of linear classifiers Linear separability Perceptron Support Vector Machine (SVM) classifier Wide margin Cost function

More information

Support Vector Machine. Tutorial. (and Statistical Learning Theory)

Support Vector Machine. Tutorial. (and Statistical Learning Theory) Support Vector Machine (and Statistical Learning Theory) Tutorial Jason Weston NEC Labs America 4 Independence Way, Princeton, USA. jasonw@nec-labs.com 1 Support Vector Machines: history SVMs introduced

More information

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

Distributed Machine Learning and Big Data

Distributed Machine Learning and Big Data Distributed Machine Learning and Big Data Sourangshu Bhattacharya Dept. of Computer Science and Engineering, IIT Kharagpur. http://cse.iitkgp.ac.in/~sourangshu/ August 21, 2015 Sourangshu Bhattacharya

More information

Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Support Vector Machines

Support Vector Machines CS229 Lecture notes Andrew Ng Part V Support Vector Machines This set of notes presents the Support Vector Machine (SVM) learning algorithm. SVMs are among the best (and many believe are indeed the best)

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Neural Networks and Support Vector Machines

Neural Networks and Support Vector Machines INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines

More information

Lecture 6: Logistic Regression

Lecture 6: Logistic Regression Lecture 6: CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,

More information

A fast multi-class SVM learning method for huge databases

A fast multi-class SVM learning method for huge databases www.ijcsi.org 544 A fast multi-class SVM learning method for huge databases Djeffal Abdelhamid 1, Babahenini Mohamed Chaouki 2 and Taleb-Ahmed Abdelmalik 3 1,2 Computer science department, LESIA Laboratory,

More information

Making Sense of the Mayhem: Machine Learning and March Madness

Making Sense of the Mayhem: Machine Learning and March Madness Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University atran3@stanford.edu ginzberg@stanford.edu I. Introduction III. Model The goal of our research

More information

Machine Learning Logistic Regression

Machine Learning Logistic Regression Machine Learning Logistic Regression Jeff Howbert Introduction to Machine Learning Winter 2012 1 Logistic regression Name is somewhat misleading. Really a technique for classification, not regression.

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

DUOL: A Double Updating Approach for Online Learning

DUOL: A Double Updating Approach for Online Learning : A Double Updating Approach for Online Learning Peilin Zhao School of Comp. Eng. Nanyang Tech. University Singapore 69798 zhao6@ntu.edu.sg Steven C.H. Hoi School of Comp. Eng. Nanyang Tech. University

More information

AdaBoost. Jiri Matas and Jan Šochman. Centre for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz

AdaBoost. Jiri Matas and Jan Šochman. Centre for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz AdaBoost Jiri Matas and Jan Šochman Centre for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz Presentation Outline: AdaBoost algorithm Why is of interest? How it works? Why

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information

Introduction to nonparametric regression: Least squares vs. Nearest neighbors

Introduction to nonparametric regression: Least squares vs. Nearest neighbors Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,

More information

LCs for Binary Classification

LCs for Binary Classification Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Going For Large Scale Going For Large Scale 1

More information

Machine Learning Final Project Spam Email Filtering

Machine Learning Final Project Spam Email Filtering Machine Learning Final Project Spam Email Filtering March 2013 Shahar Yifrah Guy Lev Table of Content 1. OVERVIEW... 3 2. DATASET... 3 2.1 SOURCE... 3 2.2 CREATION OF TRAINING AND TEST SETS... 4 2.3 FEATURE

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

CSC 411: Lecture 07: Multiclass Classification

CSC 411: Lecture 07: Multiclass Classification CSC 411: Lecture 07: Multiclass Classification Class based on Raquel Urtasun & Rich Zemel s lectures Sanja Fidler University of Toronto Feb 1, 2016 Urtasun, Zemel, Fidler (UofT) CSC 411: 07-Multiclass

More information

Machine Learning in Spam Filtering

Machine Learning in Spam Filtering Machine Learning in Spam Filtering A Crash Course in ML Konstantin Tretyakov kt@ut.ee Institute of Computer Science, University of Tartu Overview Spam is Evil ML for Spam Filtering: General Idea, Problems.

More information

Online learning of multi-class Support Vector Machines

Online learning of multi-class Support Vector Machines IT 12 061 Examensarbete 30 hp November 2012 Online learning of multi-class Support Vector Machines Xuan Tuan Trinh Institutionen för informationsteknologi Department of Information Technology Abstract

More information

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j What is Kiva? An organization that allows people to lend small amounts of money via the Internet

More information

Fóra Gyula Krisztián. Predictive analysis of financial time series

Fóra Gyula Krisztián. Predictive analysis of financial time series Eötvös Loránd University Faculty of Science Fóra Gyula Krisztián Predictive analysis of financial time series BSc Thesis Supervisor: Lukács András Department of Computer Science Budapest, June 2014 Acknowledgements

More information

Machine learning for algo trading

Machine learning for algo trading Machine learning for algo trading An introduction for nonmathematicians Dr. Aly Kassam Overview High level introduction to machine learning A machine learning bestiary What has all this got to do with

