Project themes in computational brain modelling and brain-like computing

Size: px
Start display at page:

Download "Project themes in computational brain modelling and brain-like computing"

Transcription

1 Project themes in computational brain modelling and brain-like computing Supervisor, contact person: Pawel Herman Department of Computational Biology (CB) Please bear in mind that project details and specific research questions within the proposed themes are discussed individually with students depending on their interests. There is also a lot of flexibility in defining the scope and size of these projects. Some project ideas at the cross-sections of the following themes can be proposed/found. Students will have an opportunity to learn to use dedicated simulation software (with a possibility to rely on Python interface) or exploit their programming competence to build their own computational tools for theoretical or applied research. Projects are organized in three main themes, each of which describes a set of proposed topics. The lists of topics and some project ideas are not meant to be limiting in any sense and can therefore be easily expanded by students own ideas.

2 Theme 1: Computational brain, neural network simulations and brain-like computing algorithms General focus is here on developing, studying and/or applying connectionist (network based) brain models. The proposed topics range from simulating detailed spiking neural networks to investigating and validating more abstract brain-like computing architectures. Projects can be formulated to either address theoretical questions or test the networks functionality in applications. 1.1 Simulations and analysis of neural network models with emphasis on attractor memory networks There have been a range of theoretical concepts of brain computations proposed in computational neuroscience. Among the connectionist (network-based) approaches to modelling brain function, an attractor theory of neural computations has recently received particular attention. The functionality of attractor networks has been found helpful in explaining various perceptual and memory phenomena. Consequently, these models can be considered as fundamental components of systems level approach to modelling brain function within the framework of network-of-networks architecture. An implementation of attractor memory models can range from a more biologically plausible networks of spiking neurons to more abstract networks of units with continuous rate-based input/output. More biophysically detailed models with spiking neurons and synapses provide an opportunity to study rich neural dynamics in close relation to biological data, and specifically, recordings from the brain tissue. This way both dynamical and functional aspects of fascinating cortical phenomena can be studied. Such spiking neural network models are usually developed using dedicated simulation software, e.g. Nest, Neuron, Genesis etc. More abstract networks relying on rate-based units (i.e. with non-spiking real-valued input/output) on the other hand allow for constructing larger systems with the aim of exploring functional aspects of the simulated attractor memory system. In this context, both generic theoretical investigations into computational capabilities of memory (learning, memory capacity etc.) as well as specific applications in pattern recognition, whether in a biological or non-biological data mining context, can be pursued. Within this theme other computational theories of the brain, e.g. liquid state machines, can also be studied. In this regard, computational or dynamical aspects as well as application-oriented questions may be explored. Students can make use of existing software simulators or developed their own implementations of network models.

3 a) Studying the effect of different connectivity patterns, network architectures and their dimensionality on the dynamics and function of the attractor model. b) Investigating the sensitivity of the model to the level of biological detail being accounted for (discussion on the required level of complexity and the relevance of biological constraints). c) Exploring population-level (e.g. simple mean-field approximation) approaches to describing the neural dynamics exhibited by a modular attractor network. 1.2 Brain-inspired or brain-like computing algorithms theoretical developments and applications Development of brain models to study neural phenomena, as broadly discussed in topic 1.1 above, often leads to better understanding of the nature and purpose of neural computations. From a broader perspective, these computations can be seen as an inspiring model for novel approaches to generic information processing. Good reputation of neural network architectures in this regard is largely due to the impressive capabilities of information processing in the brain, which robustly handles large volumes of noisy multi-modal data received in continuous streams. Consequently, brain-like computing has long been considered as a particularly appealing concept in a broad field of information science. With the increasing availability of powerful computing platforms and intensive development of brain models as well as a growing body of knowledge about computational mechanisms underlying brain function, there is a surge of interest in adapting these functional aspects to devise algorithms for more generic applications in the field of data mining, pattern recognition etc. These efforts are urgently needed and particularly relevant to real-world problems involving so-called big data, for example in exploratory analysis of large volumes of high-dimensional neuroimaging data for research or clinical purposes. a) Adapting selected brain-like computing paradigms for large-scale data mining, e.g. to perform exploratory search for patterns in brain imaging data (medical diagnostics, see also Theme 3). b) Devising new brain network inspired approaches to generically process temporal or sequential data and/or comparing to the existing state-of-the art attempts. c) General evaluation and validation of brain-like computing algorithms on speech recognition, computer vision or other challenging real-world problems. d) Testing robustness (sensitivity analysis, noise handling capabilities, computational speed) and benchmarking brain-like computing methods against more conventional machine (/statistical) learning techniques on a selected set of benchmark problems. e) Devising network hierarchical architectures to model behavioral phenomena like prediction, expectation and filtering (at a reasonable level of abstraction).

