MiniIntroduction to Propositional Logic and Proofs


 Lynette Armstrong
 1 years ago
 Views:
Transcription
1 MiniIntroduction to Propositional Logic and Proofs 1 Motivation: reasoning with flawed logic Solve for x: x + 2 = 4 x We get x = 5. Let s check the solution... The problem: we did not correctly identify statements and connectives (i) statements & connectives; (ii) proof strategies 2 Statements & Connectives, Quantifiers Statement: any assertion that is T or F sentence: Today, the sun shines. formula: for x it holds that p x w x < 1 nonexample: 5x label: ϕ, ρ, σ ϕ : x < 1, or ρ : p x w c Ronald Wendner Logic & Proofs  1 v2.1
2 statement typically expressed in terms of sets A, B A = {x R 1 < x < 1} B = {x R p x w}, for p, w R given ϕ same as x A ρ same as x B for a given x R, ϕ can by T or F; ρ can be T or F statements can be combined by 7 connectives/quantifiers,,,,,, let A, B X e.g., X = R and let p = w = 1 so that B = {x R x 1} and ϕ ρ or, equivalently, A B by A B we mean: (x A) (x B) to A B there is a corresponding set notation: A B statement A B is T if and only if A and B are both T c Ronald Wendner Logic & Proofs  2 v2.1
3 truth values can be displayed by truth table A B A B T T T T F F F T F F F F ϕ ρ ϕ ρ T T T T F F F T F F F F equivalently, in set notation: Query. A B A B x A x B x (A B) x A x / B x / (A B) x / A x B x / (A B) x / A x / B x / (A B) (i) Show statements ϕ, ρ and sets A, B and (A B), as given above, graphically. (ii) Demonstrate all 4 cases given in the tables. c Ronald Wendner Logic & Proofs  3 v2.1
4 or ϕ ρ or, equivalently, A B by A B we mean: (x A) (x B) to A B there is a corresponding set notation: A B statement A B is T if either A or B are both are T truth values A B A B T T T T F T F T T F F F ϕ ρ ϕ ρ T T T T F T F T T F F F equivalently, in set notation: A B A B x A x B x (A B) x A x / B x (A B) x / A x B x (A B) x / A x / B x / (A B) c Ronald Wendner Logic & Proofs  4 v2.1
5 Query. (i) Show statements ϕ ρ and set (A B), as given above, graphically. (ii) Demonstrate all 4 cases given in the tables. not ϕ or, equivalently, A by A we mean: (x / A) to A there is a corresponding set notation: A c, where A c {x X x / A} is the set complement statement A is T if and only if A is F truth values A A ( A) T F T F T F A A c (A c ) c x A x / A c x (A c ) c x / A x A c x / (A c ) c Query. (i) Identify the sets A c and B c, as given above, analytically. (ii) Demonstrate the cases given in the table. c Ronald Wendner Logic & Proofs  5 v2.1
6 implication ϕ ρ or, equivalently, A B A B means: for all x A, we have x B corresponding set notation: A B statement A B is T if either A is F or B is T x > 2 x 2 > 3 you participate in a doctoral program, therefore you are a student x is a square x is a rectangle if LHS is T then RHS must always be T but if RHS is T, LHS may or may not be T A sufficient not necessary condition for B but if B is F: then A must be F B required for A to be T B necessary not sufficient condition for A c Ronald Wendner Logic & Proofs  6 v2.1
7 truth values A B A B T T T T F F F T T F F T Note: if A is F then A =, and is a subset of every set: (A = ) (A B), which is vacuously true for any B Query. (i) For the sets A and B, as given above, is A B true; is B A true? (ii) Show by means of a truth table that (A B) is the same as (A B). (iii) Show that the following statement is true: (y ) (y is a greeneyed lion) c Ronald Wendner Logic & Proofs  7 v2.1
8 equivalence ϕ ρ or, equivalently, A B A B means: for all x A, we have x B and for all x B, we have x A corresponding set notation: A = B A is necessary and sufficient for B and B is necessary and sufficient for A: (A B) is the same as (A B) (B A) Query. Claim: (A B) [(A B) (B A)] Prove the claim by means of a truth table. A B A B A B B A (A B) (B A) T T T T T T T F F F T F F T F T F F F F T T T T Note. Truth values in column for A B follow from fact that A = B. Query. What went wrong with the motivating example? c Ronald Wendner Logic & Proofs  8 v2.1
