First organic spectral method; rarely used as a primary method for structure determination

Size: px
Start display at page:

Download "First organic spectral method; rarely used as a primary method for structure determination"

Transcription

1 Utility First organic spectral method; rarely used as a primary method for structure determination Main contribution is that can readily identify the presence of conjugates π-systems or unique chromophores Can sometimes be used to differentiate double bond isomers In combination with NMR and IR data can use to elucidate unique electronic features not readily apparent from those methods Widely used in other applications Most common detector for HPLC Can be used to moniter reaction kinetics (chemistry, biology, medicine), etc.

2 The Electromagnetic Spectrum x-rays ultraviolet (UV) visible Infrared (IR) microwaves radiowaves nm nm absorbed color violet blue green yellow orange red observed color yellow red violet blue short wavelength high frequency high energy long wavelength short frequency low energy

3 Colors of Different Wavelength Regions Absorbance & Transmittance wavelength absorbed (nm) < > 780 absorbed color ultraviolet violet blue greenish blue bluish green green yellowish green yellow orange red near IR transmitted color (compliment) --- yellowish green yellow orange red purple violet blue greenish blue bluish green red

4 rigin of the Absorption The absorption of UV or visible radiation corresponds to the excitation of valence electrons Valence electrons are typically found in: - σ bonding orbitals (single bonds) - π bonding prbitals (double or triple bonds) - non-bonding orbitals (lone pair electrons) LUM ΔE = [E excited E ground ] = hν HM

5 Electronic Transitions σ σ π σ* π* π* alkanes carbonyls alkenes, carbonyls, alkynes, etc. ΔE = [E excited E ground ] = hν n σ* heteroatoms (, N, S, X, etc.) n π* carbonyls orbitals possible electronic transitions σ* antibonding π* E atomic n E π bonding σ

6 Electronic Transitions Relative Transition Energies σ σ* > n σ* > π π* > n π* > σ π* most useful not all transformations that are possible will be observed some electronic transitions forbidden by certain selection rules even forbidden transitions can be observed, but usually not very intense for example, n π*

7 The Spectrometer

8 Beer-Lambert Law describes relationship between absorbance and concentration A = log ( I 0 / I ) = ε l c l Where: A is absorbance (no units) I 0 = intensity of incident light I = intensity transmitted light ε = molar absorbtivity or extinction coefficient l = path length; length of the sample cell (cm) c = sample concentration (mol/l)

9 Spectrum Features isoprene ε = A / l c values of are termed high intensity absorptions values of are termed low intensity absorptions values of 0 to 10 3 are the absorptions of forbidden transitions

10 Spectrum Features reporting data NH 2 λ max = 206 nm

11 Spectrum Features peak broadening

12 Choice of Solvent Solvent should not absorb UV radiation in the same region as the sample (measuring UV spectra below 200 nm is impractical) solvent cutoff (nm) solvent cutoff (nm) acetonitrile 190 ethanol 205 chloroform 240 hexane 201 cyclohexane 195 methanol 205 diethyl ether 210 isooctane 195 dioxane 215 water 190 sample cell: quartz glass cutoff 210 nm

13 Solvent Effect on Spectra H

14 Chromophores Basic Information All molecules capable of absorbing ultraviolet radiation, though most do so at very high energy (wavelengths < 200 nm). Unsaturated groups which give rise to absorptions involving π or π* orbitals in the in the near-uv/visible region are called chromophores. Saturated groups with non-bonding electrons, which can give rise to transitions involving non-bonding orbitals are called auxochromes. Most useful transitions for analysis are the intense π π * transitions and the weaker, but lower energy, n π* transitions.