4 1.3. Bayesian learning in spiking neural network models The theoretical framework of Bayesian statistics is commonly considered as an intuitively attractive model for representing and processing uncertain information in the brain. It has received a lot of attention in computational studies of learning and inference mechanisms underlying brain function. Since the Bayesian machinery for capturing probabilistic information in distributed neural networks corresponds to a commonly accepted and biologically inspired Hebbian idea of synaptic processes taking place in the connections between cells, there have been numerous attempts to adapt Bayesian inference as an unsupervised learning principle. In this context it is particularly challenging to translate Bayesian algorithms from abstract theoretical formulations to biologically plausible computations in spiking neural network models. In the following projects a student will support the ongoing research efforts in the lab, where our own Bayesian learning scheme (Bayesian Confidence Propagating Neural Network, commonly referred to as BCPNN) has been developed. a) Benchmarking synaptic Bayesian-Hebbian learning rules in a spiking sparse activity cortical associative memory and/or in popular pattern recognition/machine learning tasks. b) Simulation and analysis of spiking neural network models pre-trained with a Bayesian learning algorithm; studying implications of Bayesian learning on the network dynamics and function. 1.4 Visualisation in large-scale neural modelling Visualisation is one of the most neglected aspect of a rapidly developing field of computational biology. Only recently can we observe an emerging trend for combining neural simulation frameworks with visualisation software. Still there are a plethora of challenging problems that need to be urgently addressed (high-dimensional data, pre-processing, integration with a simulation software, 3-D visualization of ongoing brain model activity, demands for purely visual aspects, interactive environment) to render visualisation a practical tool in computational studies. This is envisaged to facilitate computational modelling and assist in demonstrating scientific findings. a) Visualisation of existing data produced by models (different types of high-dimensional spatiotemporal data are available). b) Conceptual integration with simulating environment to help with data pre-processing (or postprocessing) and facilitate interactive mode with the user. c) Review of the state-of-the-art methodology and a motivated choice of a tool for the computational problem at hand.

5 1.5. Investigations into parallel implementations and simulations of brain network models on graphics processing unit (GPU) clusters Simulations of large-scale brain models have gained growing importance in neuroscience mostly due to the better availability of comprehensive sets of relevant experimental data and, certainly, due to continuously increasing computational power. In the broad field of scientific computing the latter factor is particularly appreciated as it allows researchers to expand the complexity and size of their models. The majority of brain models are nowadays deployed on supercomputers. However, their availability is rather limited and they are commonly dedicated to large-scale simulations. Recently, graphics processing units (GPUs) have attracted attention as cheaper and more widely accessible simulation platforms, particularly for prototyping and evaluating models at lower-scales. Developments of GPU environments for neural simulations are still at early stages, especially when compared to supercomputer platforms. This opens up a lot of interesting research opportunities and the proposed projects within this theme could serve as suitable starting points. Students choosing this set of projects should have some prior experience with CUDA or OpenGL. a) Testing of existing GPU software for neural simulation. Potential development and a comparative analysis of parallel implementations of simple neural models (spiking or more abstract neural networks). b) Investigations into parallel simulations of simple brain models (distributed spiking or rate-based models, basic mean-field models etc.) at different scales deployed on GPU clusters using different programming interfaces - OPEN CL and CUDA.

6 Theme 2: Machine learning aspects of brain-inspired learning systems The projects proposed under this theme are concerned with Machine Learning (ML) and computational tools that benefit from brain inspirations but at the same time are not necessarily even considered biomimetic. Unlike for the projects proposed under Theme 1, the focus here is rather on the relevance of separate ideas borrowed from brain research (or more loosely related to computational neuroscience), such as various architectures in artificial neural networks including deep hierarchies, self-organization, local learning in distributed systems, a wide range of unsupervised and reinforcement learning approaches etc., to ML problems. Potential projects can explore the usefulness of ML algorithms inspired by brain computations in specific applications (spatio-temporal pattern recognition, time series prediction, inference in noisy environments under uncertainty, novelty detection, control of agents in computer games etc.) or study the nature and robustness of these biomimetic contributions to ML. 2.1 Exploring computational capabilities and properties of deep neural networks. 2.2 Exploiting self-organization and/or competitive learning principles in network computations. 2.3 Studying the potential of unsupervised or semi-supervised learning methods in problems with limited, unbalanced, noisy and uncertain data. 2.4 Designing/testing algorithms to adaptively control behaviour of virtual agents, e.g. in computer games, possibly with reinforcement learning methodology (or relating to the state-of-the-art methods). More specific project ideas within these broadly formulated and highly exploratory research themes will be added at a later time. For now, please contact Pawel Herman for details.

