GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 1. 0 Some R commands for functions we ve covered so far

Size: px
Start display at page:

Download "GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 1. 0 Some R commands for functions we ve covered so far"

Transcription

1 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 1 III. Sampling 0 Some R commands for functions we ve covered so far 0.1 rbinom(m,n,p) returns m integers drawn from the binomial distribution with n trials and probability of success p. Each one of the integers returned would be k in our terminology. 0.2 dbinom(k,n,p) returns the probability of exactly k successes in n trials each with probability p. 0.3 pbinom(j,n,p) returns the cumulative probability of j or fewer successes in n trials each with probability p. 0.4 rpois(m,a) returns m integers drawn from the poisson distribution with parameter a. 0.5 dpois(k,a) returns the probability of exactly k events in poisson distribution with parameter a. 0.6 ppois(j,a) returns the cumulative probability of j or fewer events resulting from poisson distribution with parameter a. 0.7 rmultinom(m,n,p) returns m vectors of integers drawn from multinomial with n trials and vector of probabilities p. 0.8 dmultinom(k,n,p) returns the probability of sampling exactly k (where k is a vector of integers) in n trials with vector of probabilities p.

2 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page rexp(n,a) returns n numbers drawn from exponential distribution with parameter (rate) a dexp(x,a) returns density of exponential distribution with parameter a at X = x pexp(x,a) returns cumulative probability of exponential distribution with parameter a at X = x rnorm(n) returns n numbers drawn from standard normal distribution (with zero mean and unit variance) dnorm(x) returns the normal density at X = x pnorm(x) returns the normal distribution function (cumulative probability) at X = x runif(), dunif(), punif(): These are like rnorm(), dnorm(), pnorm(), but for uniform distribution on (0,1) choose(n,k) returns ( n k), i.e. n!/[k!(n k)!] factorial(j) returns j! lfactorial(j) returns ln(j!) gamma(x) returns Γ(x).

3 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page mean(x), median(x), var(x), sd(x) return mean, median, variance, and standard deviation of the vector or array x cov(x,y) returns the covariance between vectors x and y. 1 Overview of Sampling, Error, Bias 2 Error Estimates With Assumed Sampling Distribution 2.1 Standard Error: Standard deviation of distribution of sample statistics that would result from infinite number of trials of drawing sample from underlying probability distribution and calculating the sample statistic. 2.2 In practice we generally do not estimate error by repeated sampling from the underlying distribution (expensive and time-consuming), although there are exceptions. 2.3 Approximations based on sample distribution (from Sokal and Rohlf):

4 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 4

5 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Limitations: Many approximation formulae make assumptions about shape of distribution and sample size We may be interested in novel statistic or one whose sampling distribution is not well characterized. 3 Bootstrap Error Estimates 3.1 Estimate standard error by resampling from the single sample we have. 3.2 This approach uses sampling with replacement from observed sample to simulate sampling without replacement from the underlying distribution. 3.3 Procedure Start with observed sample of size n and observed sample statistic, call it Z Randomly pick a sample of size n, with replacement, from the observed sample Calculate the sample statistic of interest on this random sample; call is Z boot Repeat many times (generally hundreds to thousands) Calculate standard deviation of the Z boot. This is an estimate of the standard error of the observed sample statistic Z: (SD(Z boot ) SE(Z). 3.4 Simple (but not necessarily most useful) example: trimmed mean Define p-% trimmed mean as mean of sample with p% lowest and p% highest observations discarded. (Idea is to try to reduce effect of outlines.) Suppose data consist of 10 (ordered) observations: 1,2,3,4,8,10,12,15,20,30. Let the trimmed mean be denoted Z. Then Z = ( )/6 = 8.67.

6 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 6 R code to estimate SE(Z) #define function trim.mean<-function(x,ntrim){ ii<-order(x) xtmp<-x[ii] return(mean(xtmp[(ntrim+1):(n-ntrim)])) } data<-c(1,2,3,4,8,10,12,15,20,30) #specify data n<-length(data) ntrim<-2 #specify number to trim from each side Zobs<-trim.mean(data,ntrim) #get observed value nrep< #specify number of bootstrap replicates Zboot<-rep(NA,nrep) #assign memory for (i in 1:nrep) #get bootstrap replicates Zboot[i]<-trim.mean(sample(data,n,replace=TRUE),ntrim) SE<-sd(Zboot) #calculate bootstrap std. error hist(zboot,breaks=50) #plot histogram of results This yields Z obs = 8.67 and SE(Z) 3.1. Histogram of Zboot Frequency Zboot

7 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Useful R function: sample(x,n,replace=true[or FALSE]) returns a random sample of size n from the vector x with or without replacement. 3.6 To sample from array X so that the variables (columns) stay together: nr<-dim(x)[1] #get number of rows i<-sample(1:nr,n,replace=true[or FALSE]) #returns vector of integers sampled on [1,n] XSAMP<-X[i,] 4 Parametric bootstrap 4.1 Take observed sample and estimate relevant parameter from it. 4.2 Resample from parametric distribution with parameter equal to sample estimate (rather than resampling from observed distribution). 4.3 This approach can also be applied to more complicated situations: for example, simulating a process with parameters estimated from data We ll do lots of this later...