9 existential quantifier ( x A)(x B) set notation: A B F if A B = universal quantifier ( x A)(x B) set notation: A B F if ( x A)(x / B): counterexample! Query. Consider the sets A and B as defined at the beginning. (i) ( x A)(x B): T or F? (ii) ( x A)(x B): T or F? 3 Negation, again and, or, not (A B) ( A B) (A B) ( A B) ( A) A Query. Draw Venn diagrams to illustrate these cases. c Ronald Wendner Logic & Proofs  9 v2.1
10 implication and equivalence (A B) (A B) (A B) [(A B) (B A)] (A B) [ (A B) (B A)] [(A B) (B A)] quantifiers ( x A)(x B) ( x A) (x B) ( x A)(x / B) (A B) = ( x A)(x B) ( x A) (x B) ( x A)(x / B) A B c Ronald Wendner Logic & Proofs  10 v2.1
11 4 Proof strategies terminology we use tautology: (ρ ρ) always T contradiction: (ρ ρ) always F axiom theorem, proposition, corollary lemma definition, e.g., A c {x X x / A} proof strategies direct proof indirect proofs: by contrapositive, by contradiction, by induction steps involved 1. decide on a proof strategy 2. what is given information (LHS of ) 3. which statement exactly is to be shown (depending on proof strategy & given info) 4. try to find a way to show that statement, step by step (using given info) c Ronald Wendner Logic & Proofs  11 v2.1
12 4.1 Direct Proof: (ϕ (ϕ ρ)) ρ objective: show A B strategy: (1) take A as given information (no need to show that A is true!) (2) show directly, step by step: A A 1 A 2... A n B Note. If we want to prove A B we need to prove [(A B) (B A)] Query. Prove the following statements by direct proofs. (i) ( x 2 + 5x 4 > 0) (x > 0) (ii) Let a, b, c, d R ++, and b > a. Then: (a c b d) (c > d) (iii) Let x R. (x 1) (2x 1)/x 1 What s the problem with (iii)? c Ronald Wendner Logic & Proofs  12 v2.1
13 Cases I: A B We may split A into cases: A = A 1 A 2 (A B) [(A 1 A 2 ) B] [(A 1 B) (A 2 B)] Query. Let A = {x R 1 < x < 1} and B = {x R 0 < x < 1}. Employ a direct proof by cases to show: x A x 2 B. Cases II: A B We may split B into cases: (B 1 B 2 ) B [A (B 1 B 2 )] [(A B 1 ) (A B 2 )] Query. (i) Show by means of a truth table that the equivalence above is true. c Ronald Wendner Logic & Proofs  13 v2.1
14 4.2 Proof by the Contrapositive objective: show A B strategy: (A B) ( B A). (1) take B as given information (no need to show that B is true!) (2) show that B... A Query. (i) Show, by means of a truth table, that the above equivalence is true. (ii) Employ a proof by the contrapositive to show ( x 2 + 5x 4 > 0) (x > 0). (iii) Let x R. Employ a proof by the contrapositive to show (x 1) [(2x 1)/x 1]. (iv) Let a, b be two integers. Employ a proof by the contrapositive to show [(ab) even] [(a even) (b even)]. c Ronald Wendner Logic & Proofs  14 v2.1
15 4.3 Proof by Contradiction objective: show A B strategy: [(A B) (C C)] (A B) (1) suppose (A B), then (A B) (2) show (A B) (C C), a contradicition. (3) [ (C C) (A B)] (C C) is a tautology, and (A B) (A B) Query. By employing proofs by contradiction, show: (i) (a < b) (a + b)/2 < b; (ii) Suppose n is an integer. Then [(n 2 + 1) is odd] n is even. (iii) Let a, b be two integers. [(ab) even] [(a even) (b even)]. c Ronald Wendner Logic & Proofs  15 v2.1
16 4.4 Proof by Induction objective: show ϕ(n) is T n N = {1, 2, 3,...} strategy: (1) base step: verify ϕ(1) that is, ϕ(n) is T for n = 1 (2) induction step: ϕ(k) ϕ(k + 1) Notice: in induction step, ϕ(k) is given info! [ϕ(1) ( k N)(ϕ(k) ϕ(k+1))] [( n N)(ϕ(n))] Query. Show that the following statements are true for all n N: (i) n i=1 i = n(1+n) 2 (ii) n i=0 2i = 2 n+1 1 (iii) n i=1 (2 i 1) = n2 c Ronald Wendner Logic & Proofs  16 v2.1
Math 3000 Running Glossary
Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (
More informationProof: A logical argument establishing the truth of the theorem given the truth of the axioms and any previously proven theorems.