15 Chromophores Absorptions of rganic Molecules Alkanes: Saturated molecules that lack lone pairs nly transitions possible are σ σ* high energy; absorb UV radiation at very short wavelengths not accessible using UV spectroscopy Alcohols, Ethers, Amines, & Sulfur Compounds: Satuated molecules with lone pairs of electrons Important transitions are n σ* high energy, most often at wavelengths shorter than 200 nm alcohols and amines: nm thiols and sulfides: nm

16 Chromophores Absorptions of rganic Molecules Alkenes & Alkynes: Important transitions are π π* high energy, but impacted by substitution simple alkenes: 175 nm simple alkynes: 170 nm Carbonyls: Important transitions are π π* (188 nm) n π* also possible ( nm) sensitive to substitution

17 Chromophores

18 Chromophores Terminology for Absorptive Shifts Bathochromic shift: shift of absorption to a longer wavelength Hypsochromic shift: shift of absorption to a shorter wavelength Hyperchromic effect: an increase in absorption intensity Hypochromic effect: a decrease in absorption intensity ε Hypsochromic Hyperchromic Bathochromic Hypochromic 200 nm 700 nm

19 Conjugation Effects compound λ max (nm) ε H 2 C CH , , , ,000 n π* π π* n π* π π* ,100

20 Conjugation Effects Greater the conjugation, the lower the energy required to induce electronic transitions (e.g. the (longer the wavelength) lengthening conjugation also increases band intensity (greater molar absorbitivity) adding substitutents may have same effect, but to a much smaller degree

21 Conjugation Effects Extended π Systems π* H 2 C CH 2 Energy π ethylene butadiene hexatriene octatetraene

22 Auxochromes & Conjugation atoms with lone pairs can extend conjugation by resonance R X R X X = H, R, NH 2, halogen, etc. alkyl substituents can influence wavelength by overlap of C-H bonding orbital with the π system (e.g. by hyperconjugation)

23 Woodward Fieser Rules for Dienes acyclic dienes cyclic dienes s-trans s-cis homoannular (cisoid) heteroannular (transoid) Woodward & Fieser derived a set of empirical rules for the estimation of wavelength for the low energy π π*electronic transition Based on empirical observation of known conjugated structures Can be used to reliably predict absorption wavelength in dienes, enone, and to a lesser extent aromatic systems

24 Woodward Fieser Rules for Dienes s-trans homoannular (cisoid) heteroannular (transoid) base values: 217 nm 253 nm 214 nm Increments: not affected by solvent For each additional conjugated double bond For each exocyclic double bond For each alkyl group For each of the following groups: - R - (C=)R - Cl - Br - SR - NR 2 - Ph + 30 nm + 5 nm + 5 nm + 6 nm + 0 nm + 5 nm + 5 nm + 30 nm + 60 nm + 60 nm Where both types of cyclic dienes are present, the base with the longer λmax is used.

25 Woodward Fieser Rules for Dienes CAUTIN! R This compound had three exocyclic double bonds; the indicated bond is exocyclic to two rings. λ max calc = 284 this is not a heteroannular diene; must use base value for acyclic diene. λ max calc = 232 this is not a homoannular diene; must use base value for acyclic diene λ max calc = 237

26 Woodward Fieser Rules for Dienes examples acyclic diene 3 alkyl subst calculated value observed 217 nm 15 nm 232 nm 234 nm acyclic diene 2 alkyl subst 1 exocyclic db calculated value observed 217 nm 10 nm 5 nm 232 nm 236 nm cisoid diene 4 alkyl subst 1 exocyclic db calculated value observed 253 nm 20 nm 5 nm 278 nm 275 nm

27 Woodward Fieser Rules for Dienes examples Et transoid diene 3 alkyl subst 1 R subst 1 exocyclic db calculated value observed 214 nm 15 nm 6 nm 5 nm 240 nm 241 nm cisoid diene 2 conj db 5 alkyl subst 1 acyl subst 3 exocyclic db calculated value observed 253 nm 60 nm 25 nm 0 nm 15 nm 353 nm 355 nm

28 Woodward Fieser Rules for Dienes double bond regioisomers H H abietic acid levopimaric acid λ max calc: 239 λ max obs: 238 λ max calc: 278 λ max obs: 275 transoid diene 4 alkyl subst 1 exocyclic db calculated value 214 nm 20 nm 5 nm 239 nm cisoid diene 4 alkyl subst 1 exocyclic db calculated value 253 nm 20 nm 5 nm 278 nm