7 Theme 3: Computational approaches to real-world problems in large-scale data mining, pattern recognition, operational research etc. Projects listed below describe a wide range of applied tasks within broad areas of data mining, pattern recognition, time series prediction and operations research. They all require methods capable of learning from noisy data (sometimes nonstationary) or heuristic approaches (to NPcomplete problems), hence offering an opportunity to identify interesting research questions beyond serving only a specific application. The list of application areas can be easily extended at students initiative and projects will certainly have to eventually be made more concrete. The ambition is to propose, evaluate and examine approaches to specific computationally demanding problems with available data sets for prototyping and benchmarking. In some application areas there is an opportunity to work on real-world data sets exploited in previous data science research projects. 3.1 Brain signal pattern recognition for future applications Pattern recognition and machine learning have significantly advanced the field of biological data analysis leading in consequence to the development of effective diagnostic tools and supporting research efforts. The contribution of novel pattern recognition methods has been particularly appreciated in brain data mining as this new approach allows for exploratory search for spatio-temporal patterns in large quantities of high-dimensional nonstationary recordings of brain activity. The emerging trend is to combine machine learning techniques with brain-inspired computing algorithms to address increasingly demanding objectives of brain signal analysis in novel applications. a) Develop your own approach or build upon the existing approaches to a specific brain signal pattern recognition problem, e.g. electroencephalographic (EEG) signal classification for a braincomputer interface (BCI), automated sleep scoring based on physiological signals including EEG, drowsiness or cognitive load detection, EEG-based epileptic seizure prediction (identifying precursors in high-dimensional brain signal recordings) b) Alternatively, select and compare a few existing state-of-the-art methods. Focus on selected aspects of a brain signal pattern recognition problem of your choice (handling signal, extracting patterns, classifying and interpreting brain signal correlates).

8 3.2 Medical diagnostics Computer-aided diagnosis has been extensively validated in various medical domains, ranging from biomedical image or signal analysis to expert systems facilitating the process of decision making in clinical settings. Although the usefulness of computational approaches to medical diagnostics is beyond any doubt, there is still a lot of room for improvement to enhance the sensitivity and specificity of algorithms. The diagnostic problems are particularly challenging given the complexity as well as diversity of disease symptoms and pathological manifestations. In the computational domain, a diagnostic problem can often be formulated as a classification or inference task in the presence of multiple sources of uncertain or noisy information. This pattern recognition framework lies at the heart of medical diagnostics projects proposed here. a) Define a diagnostic problem within the medical domain and examine the suitability of machine learning, connectionist (artificial network-based), statistical or soft computing methods to your problem. b) Survey the state-of-the-art in computational tools supporting classification of disease symptoms and comparatively examine the diagnostic performance of some of them on a wide range of available benchmark data sets. Define a measure for diagnostic performance. Discuss most recent trends in the field and address some of the urgent challenges for computer-assisted diagnostics in medicine. 3.3 University timetabling problem or other challenging problems in scheduling Planning is one of the key aspects of our private and professional life. Whereas planning our own daily activities is manageable, scheduling in large multi-agent systems with considerable amounts of resources to be allocated in time and space subject to multitude of constraints is a truly daunting task. In consequence, scheduling or timetabling as prime representatives of hard combinatorial problems have increasingly become addressed algorithmically with the use of computational power of today's computers. This computer-assisted practice in setting up timetables for courses, students and lecturers has also gained a lot of interest at universities around the world and constitutes an active research field. Within this topic, students can address a scheduling problem of their own choice or they can use available university timetabling benchmark data and tailor it to the project's needs. An important aspect of such project would be to select or compare different algorithms for combinatorial optimisation, and define a multi-criterion optimisation objective. It could be an opportunity to test computational intelligence and machine learning methodology.