Math 232  Discrete Math 2.1 Direct Proofs and Counterexamples Notes Axiom: Proposition that is assumed to be true. Proof: A logical argument establishing the truth of the theorem given the truth of the
More informationHandout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
More informationChapter I Logic and Proofs
MATH 1130 1 Discrete Structures Chapter I Logic and Proofs Propositions A proposition is a statement that is either true (T) or false (F), but or both. s Propositions: 1. I am a man.. I am taller than
More informationInference Rules and Proof Methods
Inference Rules and Proof Methods Winter 2010 Introduction Rules of Inference and Formal Proofs Proofs in mathematics are valid arguments that establish the truth of mathematical statements. An argument
More informationMathematical Induction
MCS236: Graph Theory Handout #A5 San Skulrattanakulchai Gustavus Adolphus College Sep 15, 2010 Mathematical Induction The following three principles governing N are equivalent. Ordinary Induction Principle.
More informationDISCRETE MATHEMATICS W W L CHEN
DISCRETE MATHEMATICS W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It is available free
More informationThe Foundations: Logic and Proofs. Chapter 1, Part III: Proofs
The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments
More informationIntroduction to Proofs
Chapter 1 Introduction to Proofs 1.1 Preview of Proof This section previews many of the key ideas of proof and cites [in brackets] the sections where they are discussed thoroughly. All of these ideas are
More information2. Propositional Equivalences
2. PROPOSITIONAL EQUIVALENCES 33 2. Propositional Equivalences 2.1. Tautology/Contradiction/Contingency. Definition 2.1.1. A tautology is a proposition that is always true. Example 2.1.1. p p Definition
More informationdef: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.
Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true
More informationA set is a Many that allows itself to be thought of as a One. (Georg Cantor)
Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains
More informationLogic and Proofs. Chapter 1
Section 1.0 1.0.1 Chapter 1 Logic and Proofs 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers 1.5 Rules of Inference 1.6 Introduction to Proofs
More informationDirect Proofs. CS 19: Discrete Mathematics. Direct Proof: Example. Indirect Proof: Example. Proofs by Contradiction and by Mathematical Induction
Direct Proofs CS 19: Discrete Mathematics Amit Chakrabarti Proofs by Contradiction and by Mathematical Induction At this point, we have seen a few examples of mathematical proofs. These have the following
More informationSection 1. Statements and Truth Tables. Definition 1.1: A mathematical statement is a declarative sentence that is true or false, but not both.
M3210 Supplemental Notes: Basic Logic Concepts In this course we will examine statements about mathematical concepts and relationships between these concepts (definitions, theorems). We will also consider
More informationReview for Final Exam
Review for Final Exam Note: Warning, this is probably not exhaustive and probably does contain typos (which I d like to hear about), but represents a review of most of the material covered in Chapters
More informationINTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS
INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28
More informationCS 441 Discrete Mathematics for CS Lecture 5. Predicate logic. CS 441 Discrete mathematics for CS. Negation of quantifiers
CS 441 Discrete Mathematics for CS Lecture 5 Predicate logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Negation of quantifiers English statement: Nothing is perfect. Translation: x Perfect(x)
More information2. Methods of Proof Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try.
2. METHODS OF PROOF 69 2. Methods of Proof 2.1. Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try. Trivial Proof: If we know q is true then
More informationSection 3 Sequences and Limits
Section 3 Sequences and Limits Definition A sequence of real numbers is an infinite ordered list a, a 2, a 3, a 4,... where, for each n N, a n is a real number. We call a n the nth term of the sequence.