29 Fieser-Kuhn Rules for Extended Polyenes Woodward-Fieser Rules work well up to four conjugated double bonds For more extended conjugation, use the Fieser-Kuhn Rules λ max = (# alkyl substituents) = n(48-1.7n) (# endo) - 10(# exo) lycopene where n = number of conjugated double bonds λ max = (8) = 11( ) (0) - 10(0) = 476 nm observed: 474 nm β-carotene λ max = (10) = 11( ) (2) - 10(0) = 453 nm observed: 452 nm

30 Woodward Fieser Rules for Enones Solvent Correction H 2 EtH CHCl 3 Dioxane Et 2 Hydrocarbon nm R R acyclic enone 6-membered ring enone 5-membered ring enone acyclic dienone base values: 215 nm 215 nm 202 nm 245 nm Increments: For each additional conjugated double bond For each exocyclic double bond For each homodiene component α + 30 nm + 5 nm + 39 nm β γ δ and higher For each alkyl group + 10 nm + 12 nm + 18 nm + 18 nm β β For each of the following groups: δ β R R - H - R - (C=)R - Cl - Br - SR - NR nm + 35 nm + 6 nm + 15 nm + 25 nm + 30 nm + 60 nm + 30 nm + 30 nm + 6 nm + 12 nm + 30 nm + 85 nm + 95 nm + 17 nm + 6 nm + 50 nm + 31 nm + 6 nm α γ α

31 Woodward Fieser Rules for Enones examples acyclic enone 1 α alkyl 2 β alkyl calculated value observed 215 nm nm 249 nm 249 nm Br 5-membere enone 1 α Br 2 β alkyl 1 exocyclic db calculated value observed 202 nm 25 nm 24 nm 5 nm 256 nm 251 nm

32 Woodward Fieser Rules for Enones practice Me Br 2 Br Me or Me H H Br H base base Me or Me H Can you distinguish the two by UV?

33 Woodward Fieser Rules for Enones practice Me vs Me H 6-membered enone β alkyl exocyclic db 215 nm 12 nm 227 nm 215 nm 24 nm 5 nm 244 nm

34 Woodward Fieser Rules for Enones practice absorbance in EtH?

35 Woodward Fieser Rules for ther Conjugated Carbonyls β β β H β R α α (R = H or R') aldehydes carboxylic acid or ester Base Values unsubstituted aldehyde or ester with α or β alkyl groups with α,β or β,β alkyl groups with α,β,β alkyl groups 208 nm 220 nm 230 nm 242 nm 193 nm (not observed) 208 nm 217 nm 225 nm for an exocyclic α,β double bond for an endocyclic α,β double bond in a 5- or 7-membered ring + 5 nm + 5 nm as for enones, solvent correction is also relevant

36 Woodward Fieser Rules for Aromatic Compounds Substitution, auxochromic groups, conjugation and solvent effects can cause shifts in wavelength and intensity of bands for aromatic systems similar to dienes and enones Show multiple bands, often fine structure However, shifts are difficult to predict the formulation of empirical rules is often dificult (there are more exceptions than rules) Can make some useful predictions for benzoyl derivatives We will not worry about predicting UV bands in aromatic compounds

37 Woodward Fieser Rules for Benzoyl Derivatives R H R aryl ketones (R = alkyl) benzaldehydes benzoic acids and esters base values: 246 nm 250 nm 230 nm Increments: ortho meta para For each alkyl group For each H or R (R = alkyl) For each For each of the following groups: - Cl - Br - NH 2 - NH(C=)CH 3 - NHCH 3 - N(CH 3 ) nm + 7 nm + 11 nm + 0 nm + 2 nm + 13 nm + 20 nm + 20 nm + 3 nm + 7 nm + 20 nm + 0 nm + 2 nm + 13 nm + 20 nm + 20 nm + 10 nm + 25 nm + 78 nm + 10 nm + 15 nm + 58 nm + 45 nm + 73 nm + 85 nm