9 3.4 Intelligent control There is a clear trend for smarter machines that are able to collect data, learn, recognize objects, draw conclusions and perform behaviors to emerge in our daily life. Advanced intelligent control systems affect many aspects of human activities and can be found in a wide range of industries, e.g. healthcare, automotive, rail, energy, finance, urbanization and consumer electronics among others. By adapting and emulating certain aspects of biological intelligence this new generation of control approaches makes it possible for us to address newly emerging challenges and needs, build large-scale applications and integrate systems, implement complex solutions and meet growing demand for safety, security and energy efficiency. a) Select a real-world control problem (traffic control, energy management, helicopter or ship steering, industrial plant control, financial decision support and many others) and propose a new approach using machine learning and soft computing methodology (computational intelligence) that enhances functionality, automatisation and robustness when compared to classical solutions. b) Demonstrate functional (and other) benefits of computationally intelligent control approaches in relation to the classical methodology in a range of low-scale control problems (benchmarks). Discuss a suitable framework of comparison and potential criteria. c) Consider a robotic application with all constraints associated with autonomous agents and realworld environments (which can be emulated in software). Propose computationally intelligent methods to enable your agent to robustly perform complex tasks (learn from the environment, evolve over time, find solutions to new emerging problems, adapt to new conditions etc.). 3.5 Optimisation and parameter search in computational modelling Model's parameters have a decisive effect on its behaviour and dynamics. Search for parameters is at the same time the most tedious component of computational modelling. Neural simulations are no exception. On the contrary since they account for nonlinear and stochastic effects in brain data, parameters need to be carefully tuned to obtain a desirable functional and/or dynamical outcome. This optimisation procedure is commonly carried out manually on a trial-and-error basis. It is thus desirable to automatise this tedious process by providing an effective parameter search and optimisation scheme. One of key challenges to address is computational efficiency of the implemented method and the definition of a cost function based on the existing "manual" evaluation criteria. Tests in the project will be performed with the use of existing neural models or a low-scale simulation demo will be developed.

Machine Learning. 01 - Introduction

Machine Learning. 01 - Introduction Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge

More information

MEng, BSc Computer Science with Artificial Intelligence

MEng, BSc Computer Science with Artificial Intelligence School of Computing FACULTY OF ENGINEERING MEng, BSc Computer Science with Artificial Intelligence Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give

More information

MSCA 31000 Introduction to Statistical Concepts

MSCA 31000 Introduction to Statistical Concepts MSCA 31000 Introduction to Statistical Concepts This course provides general exposure to basic statistical concepts that are necessary for students to understand the content presented in more advanced

More information

CSC384 Intro to Artificial Intelligence

CSC384 Intro to Artificial Intelligence CSC384 Intro to Artificial Intelligence What is Artificial Intelligence? What is Intelligence? Are these Intelligent? CSC384, University of Toronto 3 What is Intelligence? Webster says: The capacity to

More information

Doctor of Philosophy in Computer Science

Doctor of Philosophy in Computer Science Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects

More information

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

More information

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

More information

MEng, BSc Applied Computer Science

MEng, BSc Applied Computer Science School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions

More information

Master of Science in Computer Science

Master of Science in Computer Science Master of Science in Computer Science Background/Rationale The MSCS program aims to provide both breadth and depth of knowledge in the concepts and techniques related to the theory, design, implementation,

More information

Appendices master s degree programme Artificial Intelligence 2014-2015

Appendices master s degree programme Artificial Intelligence 2014-2015 Appendices master s degree programme Artificial Intelligence 2014-2015 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

Artificial Intelligence and Robotics @ Politecnico di Milano. Presented by Matteo Matteucci

Artificial Intelligence and Robotics @ Politecnico di Milano. Presented by Matteo Matteucci 1 Artificial Intelligence and Robotics @ Politecnico di Milano Presented by Matteo Matteucci What is Artificial Intelligence «The field of theory & development of computer systems able to perform tasks

More information

School of Computer Science

School of Computer Science School of Computer Science Computer Science - Honours Level - 2014/15 October 2014 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level

More information

SYSTEMS, CONTROL AND MECHATRONICS

SYSTEMS, CONTROL AND MECHATRONICS 2015 Master s programme SYSTEMS, CONTROL AND MECHATRONICS INTRODUCTION Technical, be they small consumer or medical devices or large production processes, increasingly employ electronics and computers

More information

6.2.8 Neural networks for data mining

6.2.8 Neural networks for data mining 6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural

More information

Draft dpt for MEng Electronics and Computer Science

Draft dpt for MEng Electronics and Computer Science Draft dpt for MEng Electronics and Computer Science Year 1 INFR08012 Informatics 1 - Computation and Logic INFR08013 Informatics 1 - Functional Programming INFR08014 Informatics 1 - Object- Oriented Programming

More information

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina Graduate Co-op Students Information Manual Department of Computer Science Faculty of Science University of Regina 2014 1 Table of Contents 1. Department Description..3 2. Program Requirements and Procedures

More information

NEURAL NETWORKS IN DATA MINING

NEURAL NETWORKS IN DATA MINING NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,