More information31 is a prime number is a mathematical statement (which happens to be true).
Chapter 1 Mathematical Logic In its most basic form, Mathematics is the practice of assigning truth to welldefined statements. In this course, we will develop the skills to use known true statements to
More informationCSE 191, Class Note 01 Propositional Logic Computer Sci & Eng Dept SUNY Buffalo
Propositional Logic CSE 191, Class Note 01 Propositional Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 37 Discrete Mathematics What is Discrete
More information1.3 Induction and Other Proof Techniques
4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.
More informationCHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
More informationLogic, Sets, and Proofs
Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Statements. A logical statement is a mathematical statement that is either true or false. Here we denote logical
More informationGeometry  Chapter 2 Review
Name: Class: Date: Geometry  Chapter 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine if the conjecture is valid by the Law of Syllogism.
More informationLOGICAL INFERENCE & PROOFs. Debdeep Mukhopadhyay Dept of CSE, IIT Madras
LOGICAL INFERENCE & PROOFs Debdeep Mukhopadhyay Dept of CSE, IIT Madras Defn A theorem is a mathematical assertion which can be shown to be true. A proof is an argument which establishes the truth of a
More informationPRINCIPLE OF MATHEMATICAL INDUCTION
Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction Newton was indebted to it for his theorem
More informationMathematical Induction
Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers
More informationvertex, 369 disjoint pairwise, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws
Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 466 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,
More information4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set.
Section 4. Set Theory 4.1. Definitions A set may be viewed as any well defined collection of objects, called elements or members of the set. Sets are usually denoted with upper case letters, A, B, X, Y,
More information2.) 5000, 1000, 200, 40, 3.) 1, 12, 123, 1234, 4.) 1, 4, 9, 16, 25, Draw the next figure in the sequence. 5.)
Chapter 2 Geometry Notes 2.1/2.2 Patterns and Inductive Reasoning and Conditional Statements Inductive reasoning: looking at numbers and determining the next one Conjecture: sometimes thought of as an
More information1. Use the following truth table to answer the questions.
Topic 3: Logic 3.3 Introduction to Symbolic Logic Negation and Conjunction Disjunction and Exclusive Disjunction 3.4 Implication and Equivalence Disjunction and Exclusive Disjunction Truth Tables 3.5 Inverse,
More informationApplications of Methods of Proof
CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The settheoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
More informationThe set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;
Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method
More information3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
More information3(vi) B. Answer: False. 3(vii) B. Answer: True
Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)
More informationGeometry Topic 5: Conditional statements and converses page 1 Student Activity Sheet 5.1; use with Overview
Geometry Topic 5: Conditional statements and converses page 1 Student Activity Sheet 5.1; use with Overview 1. REVIEW Complete this geometric proof by writing a reason to justify each statement. Given:
More informationMathematical Induction
Mathematical S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 Like dominoes! Mathematical S 0 S 1 S 2 S 3 S4 S 5 S 6 S 7 S 8 S 9 S 10 Like dominoes! S 4 Mathematical S 0 S 1 S 2 S 3 S5 S 6 S 7 S 8 S 9 S 10
More informationDiscrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University
Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called
More informationCourse Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction.
Course Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction. February 21, 2006 1 Proof by Induction Definition 1.1. A subset S of the natural numbers is said to be inductive if n S we have
More informationReview Name Rule of Inference
CS311H: Discrete Mathematics Review Name Rule of Inference Modus ponens φ 2 φ 2 Modus tollens φ 2 φ 2 Inference Rules for Quantifiers Işıl Dillig Hypothetical syllogism Or introduction Or elimination And
More informationChapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1
Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes
More informationLogic will get you from A to B. Imagination will take you everywhere.