UV-Visible Spectroscopy

UV-Visible Spectroscopy UV-Visible Spectroscopy UV-Visible Spectroscopy What is UV-Visible Spectroscopy? Molecular spectroscopy that involves study of the interaction of Ultra violet (UV)-Visible radiation with molecules What

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

More information

Organic Spectroscopy 1

Organic Spectroscopy 1 rganic Spectroscopy 1 Lecture 5, 2 nd Year Michaelmas 2010! Dr Rob Paton CRL ffice 11, 1st floor! E-mail: robert.paton@chem.ox.ac.uk http://paton.chem.ox.ac.uk utline of Lectures 5-8 In lectures 5-6 of

More information

Experiment 11. Infrared Spectroscopy

Experiment 11. Infrared Spectroscopy Chem 22 Spring 2010 Experiment 11 Infrared Spectroscopy Pre-lab preparation. (1) In Ch 5 and 12 of the text you will find examples of the most common functional groups in organic molecules. In your notebook,

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

Infrared Spectroscopy 紅 外 線 光 譜 儀

Infrared Spectroscopy 紅 外 線 光 譜 儀 Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed

More information

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone: HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration ! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

More information

Survival Organic Chemistry Part I: Molecular Models

Survival Organic Chemistry Part I: Molecular Models Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,

More information

INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

More information

Ultraviolet and visible spectrometry

Ultraviolet and visible spectrometry Ultraviolet and visible spectrometry Theoretical overview Molecular absorption of electromagnetic radiation changes of energy state of the molecule include electronic state E e =150-600 kj/mol (electron

More information

Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment

Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Typical Infrared Absorption Frequencies Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Alkanes 2850-3000 CH 3, CH 2 & CH 2 or 3 bands Alkenes 3020-3100 1630-1680 1900-2000

More information

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds:

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds: Organic Spectroscopy Methods for structure determination of organic compounds: X-ray rystallography rystall structures Mass spectroscopy Molecular formula -----------------------------------------------------------------------------

More information

Spectrométrie d absorption moléculaire UV-visible

Spectrométrie d absorption moléculaire UV-visible Spectrométrie d absorption moléculaire 1 faibles quantités échantillon liquide byfiles.storage.live.com/y1php6mrdyehuw8p4jw0... non destructrice bp0.blogger.com/.../m_7spgk78eu/s400/boum_4.png s'applique

More information

Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

More information

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4th edition Chapter 12 Homework: 1, 2, 4, 5, 6, 7, 15, 16, 17, 19, 21, 24, 26, 28, 29, 30, 38, 39, 44,

More information

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

More information

Suggested solutions for Chapter 3

Suggested solutions for Chapter 3 s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

More information

passing through (Y-axis). The peaks are those shown at frequencies when less than

passing through (Y-axis). The peaks are those shown at frequencies when less than Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules The process for this analysis is two-fold: 1. Accurate analysis of infrared spectra to determine

More information

Molecular Formula Determination

Molecular Formula Determination Molecular Formula Determination Classical Approach Qualitative elemental analysis Quantitative elemental analysis Determination of empirical formula Molecular weight determination Molecular formula determination

More information

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHEM 51LB EXP 1 SPECTRSCPIC METHDS: INFRARED AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY REACTINS: None TECHNIQUES: IR Spectroscopy, NMR Spectroscopy Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy

More information

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia 46022

More information

IR Applied to Isomer Analysis

IR Applied to Isomer Analysis DiscovIR-LC TM Application Note 025 April 2008 Deposition and Detection System IR Applied to Isomer Analysis Infrared spectra provide valuable information about local configurations of atoms in molecules.

More information

ORGANIC CHEMISTRY. Spectroscopy of Organic Compounds. Prof. Subodh Kumar Dept. of Chemistry Guru Nanak Dev University Amritsar -143005 (26.10.