More information

A1 Introduction to Data exploration and Machine Learning

A1 Introduction to Data exploration and Machine Learning A1 Introduction to Data exploration and Machine Learning 03563545 :- : -:: -,8 / 15 23CE53C5 --- Proposition: This course is aimed at students with little or no prior programming experience. Since Data

More information

Masters in Human Computer Interaction

Masters in Human Computer Interaction Masters in Human Computer Interaction Programme Requirements Taught Element, and PG Diploma in Human Computer Interaction: 120 credits: IS5101 CS5001 CS5040 CS5041 CS5042 or CS5044 up to 30 credits from

More information

Masters in Information Technology

Masters in Information Technology Computer - Information Technology MSc & MPhil - 2015/6 - July 2015 Masters in Information Technology Programme Requirements Taught Element, and PG Diploma in Information Technology: 120 credits: IS5101

More information

Sanjeev Kumar. contribute

Sanjeev Kumar. contribute RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 sanjeevk@iasri.res.in 1. Introduction The field of data mining and knowledgee discovery is emerging as a

More information

Gerard Mc Nulty Systems Optimisation Ltd gmcnulty@iol.ie/0876697867 BA.,B.A.I.,C.Eng.,F.I.E.I

Gerard Mc Nulty Systems Optimisation Ltd gmcnulty@iol.ie/0876697867 BA.,B.A.I.,C.Eng.,F.I.E.I Gerard Mc Nulty Systems Optimisation Ltd gmcnulty@iol.ie/0876697867 BA.,B.A.I.,C.Eng.,F.I.E.I Data is Important because it: Helps in Corporate Aims Basis of Business Decisions Engineering Decisions Energy

More information

Masters in Advanced Computer Science

Masters in Advanced Computer Science Masters in Advanced Computer Science Programme Requirements Taught Element, and PG Diploma in Advanced Computer Science: 120 credits: IS5101 CS5001 up to 30 credits from CS4100 - CS4450, subject to appropriate

More information

Masters in Artificial Intelligence

Masters in Artificial Intelligence Masters in Artificial Intelligence Programme Requirements Taught Element, and PG Diploma in Artificial Intelligence: 120 credits: IS5101 CS5001 CS5010 CS5011 CS4402 or CS5012 in total, up to 30 credits

More information

MSCA 31000 Introduction to Statistical Concepts

MSCA 31000 Introduction to Statistical Concepts MSCA 31000 Introduction to Statistical Concepts This course provides general exposure to basic statistical concepts that are necessary for students to understand the content presented in more advanced

More information

Masters in Computing and Information Technology

Masters in Computing and Information Technology Masters in Computing and Information Technology Programme Requirements Taught Element, and PG Diploma in Computing and Information Technology: 120 credits: IS5101 CS5001 or CS5002 CS5003 up to 30 credits

More information

Masters in Networks and Distributed Systems

Masters in Networks and Distributed Systems Masters in Networks and Distributed Systems Programme Requirements Taught Element, and PG Diploma in Networks and Distributed Systems: 120 credits: IS5101 CS5001 CS5021 CS4103 or CS5023 in total, up to

More information

COURSE DESCRIPTIONS 科 目 簡 介

COURSE DESCRIPTIONS 科 目 簡 介 COURSE DESCRIPTIONS 科 目 簡 介 COURSES FOR 4-YEAR UNDERGRADUATE PROGRAMMES PSY2101 Introduction to Psychology (3 credits) The purpose of this course is to introduce fundamental concepts and theories in psychology

More information

Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016

Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016 Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00

More information

Bayesian probability theory

Bayesian probability theory Bayesian probability theory Bruno A. Olshausen arch 1, 2004 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using probability. The foundations

More information

Stabilization by Conceptual Duplication in Adaptive Resonance Theory

Stabilization by Conceptual Duplication in Adaptive Resonance Theory Stabilization by Conceptual Duplication in Adaptive Resonance Theory Louis Massey Royal Military College of Canada Department of Mathematics and Computer Science PO Box 17000 Station Forces Kingston, Ontario,

More information

Fall 2012 Q530. Programming for Cognitive Science

Fall 2012 Q530. Programming for Cognitive Science Fall 2012 Q530 Programming for Cognitive Science Aimed at little or no programming experience. Improve your confidence and skills at: Writing code. Reading code. Understand the abilities and limitations

More information

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries Copyright GENIVI Alliance

More information

Learning is a very general term denoting the way in which agents:

Learning is a very general term denoting the way in which agents: What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

More information

Depth and Excluded Courses

Depth and Excluded Courses Depth and Excluded Courses Depth Courses for Communication, Control, and Signal Processing EECE 5576 Wireless Communication Systems 4 SH EECE 5580 Classical Control Systems 4 SH EECE 5610 Digital Control

More information

Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations

Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations Volume 3, No. 8, August 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations

More information

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours.