Chapter 3 Predicate Logic Logic will get you from A to B. Imagination will take you everywhere. A. Einstein In the previous chapter, we studied propositional logic. This chapter is dedicated to another
More information1.5 Methods of Proof INTRODUCTION
1.5 Methods of Proof INTRODUCTION Icon 0049 Two important questions that arise in the study of mathematics are: (1) When is a mathematical argument correct? (2) What methods can be used to construct mathematical
More informationDISCRETE MATH: LECTURE 4
DISCRETE MATH: LECTURE 4 DR. DANIEL FREEMAN 1. Chapter 3.1 Predicates and Quantified Statements I A predicate is a sentence that contains a finite number of variables and becomes a statement when specific
More informationSolutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014
Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the
More informationWOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology
First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121
More informationconditional statement conclusion Vocabulary Flash Cards Chapter 2 (p. 66) Chapter 2 (p. 69) Chapter 2 (p. 66) Chapter 2 (p. 76)
biconditional statement conclusion Chapter 2 (p. 69) conditional statement conjecture Chapter 2 (p. 76) contrapositive converse Chapter 2 (p. 67) Chapter 2 (p. 67) counterexample deductive reasoning Chapter
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationIntroduction to mathematical arguments
Introduction to mathematical arguments (background handout for courses requiring proofs) by Michael Hutchings A mathematical proof is an argument which convinces other people that something is true. Math
More informationGeometry Unit 1. Basics of Geometry
Geometry Unit 1 Basics of Geometry Using inductive reasoning  Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture an unproven statement that is based
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 1
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 1 Course Outline CS70 is a course on Discrete Mathematics and Probability for EECS Students. The purpose of the course
More informationLecture 3. Mathematical Induction
Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion
More informationMathematical Logic. Tableaux Reasoning for Propositional Logic. Chiara Ghidini. FBKIRST, Trento, Italy
Tableaux Reasoning for Propositional Logic FBKIRST, Trento, Italy Outline of this lecture An introduction to Automated Reasoning with Analytic Tableaux; Today we will be looking into tableau methods for
More informationThis section demonstrates some different techniques of proving some general statements.
Section 4. Number Theory 4.. Introduction This section demonstrates some different techniques of proving some general statements. Examples: Prove that the sum of any two odd numbers is even. Firstly you
More informationBasic Proof Techniques
Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
More information1 Proposition, Logical connectives and compound statements
Discrete Mathematics: Lecture 4 Introduction to Logic Instructor: Arijit Bishnu Date: July 27, 2009 1 Proposition, Logical connectives and compound statements Logic is the discipline that deals with the
More informationQuantifiers are used to describe variables in statements.  The universal quantifier means for all.  The existential quantifier means there exists.
11 Quantifiers are used to describe variables in statements.  The universal quantifier means for all.  The existential quantifier means there exists. The phrases, for all x in R if x is an arbitrary
More informationAssignment 3 Solutions Problem1: (Section 1.2 Exercise 8) Consider the following assertions.
Assignment 3 Solutions Problem1: (Section 1.2 Eercise 8) Consider the following assertions. A: There eists a real number y such that y > for every real number B: For every real number, there eists a real
More informationCongruences. Robert Friedman
Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More information(Refer Slide Time: 1:41)
Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must
More informationAnalysis MA131. University of Warwick. Term
Analysis MA131 University of Warwick Term 1 01 13 September 8, 01 Contents 1 Inequalities 5 1.1 What are Inequalities?........................ 5 1. Using Graphs............................. 6 1.3 Case
More informationClimbing an Infinite Ladder
Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder and the following capabilities: 1. We can reach the first rung of the ladder. 2. If we can reach a particular rung of the ladder,
More informationIntroduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim
6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can
More informationWe now explore a third method of proof: proof by contradiction.
CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement
More informationClicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES
MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Tuesday, 1/21/14 General course Information Sets Reading: [J] 1.1 Optional: [H] 1.11.7 Exercises: Do before next class; not to hand in [J] pp. 1214:
More informationVocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.
CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion
More informationChapter 3: Elementary Number Theory and Methods of Proof. January 31, 2010
Chapter 3: Elementary Number Theory and Methods of Proof January 31, 2010 3.4  Direct Proof and Counterexample IV: Division into Cases and the QuotientRemainder Theorem QuotientRemainder Theorem Given
More informationLecture Notes in Discrete Mathematics. Marcel B. Finan Arkansas Tech University c All Rights Reserved
Lecture Notes in Discrete Mathematics Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 Preface This book is designed for a one semester course in discrete mathematics for sophomore or junior
More informationWRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
More information8.7 Mathematical Induction
8.7. MATHEMATICAL INDUCTION 8135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture
More informationElementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
More informationSome Definitions about Sets
Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish
More informationChapter 1 LOGIC AND PROOF
Chapter 1 LOGIC AND PROOF To be able to understand mathematics and mathematical arguments, it is necessary to have a solid understanding of logic and the way in which known facts can be combined to prove
More informationCartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
More informationWUCT121. Discrete Mathematics. Logic
WUCT121 Discrete Mathematics Logic 1. Logic 2. Predicate Logic 3. Proofs 4. Set Theory 5. Relations and Functions WUCT121 Logic 1 Section 1. Logic 1.1. Introduction. In developing a mathematical theory,
More informationp 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)
.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other
More informationn logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional)
Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.6) TOPICS Propositional Logic Logical Operators Truth Tables Implication Logical Equivalence Inference Rules What you should know about propositional
More informationMATHS 315 Mathematical Logic
MATHS 315 Mathematical Logic Second Semester, 2006 Contents 2 Formal Statement Logic 1 2.1 Post production systems................................. 1 2.2 The system L.......................................
More information1. R In this and the next section we are going to study the properties of sequences of real numbers.
+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real
More informationCHAPTER 1. Logic, Proofs Propositions
CHAPTER 1 Logic, Proofs 1.1. Propositions A proposition is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: Paris is in France (true), London
More informationIntroduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
More informationInduction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition
Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing
More informationWelcome to Analysis 1
Welcome to Analysis 1 Each week you will get one workbook with assignments to complete. Typically you will be able to get most of it done in class and will finish it off by yourselves. In week one there
More informationArtificial Intelligence Automated Reasoning
Artificial Intelligence Automated Reasoning Andrea Torsello Automated Reasoning Very important area of AI research Reasoning usually means deductive reasoning New facts are deduced logically from old ones
More informationWorksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation
Worksheet on induction MA113 Calculus I Fall 2006 First, let us explain the use of for summation. The notation f(k) means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other
More informationDiscrete Mathematics. Thomas Goller. July 2013
Discrete Mathematics Thomas Goller July 2013 Contents 1 Mathematics 1 1.1 Axioms..................................... 1 1.2 Definitions................................... 2 1.3 Theorems...................................
More informationMAT2400 Analysis I. A brief introduction to proofs, sets, and functions
MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take
More informationFundamentals of Mathematics Lecture 6: Propositional Logic
Fundamentals of Mathematics Lecture 6: Propositional Logic GuanShieng Huang National Chi Nan University, Taiwan Spring, 2008 1 / 39 Connectives Propositional Connectives I 1 Negation: (not A) A A T F
More informationIn the examples above, you used a process called inductive reasoning to continue the pattern. Inductive reasoning is.
Lesson 7 Inductive ing 1. I CAN understand what inductive reasoning is and its importance in geometry 3. I CAN show that a conditional statement is false by finding a counterexample Can you find the next
More informationAnnouncements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets
CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.32.6 Homework 2 due Tuesday Recitation 3 on Friday
More informationStudents in their first advanced mathematics classes are often surprised
CHAPTER 8 Proofs Involving Sets Students in their first advanced mathematics classes are often surprised by the extensive role that sets play and by the fact that most of the proofs they encounter are
More informationSETS. Chapter Overview
Chapter 1 SETS 1.1 Overview This chapter deals with the concept of a set, operations on sets.concept of sets will be useful in studying the relations and functions. 1.1.1 Set and their representations
More informationFoundations of Artificial Intelligence
Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard, Bernhard Nebel and Martin Riedmiller AlbertLudwigsUniversität Freiburg Contents 1 Agents
More informationProblems on Discrete Mathematics 1
Problems on Discrete Mathematics 1 ChungChih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from
More information2.1 Sets, power sets. Cartesian Products.
Lecture 8 2.1 Sets, power sets. Cartesian Products. Set is an unordered collection of objects.  used to group objects together,  often the objects with similar properties This description of a set (without
More informationSets and Subsets. Countable and Uncountable
Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There
More information