ORGANIC CHEMISTRY. Spectroscopy of Organic Compounds. Prof. Subodh Kumar Dept. of Chemistry Guru Nanak Dev University Amritsar -143005 (26.10. GANIC CHEMISTY Spectroscopy of rganic Compounds Prof. Subodh Kumar Dept. of Chemistry Guru Nanak Dev University Amritsar -143005 (26.10.2006) CNTENTS Introduction Ultraviolet and Visible Spectroscopy Nature

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy 1 Chap 12 Reactions will often give a mixture of products: OH H 2 SO 4 + Major Minor How would the chemist determine which product was formed? Both are cyclopentenes; they are isomers.

More information

Mass Spec - Fragmentation

Mass Spec - Fragmentation Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral

More information

For example: (Example is from page 50 of the Thinkbook)

For example: (Example is from page 50 of the Thinkbook) SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

More information

13.4 UV/VIS Spectroscopy

13.4 UV/VIS Spectroscopy 13.4 UV/VIS Spectroscopy The spectroscopy which utilizes the ultraviolet (UV) and visible (VIS) range of electromagnetic radiation, is frequently referred to as Electronic Spectroscopy. The term implies

More information

How to Interpret an IR Spectrum

How to Interpret an IR Spectrum How to Interpret an IR Spectrum Don t be overwhelmed when you first view IR spectra or this document. We have simplified the interpretation by having you only focus on 4/5 regions of the spectrum. Do not

More information

Identification of Unknown Organic Compounds

Identification of Unknown Organic Compounds Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often

More information

Molecular Models Experiment #1

Molecular Models Experiment #1 Molecular Models Experiment #1 Objective: To become familiar with the 3-dimensional structure of organic molecules, especially the tetrahedral structure of alkyl carbon atoms and the planar structure of

More information

How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

More information

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene

More information

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY TE TASK To use mass spectrometry and IR, UV/vis and NMR spectroscopy to identify organic compounds. TE SKILLS By the end of the experiment you should be able

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

18 electron rule : How to count electrons

18 electron rule : How to count electrons 18 electron rule : How to count electrons The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d electrons and the electrons conventionally

More information

Chapter 5 Organic Spectrometry

Chapter 5 Organic Spectrometry Chapter 5 Organic Spectrometry from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside orgchembyneuman@yahoo.com

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

electron does not become part of the compound; one electron goes in but two electrons come out.

electron does not become part of the compound; one electron goes in but two electrons come out. Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.

More information

CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY REACTIONS: None TECHNIQUES: IR, NMR Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy are

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural

More information

Conjugation is broken completely by the introduction of saturated (sp3) carbon:

Conjugation is broken completely by the introduction of saturated (sp3) carbon: Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

Colorimetry Extinction coefficient (ε) Lambda max (λ max ) Qualitative vs. quantitative analysis

Colorimetry Extinction coefficient (ε) Lambda max (λ max ) Qualitative vs. quantitative analysis Lab Week 2 - Spectrophotometry Purpose: Introduce students to the use of spectrophotometry for qualitative (what is it) and quantitative (how much is there of it) analysis of biological samples and molecules.

More information

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne

More information

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

More information

SPECTROSCOPY. Light interacting with matter as an analytical tool

SPECTROSCOPY. Light interacting with matter as an analytical tool SPECTROSCOPY Light interacting with matter as an analytical tool Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations

More information

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria 6. 3 Molecular spectroscopy Spectroscopy in its various forms is a technique with wide applications across many disciplines. From qualitative analysis in toxicology through to quantitative measurements

More information

Calculating the Degrees of Unsaturation From a Compound s Molecular Formula

Calculating the Degrees of Unsaturation From a Compound s Molecular Formula Calculating the Degrees of Unsaturation From a Compound s Molecular Formula Alkanes have the molecular formula C n. Alkanes are saturated hydrocarbons because each member of the family has the maximum

More information

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1 Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas unsaturated

More information

NOMENCLATURE OF ORGANIC COMPOUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved.