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

4.1 Introduction - Online Learning Model

4.1 Introduction - Online Learning Model Computational Learning Foundations Fall semester, 2010 Lecture 4: November 7, 2010 Lecturer: Yishay Mansour Scribes: Elad Liebman, Yuval Rochman & Allon Wagner 1 4.1 Introduction - Online Learning Model

More information

MAXIMIZING RETURN ON DIRECT MARKETING CAMPAIGNS

MAXIMIZING RETURN ON DIRECT MARKETING CAMPAIGNS MAXIMIZING RETURN ON DIRET MARKETING AMPAIGNS IN OMMERIAL BANKING S 229 Project: Final Report Oleksandra Onosova INTRODUTION Recent innovations in cloud computing and unified communications have made a

More information

Multiclass Classification. 9.520 Class 06, 25 Feb 2008 Ryan Rifkin

Multiclass Classification. 9.520 Class 06, 25 Feb 2008 Ryan Rifkin Multiclass Classification 9.520 Class 06, 25 Feb 2008 Ryan Rifkin It is a tale Told by an idiot, full of sound and fury, Signifying nothing. Macbeth, Act V, Scene V What Is Multiclass Classification? Each

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /

More information

A User s Guide to Support Vector Machines

A User s Guide to Support Vector Machines A User s Guide to Support Vector Machines Asa Ben-Hur Department of Computer Science Colorado State University Jason Weston NEC Labs America Princeton, NJ 08540 USA Abstract The Support Vector Machine

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Support-Vector Networks

Support-Vector Networks Machine Learning, 20, 273-297 (1995) 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Support-Vector Networks CORINNA CORTES VLADIMIR VAPNIK AT&T Bell Labs., Holmdel, NJ 07733,

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

Case Study Report: Building and analyzing SVM ensembles with Bagging and AdaBoost on big data sets

Case Study Report: Building and analyzing SVM ensembles with Bagging and AdaBoost on big data sets Case Study Report: Building and analyzing SVM ensembles with Bagging and AdaBoost on big data sets Ricardo Ramos Guerra Jörg Stork Master in Automation and IT Faculty of Computer Science and Engineering

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

Mathematical Models of Supervised Learning and their Application to Medical Diagnosis

Mathematical Models of Supervised Learning and their Application to Medical Diagnosis Genomic, Proteomic and Transcriptomic Lab High Performance Computing and Networking Institute National Research Council, Italy Mathematical Models of Supervised Learning and their Application to Medical

More information

Adapting Codes and Embeddings for Polychotomies

Adapting Codes and Embeddings for Polychotomies Adapting Codes and Embeddings for Polychotomies Gunnar Rätsch, Alexander J. Smola RSISE, CSL, Machine Learning Group The Australian National University Canberra, 2 ACT, Australia Gunnar.Raetsch, Alex.Smola

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

Active Learning with Boosting for Spam Detection

Active Learning with Boosting for Spam Detection Active Learning with Boosting for Spam Detection Nikhila Arkalgud Last update: March 22, 2008 Active Learning with Boosting for Spam Detection Last update: March 22, 2008 1 / 38 Outline 1 Spam Filters

More information

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel

More information

Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur

Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur Probabilistic Linear Classification: Logistic Regression Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 18, 2016 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification:

More information

E-commerce Transaction Anomaly Classification

E-commerce Transaction Anomaly Classification E-commerce Transaction Anomaly Classification Minyong Lee minyong@stanford.edu Seunghee Ham sham12@stanford.edu Qiyi Jiang qjiang@stanford.edu I. INTRODUCTION Due to the increasing popularity of e-commerce

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,

More information

KEITH LEHNERT AND ERIC FRIEDRICH

KEITH LEHNERT AND ERIC FRIEDRICH MACHINE LEARNING CLASSIFICATION OF MALICIOUS NETWORK TRAFFIC KEITH LEHNERT AND ERIC FRIEDRICH 1. Introduction 1.1. Intrusion Detection Systems. In our society, information systems are everywhere. They

More information

Beating the NCAA Football Point Spread

Beating the NCAA Football Point Spread Beating the NCAA Football Point Spread Brian Liu Mathematical & Computational Sciences Stanford University Patrick Lai Computer Science Department Stanford University December 10, 2010 1 Introduction Over

More information

Introduction to Online Learning Theory

Introduction to Online Learning Theory Introduction to Online Learning Theory Wojciech Kot lowski Institute of Computing Science, Poznań University of Technology IDSS, 04.06.2013 1 / 53 Outline 1 Example: Online (Stochastic) Gradient Descent

More information

Maximum Margin Clustering

Maximum Margin Clustering Maximum Margin Clustering Linli Xu James Neufeld Bryce Larson Dale Schuurmans University of Waterloo University of Alberta Abstract We propose a new method for clustering based on finding maximum margin

More information

Server Load Prediction

Server Load Prediction Server Load Prediction Suthee Chaidaroon (unsuthee@stanford.edu) Joon Yeong Kim (kim64@stanford.edu) Jonghan Seo (jonghan@stanford.edu) Abstract Estimating server load average is one of the methods that