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours. (International Program) 01219141 Object-Oriented Modeling and Programming 3 (3-0) Object concepts, object-oriented design and analysis, object-oriented analysis relating to developing conceptual models

More information

Reflection Report International Semester

Reflection Report International Semester Reflection Report International Semester Studying abroad at KTH Royal Institute of Technology Stockholm 18-01-2011 Chapter 1: Personal Information Name and surname: Arts, Rick G. B. E-mail address: Department:

More information

Big Data in the Mathematical Sciences

Big Data in the Mathematical Sciences Big Data in the Mathematical Sciences Wednesday 13 November 2013 Sponsored by: Extract from Campus Map Note: Walk from Zeeman Building to Arts Centre approximately 5 minutes ZeemanBuilding BuildingNumber38

More information

Projects - Neural and Evolutionary Computing

Projects - Neural and Evolutionary Computing Projects - Neural and Evolutionary Computing 2014-2015 I. Application oriented topics 1. Task scheduling in distributed systems. The aim is to assign a set of (independent or correlated) tasks to some

More information

The Big Data methodology in computer vision systems

The Big Data methodology in computer vision systems The Big Data methodology in computer vision systems Popov S.B. Samara State Aerospace University, Image Processing Systems Institute, Russian Academy of Sciences Abstract. I consider the advantages of

More information

Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python. Vikram Kamath Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

More information

Reusable Knowledge-based Components for Building Software. Applications: A Knowledge Modelling Approach

Reusable Knowledge-based Components for Building Software. Applications: A Knowledge Modelling Approach Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach Martin Molina, Jose L. Sierra, Jose Cuena Department of Artificial Intelligence, Technical University

More information

Dr V. J. Brown. Neuroscience (see Biomedical Sciences) History, Philosophy, Social Anthropology, Theological Studies.

Dr V. J. Brown. Neuroscience (see Biomedical Sciences) History, Philosophy, Social Anthropology, Theological Studies. Psychology - pathways & 1000 Level modules School of Psychology Head of School Degree Programmes Single Honours Degree: Joint Honours Degrees: Dr V. J. Brown Psychology Neuroscience (see Biomedical Sciences)

More information

Data Mining and Neural Networks in Stata

Data Mining and Neural Networks in Stata Data Mining and Neural Networks in Stata 2 nd Italian Stata Users Group Meeting Milano, 10 October 2005 Mario Lucchini e Maurizo Pisati Università di Milano-Bicocca mario.lucchini@unimib.it maurizio.pisati@unimib.it

More information

SURVIVABILITY ANALYSIS OF PEDIATRIC LEUKAEMIC PATIENTS USING NEURAL NETWORK APPROACH

SURVIVABILITY ANALYSIS OF PEDIATRIC LEUKAEMIC PATIENTS USING NEURAL NETWORK APPROACH 330 SURVIVABILITY ANALYSIS OF PEDIATRIC LEUKAEMIC PATIENTS USING NEURAL NETWORK APPROACH T. M. D.Saumya 1, T. Rupasinghe 2 and P. Abeysinghe 3 1 Department of Industrial Management, University of Kelaniya,

More information

An Introduction to Health Informatics for a Global Information Based Society

An Introduction to Health Informatics for a Global Information Based Society An Introduction to Health Informatics for a Global Information Based Society A Course proposal for 2010 Healthcare Industry Skills Innovation Award Sponsored by the IBM Academic Initiative submitted by

More information

In Proceedings of the Eleventh Conference on Biocybernetics and Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999

In Proceedings of the Eleventh Conference on Biocybernetics and Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999 In Proceedings of the Eleventh Conference on Biocybernetics and Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999 A Bayesian Network Model for Diagnosis of Liver Disorders Agnieszka

More information

NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS

NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS N. K. Bose HRB-Systems Professor of Electrical Engineering The Pennsylvania State University, University Park P. Liang Associate Professor

More information

School of Computer Science

School of Computer Science School of Computer Science Computer Science - Honours Level - 2015/6 - August 2015 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

What is Artificial Intelligence?