NOMENCLATURE OF ORGANIC COMPOUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved. NMENCLATURE F RGANIC CMPUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved. rganic chemistry is the chemistry of carbon compounds. Carbon has the ability to bond with itself to form long chains

More information

Chapter 16: Infrared Spectroscopy

Chapter 16: Infrared Spectroscopy Where relevant, each IR spectrum will include the corresponding molecular structure. Chapter 16: Infrared Spectroscopy 16.1 Why Should I Study This? Spectroscopy is the study of the interaction of energy

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name 1) Which compound would be expected to show intense IR absorption at 3300 cm-1? A) butane B) CH3CH2C CH C)CH3C CCH3 D) but-1-ene 1) 2) Which compound would be expected to show intense IR absorption

More information

Nuclear Magnetic Resonance notes

Nuclear Magnetic Resonance notes Reminder: These notes are meant to supplement, not replace, the laboratory manual. Nuclear Magnetic Resonance notes Nuclear Magnetic Resonance (NMR) is a spectrometric technique which provides information

More information

0 10 20 30 40 50 60 70 m/z

0 10 20 30 40 50 60 70 m/z Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

HUMBOLDT-UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I

HUMBOLDT-UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I HUMBOLDT-UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Physik von Makromolekülen UV-VIS absorption characterization of (macro)molecular solutions Persons in charge:

More information

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there? 1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula

More information

Organic Spectroscopy

Organic Spectroscopy 1 Organic Spectroscopy Second Year, Michaelmas term, 8 lectures: Dr TDW Claridge & Prof BG Davis Lectures 1 4 highlight the importance of spectroscopic methods in the structural elucidation of organic

More information

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes*

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes* CM220 Addition lab Experiment: Reactions of alkanes, alkenes, and cycloalkenes* Purpose: To investigate the physical properties, solubility, and density of some hydrocarbon. To compare the chemical reactivity

More information

IUPAC System of Nomenclature

IUPAC System of Nomenclature IUPAC System of Nomenclature The IUPAC (International Union of Pure and Applied Chemistry) is composed of chemists representing the national chemical societies of several countries. ne committee of the

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

Upon completion of this lab, the student will be able to:

Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

Solving Spectroscopy Problems

Solving Spectroscopy Problems Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

More information

NMR Spectroscopy of Aromatic Compounds (#1e)

NMR Spectroscopy of Aromatic Compounds (#1e) NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch14_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Compounds with the -OH group attached to a saturated alkane-like carbon are known as A)

More information

Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

More information

Laboratory 22: Properties of Alcohols

Laboratory 22: Properties of Alcohols Introduction Alcohols represent and important class of organic molecules. In this experiment you will study the physical and chemical properties of alcohols. Solubility in water, and organic solvents,

More information

ALCOHOLS: Properties & Preparation

ALCOHOLS: Properties & Preparation ALLS: Properties & Preparation General formula: R-, where R is alkyl or substitued alkyl. Ar-: phenol - different properties. Nomenclature 1. ommon names: Name of alkyl group, followed by word alcohol.

More information

2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY

2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY 2nd/3rd Year Physical Chemistry Practical Course, Oxford University 2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY (4 points) Outline Spectrometry is widely used to monitor the progress

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

PTAC: Applied Chemistry COURSE OUTLINE & OBJECTIVES ESC Approved November 19, 2004

PTAC: Applied Chemistry COURSE OUTLINE & OBJECTIVES ESC Approved November 19, 2004 INTRODUCTION PTAC: Applied Chemistry COURSE OUTLINE & OBJECTIVES ESC Approved November 19, 2004 A. Introduction to Chemistry Terms 1. Define basic terms associated with chemistry: Organic/inorganic/biochemistry/physical

More information

Basic UV-Vis Theory, Concepts and Applications

Basic UV-Vis Theory, Concepts and Applications Introduction Ultraviolet and visible spectrometers have been in general use for the last 35 years and over this period have become the most important analytical instrument in the modern day laboratory.