More information

A Tutorial on Support Vector Machines for Pattern Recognition

A Tutorial on Support Vector Machines for Pattern Recognition c,, 1 43 () Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. A Tutorial on Support Vector Machines for Pattern Recognition CHRISTOPHER J.C. BURGES Bell Laboratories, Lucent Technologies

More information

Introduction to Logistic Regression

Introduction to Logistic Regression OpenStax-CNX module: m42090 1 Introduction to Logistic Regression Dan Calderon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Gives introduction

More information

Trading regret rate for computational efficiency in online learning with limited feedback

Trading regret rate for computational efficiency in online learning with limited feedback Trading regret rate for computational efficiency in online learning with limited feedback Shai Shalev-Shwartz TTI-C Hebrew University On-line Learning with Limited Feedback Workshop, 2009 June 2009 Shai

More information

The Artificial Prediction Market

The Artificial Prediction Market The Artificial Prediction Market Adrian Barbu Department of Statistics Florida State University Joint work with Nathan Lay, Siemens Corporate Research 1 Overview Main Contributions A mathematical theory

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Applications of Support Vector-Based Learning

Applications of Support Vector-Based Learning Applications of Support Vector-Based Learning Róbert Ormándi The supervisors are Prof. János Csirik and Dr. Márk Jelasity Research Group on Artificial Intelligence of the University of Szeged and the Hungarian

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Network Intrusion Detection using Semi Supervised Support Vector Machine

Network Intrusion Detection using Semi Supervised Support Vector Machine Network Intrusion Detection using Semi Supervised Support Vector Machine Jyoti Haweliya Department of Computer Engineering Institute of Engineering & Technology, Devi Ahilya University Indore, India ABSTRACT

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang, Qihang Lin, Rong Jin Tutorial@SIGKDD 2015 Sydney, Australia Department of Computer Science, The University of Iowa, IA, USA Department of

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

Data Mining. Nonlinear Classification

Data Mining. Nonlinear Classification Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Sumeet Agarwal, EEL709 (Most figures from Bishop, PRML) Approaches to classification Discriminant function: Directly assigns each data point x to a particular class Ci

More information

Question 2 Naïve Bayes (16 points)

Question 2 Naïve Bayes (16 points) Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the

More information

Content-Based Recommendation

Content-Based Recommendation Content-Based Recommendation Content-based? Item descriptions to identify items that are of particular interest to the user Example Example Comparing with Noncontent based Items User-based CF Searches

More information

Data Mining. Supervised Methods. Ciro Donalek donalek@astro.caltech.edu. Ay/Bi 199ab: Methods of Computa@onal Sciences hcp://esci101.blogspot.

Data Mining. Supervised Methods. Ciro Donalek donalek@astro.caltech.edu. Ay/Bi 199ab: Methods of Computa@onal Sciences hcp://esci101.blogspot. Data Mining Supervised Methods Ciro Donalek donalek@astro.caltech.edu Supervised Methods Summary Ar@ficial Neural Networks Mul@layer Perceptron Support Vector Machines SoLwares Supervised Models: Supervised

More information

Local classification and local likelihoods

Local classification and local likelihoods Local classification and local likelihoods November 18 k-nearest neighbors The idea of local regression can be extended to classification as well The simplest way of doing so is called nearest neighbor

More information

Early defect identification of semiconductor processes using machine learning

Early defect identification of semiconductor processes using machine learning STANFORD UNIVERISTY MACHINE LEARNING CS229 Early defect identification of semiconductor processes using machine learning Friday, December 16, 2011 Authors: Saul ROSA Anton VLADIMIROV Professor: Dr. Andrew

More information

Classification of Bad Accounts in Credit Card Industry

Classification of Bad Accounts in Credit Card Industry Classification of Bad Accounts in Credit Card Industry Chengwei Yuan December 12, 2014 Introduction Risk management is critical for a credit card company to survive in such competing industry. In addition

More information

Classification of high resolution satellite images

Classification of high resolution satellite images Thesis for the degree of Master of Science in Engineering Physics Classification of high resolution satellite images Anders Karlsson Laboratoire de Systèmes d Information Géographique Ecole Polytéchnique

More information

Online (and Offline) on an Even Tighter Budget

Online (and Offline) on an Even Tighter Budget Online (and Offline) on an Even Tighter Budget Jason Weston NEC Laboratories America, Princeton, NJ, USA jasonw@nec-labs.com Antoine Bordes NEC Laboratories America, Princeton, NJ, USA antoine@nec-labs.com

More information

Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision

More information

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION 1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of

More information

Decision Support Systems

Decision Support Systems Decision Support Systems 50 (2011) 602 613 Contents lists available at ScienceDirect Decision Support Systems journal homepage: www.elsevier.com/locate/dss Data mining for credit card fraud: A comparative

More information

Data clustering optimization with visualization

Data clustering optimization with visualization Page 1 Data clustering optimization with visualization Fabien Guillaume MASTER THESIS IN SOFTWARE ENGINEERING DEPARTMENT OF INFORMATICS UNIVERSITY OF BERGEN NORWAY DEPARTMENT OF COMPUTER ENGINEERING BERGEN

More information