What is Artificial Intelligence? CSE 3401: Intro to Artificial Intelligence & Logic Programming Introduction Required Readings: Russell & Norvig Chapters 1 & 2. Lecture slides adapted from those of Fahiem Bacchus. 1 What is AI? What is

More information

Applied mathematics and mathematical statistics

Applied mathematics and mathematical statistics Applied mathematics and mathematical statistics The graduate school is organised within the Department of Mathematical Sciences.. Deputy head of department: Aila Särkkä Director of Graduate Studies: Marija

More information

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376 Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

More information

A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks

A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired

More information

Computational Intelligence Introduction

Computational Intelligence Introduction Computational Intelligence Introduction Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Neural Networks 1/21 Fuzzy Systems What are

More information

School of Computer Science

School of Computer Science Computer Science Honours Level 2013/14 August 2013 School of Computer Science Computer Science (CS) Modules CS3051 Software Engineering SCOTCAT Credits: 15 SCQF Level 9 Semester: 1 This module gives a

More information

How To Use Neural Networks In Data Mining

How To Use Neural Networks In Data Mining International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and

More information

Machine Learning and Data Mining. Fundamentals, robotics, recognition

Machine Learning and Data Mining. Fundamentals, robotics, recognition Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,

More information

MS1b Statistical Data Mining

MS1b Statistical Data Mining MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to

More information

Medical Image Processing on the GPU. Past, Present and Future. Anders Eklund, PhD Virginia Tech Carilion Research Institute andek@vtc.vt.

Medical Image Processing on the GPU. Past, Present and Future. Anders Eklund, PhD Virginia Tech Carilion Research Institute andek@vtc.vt. Medical Image Processing on the GPU Past, Present and Future Anders Eklund, PhD Virginia Tech Carilion Research Institute andek@vtc.vt.edu Outline Motivation why do we need GPUs? Past - how was GPU programming

More information

Bayesian networks - Time-series models - Apache Spark & Scala

Bayesian networks - Time-series models - Apache Spark & Scala Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly

More information

Introduction to Pattern Recognition

Introduction to Pattern Recognition Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

D A T A M I N I N G C L A S S I F I C A T I O N

D A T A M I N I N G C L A S S I F I C A T I O N D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Exploration is a process of discovery. In the database exploration process, an analyst executes a sequence of transformations over a collection of data structures to discover useful

More information

Learning outcomes. Knowledge and understanding. Competence and skills

Learning outcomes. Knowledge and understanding. Competence and skills Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges

More information

Master s Program in Information Systems

Master s Program in Information Systems The University of Jordan King Abdullah II School for Information Technology Department of Information Systems Master s Program in Information Systems 2006/2007 Study Plan Master Degree in Information Systems

More information

IAI : Expert Systems

IAI : Expert Systems IAI : Expert Systems John A. Bullinaria, 2005 1. What is an Expert System? 2. The Architecture of Expert Systems 3. Knowledge Acquisition 4. Representing the Knowledge 5. The Inference Engine 6. The Rete-Algorithm

More information

Course 395: Machine Learning

Course 395: Machine Learning Course 395: Machine Learning Lecturers: Maja Pantic (maja@doc.ic.ac.uk) Stavros Petridis (sp104@doc.ic.ac.uk) Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core

More information

Visualization methods for patent data

Visualization methods for patent data Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes

More information

Computer Graphics AACHEN AACHEN AACHEN AACHEN. Public Perception of CG. Computer Graphics Research. Methodological Approaches - - - - - - - - - -

Computer Graphics AACHEN AACHEN AACHEN AACHEN. Public Perception of CG. Computer Graphics Research. Methodological Approaches - - - - - - - - - - Public Perception of CG Games Computer Graphics Movies Computer Graphics Research algorithms & data structures fundamental continuous & discrete mathematics optimization schemes 3D reconstruction global

More information

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

More information

Position Classification Flysheet for Computer Science Series, GS-1550. Table of Contents

Position Classification Flysheet for Computer Science Series, GS-1550. Table of Contents Position Classification Flysheet for Computer Science Series, GS-1550 Table of Contents SERIES DEFINITION... 2 OCCUPATIONAL INFORMATION... 2 EXCLUSIONS... 4 AUTHORIZED TITLES... 5 GRADE LEVEL CRITERIA...

More information

High-Mix Low-Volume Flow Shop Manufacturing System Scheduling

High-Mix Low-Volume Flow Shop Manufacturing System Scheduling Proceedings of the 14th IAC Symposium on Information Control Problems in Manufacturing, May 23-25, 2012 High-Mix Low-Volume low Shop Manufacturing System Scheduling Juraj Svancara, Zdenka Kralova Institute

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)

ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications

More information

Comparison of K-means and Backpropagation Data Mining Algorithms

Comparison of K-means and Backpropagation Data Mining Algorithms Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and

More information

Healthcare Measurement Analysis Using Data mining Techniques

Healthcare Measurement Analysis Using Data mining Techniques www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik

More information

Course Completion Roadmap. Others Total

Course Completion Roadmap. Others Total Undergraduate Curriculum Psychology Major : (1) Total credits: - Multiple majors: minimum of 6 credits - Single major: minimum of 48 credits - Teacher training program: minimum of 50 credits (2) Required

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014 RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer

More information

480093 - TDS - Socio-Environmental Data Science

480093 - TDS - Socio-Environmental Data Science Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 480 - IS.UPC - University Research Institute for Sustainability Science and Technology 715 - EIO - Department of Statistics and

More information

Big Data: Rethinking Text Visualization

Big Data: Rethinking Text Visualization Big Data: Rethinking Text Visualization Dr. Anton Heijs anton.heijs@treparel.com Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important

More information

Lluis Belanche + Alfredo Vellido. Intelligent Data Analysis and Data Mining

Lluis Belanche + Alfredo Vellido. Intelligent Data Analysis and Data Mining Lluis Belanche + Alfredo Vellido Intelligent Data Analysis and Data Mining a.k.a. Data Mining II Office 319, Omega, BCN EET, office 107, TR 2, Terrassa avellido@lsi.upc.edu skype, gtalk: avellido Tels.:

More information

MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL

MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL G. Maria Priscilla 1 and C. P. Sumathi 2 1 S.N.R. Sons College (Autonomous), Coimbatore, India 2 SDNB Vaishnav College

More information

Is a Data Scientist the New Quant? Stuart Kozola MathWorks

Is a Data Scientist the New Quant? Stuart Kozola MathWorks Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by

More information

EPSRC Cross-SAT Big Data Workshop: Well Sorted Materials

EPSRC Cross-SAT Big Data Workshop: Well Sorted Materials EPSRC Cross-SAT Big Data Workshop: Well Sorted Materials 5th August 2015 Contents Introduction 1 Dendrogram 2 Tree Map 3 Heat Map 4 Raw Group Data 5 For an online, interactive version of the visualisations

More information

Specialisation Psychology

Specialisation Psychology Specialisation Psychology Semester 1 Semester 2 An Introduction to Doing Research Politics, Power and Governance I Philosophy of the Social Sciences Economics, Markets and Organisations I Rhetoric Law,

More information

Self Organizing Maps: Fundamentals

Self Organizing Maps: Fundamentals Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen

More information

Appendices master s degree programme Human Machine Communication 2014-2015

Appendices master s degree programme Human Machine Communication 2014-2015 Appendices master s degree programme Human Machine Communication 2014-2015 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

Lecture 6. Artificial Neural Networks

Lecture 6. Artificial Neural Networks Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm

More information

Neural Networks in Data Mining

Neural Networks in Data Mining IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V6 PP 01-06 www.iosrjen.org Neural Networks in Data Mining Ripundeep Singh Gill, Ashima Department

More information

Computer Science Electives and Clusters

Computer Science Electives and Clusters Course Number CSCI- Computer Science Electives and Clusters Computer Science electives belong to one or more groupings called clusters. Undergraduate students with the proper prerequisites are permitted

More information

EL Program: Smart Manufacturing Systems Design and Analysis

EL Program: Smart Manufacturing Systems Design and Analysis EL Program: Smart Manufacturing Systems Design and Analysis Program Manager: Dr. Sudarsan Rachuri Associate Program Manager: K C Morris Strategic Goal: Smart Manufacturing, Construction, and Cyber-Physical

More information

COMP 590: Artificial Intelligence

COMP 590: Artificial Intelligence COMP 590: Artificial Intelligence Today Course overview What is AI? Examples of AI today Who is this course for? An introductory survey of AI techniques for students who have not previously had an exposure

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

ADVANCED MACHINE LEARNING. Introduction

ADVANCED MACHINE LEARNING. Introduction 1 1 Introduction Lecturer: Prof. Aude Billard (aude.billard@epfl.ch) Teaching Assistants: Guillaume de Chambrier, Nadia Figueroa, Denys Lamotte, Nicola Sommer 2 2 Course Format Alternate between: Lectures

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CHAPTER 1: INTRODUCTION Big Data 3 Widespread

More information

Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg

Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg Introduction http://stevenhoi.org/ Finance Recommender Systems Cyber Security Machine Learning Visual

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time

More information

FUNCTIONAL EEG ANALYZE IN AUTISM. Dr. Plamen Dimitrov

FUNCTIONAL EEG ANALYZE IN AUTISM. Dr. Plamen Dimitrov FUNCTIONAL EEG ANALYZE IN AUTISM Dr. Plamen Dimitrov Preamble Autism or Autistic Spectrum Disorders (ASD) is a mental developmental disorder, manifested in the early childhood and is characterized by qualitative

More information