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within

More information

Suggested solutions for Chapter 7

Suggested solutions for Chapter 7 s for Chapter 7 7 PRBLEM 1 Are these molecules conjugated? Explain your answer in any reasonable way. C Et C Et C Et Revision of the basic kinds of conjugation and how to show conjugation with curly arrows.

More information

Alcohols An alcohol contains a hydroxyl group ( OH) attached to a carbon chain. A phenol contains a hydroxyl group ( OH) attached to a benzene ring.

Alcohols An alcohol contains a hydroxyl group ( OH) attached to a carbon chain. A phenol contains a hydroxyl group ( OH) attached to a benzene ring. Chapter : rganic Compounds with xygen Alcohols, Ethers Alcohols An alcohol contains a hydroxyl group ( H) attached to a carbon chain. A phenol contains a hydroxyl group ( H) attached to a benzene ring.

More information

Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture

Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture Instructor: Professor Wolf D. Habicher, Professor Claus Rüger Meeting Times Lectures: twice a week at 90 minutes each Discussions:

More information

12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS

12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS 552 APTER 12 INTRODUTION TO SPETROSOPY. INFRARED SPETROSOPY AND MASS SPETROMETRY PROBLEM 12.9 Which of the following vibrations should be infrared-active and which should be infrared-inactive (or nearly

More information

EXPERIMENT Aspirin: Synthesis and NMR Analysis

EXPERIMENT Aspirin: Synthesis and NMR Analysis EXPERIMENT Aspirin: Synthesis and NMR Analysis Introduction: When salicylic acid reacts with acetic anhydride in the presence of an acid catalyst, acetylsalicylic acid, or aspirin, is produced according

More information

Chapter 12 Organic Compounds with Oxygen and Sulfur

Chapter 12 Organic Compounds with Oxygen and Sulfur Chapter 12 Organic Compounds with Oxygen and Sulfur 1 Alcohols An alcohol contains a hydroxyl group ( OH) that replaces a hydrogen atom in a hydrocarbon. A phenol contains a hydroxyl group ( OH) attached

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

IDENTIFICATION OF ALCOHOLS

IDENTIFICATION OF ALCOHOLS IDENTIFICATION OF ALCOHOLS Alcohols are organic compounds that which considered as derivatives of water. One of the hydrogen atoms of water molecule (H-O-H) has been replaced by an alkyl or substituted

More information

2 Spectrophotometry and the Analysis of Riboflavin

2 Spectrophotometry and the Analysis of Riboflavin 2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound

More information

Alkanes. Chapter 1.1

Alkanes. Chapter 1.1 Alkanes Chapter 1.1 Organic Chemistry The study of carbon-containing compounds and their properties What s so special about carbon? Carbon has 4 bonding electrons. Thus, it can form 4 strong covalent bonds

More information

ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:

ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO: ALKENES AND ALKYNES REACTINS A STUDENT W AS MASTERED TE MATERIAL IN TIS SECTIN SULD BE ABLE T: 1. Given the starting materials and reaction conditions, predict the products of the following reactions of

More information

Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers.

Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers. NMR Spectroscopy I Reading: Wade chapter, sections -- -7 Study Problems: -, -7 Key oncepts and Skills: Given an structure, determine which protons are equivalent and which are nonequivalent, predict the

More information

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum.

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. Dr. John Jackowski Chair of Science, Head of Chemistry Scotch College Melbourne john.jackowski@scotch.vic.edu.au

More information

VCE CHEMISTRY 2008 2011: UNIT 3 SAMPLE COURSE OUTLINE

VCE CHEMISTRY 2008 2011: UNIT 3 SAMPLE COURSE OUTLINE VCE CHEMISTRY 2008 2011: UNIT 3 SAMPLE COURSE OUTLINE This sample course outline represents one possible teaching and learning sequence for Unit 3. 1 2 calculations including amount of solids, liquids

More information