8 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 8 5 Examples of Finite-sample Bias (sample-size bias) 5.1 Sample variance (x x) 2 /n is biased. This is systematically too low, which makes sense since it is based on squared deviations from sample mean (x x) 2 /(n 1) is unbiased. 5.2 Number of taxa Rarefaction method (from Raup 1975) Abundance of species i is N i ; N = N i. Consider a particular species, i. ( N N i ) n is the number of ways of drawing the non-i individuals in a sample of n. ( N n) is the number of ways of drawing all individuals. Therefore, the ratio of these two is the probability of not drawing any individuals of species i. Therefore 1 minus this ratio is the probability of drawing at least one individual of species i. So the expected number of species is just the sum of this probability, calculated for each species in turn Caveats Rarefaction for interpolation rather than extrapolation Collecting curves vs. rarefaction curves Apparent leveling off of curves does not imply that nearly everything has been found (only that you re unlikely to find it with modest effort). Curves affected by factors other than sample size (sampling method, taxonomic treatment, size of geographic area etc.). Crossing of rarefaction curves can make interpretation difficult.

9 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 9

10 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Examples of application of taxonomic rarefaction (Raup 1975; Raup and Schopf 1978) This example suggests that the increase in observed family diversity in post-paleozoic echinoids cannot be accounted for by an increase in the number of species sampled.

11 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 11 This example suggests that much of the variation in the number of observed echinoid orders is consistent with differences in number of sampled species.

12 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Interpretation of taxonomic rarefaction curves not entirely straightforward. Sampling standardization to be treated in more detail later

13 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Range Example: Range of samples from normal distribution

14 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 14

15 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 15

16 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 16

17 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Example: Test for nonrandomness of sampling with respect to morphology

18 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Correction in general case via rarefaction (random subsampling at controlled sample-size) Caveat: Range at standardized sample size may not convey any information that isn t conveyed by sample variance.

19 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 19 6 Extreme value statistics 6.1 Introduction to problem Previous look at standard errors considered sampling distribution of quantities such as mean We may also be interested in distribution of extremes: For example, how is the largest of n observations distributed, or the second smallest, etc.? 6.2 Probability of number of observations exceeding some value, if distribution known P r(x > x) = 1 F (x), where F (x) is the cumulative distribution If there are N observations, then the probability that exactly k of them exceed some value x is given by a simple binomial: ( ) N [1 F (x)] k F (x) N k k Example: normal with N = 10, x = 0.67, and k = 3: F (0.67) = 0.75, so the probability = ( 10 3 ) = Future observations Suppse we have n 1 past observations ranked from m = 1 (largest) to m = n 1 (smallest), and we take n 2 future observations. What is the probability that exactly k of n 2 observations will exceed the m th value from the first set of n 1 observations? Simply find F (x) corresponding to the m th value and plug into previous binomial equation. Clearly this works only if we know the distribution.

20 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Probability of number of observations exceeding some value, even if distribution is not known General expressions:

21 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Intuitive explanation for insensitivity to distribution: A given number of points should cover a given proportion of the cumulative distribution, regardless of the shape of the distribution (provided that it is continuous) Example (table from Gumbel): Note symmetry in table. Probability of x exceedances above largest is the same as probability of x exceedances below lowest, etc.

22 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Application to crinoid evolution (Foote 1994)

23 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 23

24 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page 24

25 GEOS 33000/EVOL January 2006 modified January 12, 2006 Page Relationship to theory of records Let there be n 1 past trials and n 2 future trials. What is the probability that the record set (m = 1) by first set of trials will stand by the second set (i.e. x = 0)? This is w(0). Now, suppose we let n 1 = n 2, then we have: ( n1 ) ( m m n2 ) x w(x) = (n 1 + n 2 ) ( n 1 +n 2 1), x+m 1 which, for n 1 = n 2, m = 1, and x = 0, gives which is equal to 1 2. w(0) = ( n1 1 )( n1 0 ) (2n 1 ) ( 2n What is the expected number of exceedances above the past record? E(x) = mn 2 n = n 1 n for large n 1 ), Thus, for athletic contests, if all trials reflect the same underlying pool of talent, equipment, etc., the waiting time between successive record should progressively double Likewise for discoveries of largest dinosaur, oldest primate etc. Deviations suggest change in rules or nonrandom searching.

Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

More information

99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm

99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm Error Analysis and the Gaussian Distribution In experimental science theory lives or dies based on the results of experimental evidence and thus the analysis of this evidence is a critical part of the

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

Association Between Variables

Association Between Variables Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

More information

6 Scalar, Stochastic, Discrete Dynamic Systems

6 Scalar, Stochastic, Discrete Dynamic Systems 47 6 Scalar, Stochastic, Discrete Dynamic Systems Consider modeling a population of sand-hill cranes in year n by the first-order, deterministic recurrence equation y(n + 1) = Ry(n) where R = 1 + r = 1

More information

Bootstrap Example and Sample Code

Bootstrap Example and Sample Code U.C. Berkeley Stat 135 : Concepts of Statistics Bootstrap Example and Sample Code 1 Bootstrap Example This section will demonstrate how the bootstrap can be used to generate confidence intervals. Suppose

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

From the help desk: Bootstrapped standard errors

From the help desk: Bootstrapped standard errors The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution

More information

Correlation key concepts:

Correlation key concepts: CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

Week 4: Standard Error and Confidence Intervals

Week 4: Standard Error and Confidence Intervals Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Confidence Intervals for the Difference Between Two Means

Confidence Intervals for the Difference Between Two Means Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

More information

Rarefaction Method DRAFT 1/5/2016 Our data base combines taxonomic counts from 23 agencies. The number of organisms identified and counted per sample

Rarefaction Method DRAFT 1/5/2016 Our data base combines taxonomic counts from 23 agencies. The number of organisms identified and counted per sample Rarefaction Method DRAFT 1/5/2016 Our data base combines taxonomic counts from 23 agencies. The number of organisms identified and counted per sample differs among agencies. Some count 100 individuals

More information

Probability Distributions

Probability Distributions CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Package SHELF. February 5, 2016

Package SHELF. February 5, 2016 Type Package Package SHELF February 5, 2016 Title Tools to Support the Sheffield Elicitation Framework (SHELF) Version 1.1.0 Date 2016-01-29 Author Jeremy Oakley Maintainer Jeremy Oakley

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

More information

Statistical tests for SPSS

Statistical tests for SPSS Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Time Series and Forecasting

Time Series and Forecasting Chapter 22 Page 1 Time Series and Forecasting A time series is a sequence of observations of a random variable. Hence, it is a stochastic process. Examples include the monthly demand for a product, the

More information

Statistics courses often teach the two-sample t-test, linear regression, and analysis of variance

Statistics courses often teach the two-sample t-test, linear regression, and analysis of variance 2 Making Connections: The Two-Sample t-test, Regression, and ANOVA In theory, there s no difference between theory and practice. In practice, there is. Yogi Berra 1 Statistics courses often teach the two-sample

More information

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

Tenth Problem Assignment

Tenth Problem Assignment EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiple-choice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious

More information

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont To most people studying statistics a contingency table is a contingency table. We tend to forget, if we ever knew, that contingency

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Center for Advanced Studies in Measurement and Assessment. CASMA Research Report

Center for Advanced Studies in Measurement and Assessment. CASMA Research Report Center for Advanced Studies in Measurement and Assessment CASMA Research Report Number 13 and Accuracy Under the Compound Multinomial Model Won-Chan Lee November 2005 Revised April 2007 Revised April 2008

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Fall 2001 Professor Paul Glasserman B6014: Managerial Statistics 403 Uris Hall Properties of Point Estimates 1 We have already encountered two point estimators: th e

More information

Pr(X = x) = f(x) = λe λx

Pr(X = x) = f(x) = λe λx Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

More information

Simple Regression Theory II 2010 Samuel L. Baker

Simple Regression Theory II 2010 Samuel L. Baker SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

More information

STAT 35A HW2 Solutions

STAT 35A HW2 Solutions STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

More information

Standard Deviation Estimator

Standard Deviation Estimator CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when

More information

Two-sample inference: Continuous data

Two-sample inference: Continuous data Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As

More information

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

Advanced Topics in Statistical Process Control

Advanced Topics in Statistical Process Control Advanced Topics in Statistical Process Control The Power of Shewhart s Charts Second Edition Donald J. Wheeler SPC Press Knoxville, Tennessee Contents Preface to the Second Edition Preface The Shewhart

More information

SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one?

SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one? SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one? Simulations for properties of estimators Simulations for properties

More information

Logistic Regression (1/24/13)

Logistic Regression (1/24/13) STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

More information

CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS

CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS CENTRAL LIMIT THEOREM (SECTION 7.2 OF UNDERSTANDABLE STATISTICS) The Central Limit Theorem says that if x is a random variable with any distribution having

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

SENSITIVITY ANALYSIS AND INFERENCE. Lecture 12

SENSITIVITY ANALYSIS AND INFERENCE. Lecture 12 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013 Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

More information

L13: cross-validation

L13: cross-validation Resampling methods Cross validation Bootstrap L13: cross-validation Bias and variance estimation with the Bootstrap Three-way data partitioning CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

Simple Random Sampling

Simple Random Sampling Source: Frerichs, R.R. Rapid Surveys (unpublished), 2008. NOT FOR COMMERCIAL DISTRIBUTION 3 Simple Random Sampling 3.1 INTRODUCTION Everyone mentions simple random sampling, but few use this method for

More information

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

More information

Nonparametric statistics and model selection

Nonparametric statistics and model selection Chapter 5 Nonparametric statistics and model selection In Chapter, we learned about the t-test and its variations. These were designed to compare sample means, and relied heavily on assumptions of normality.

More information

Probability Distributions

Probability Distributions Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

SKEWNESS. Measure of Dispersion tells us about the variation of the data set. Skewness tells us about the direction of variation of the data set.

SKEWNESS. Measure of Dispersion tells us about the variation of the data set. Skewness tells us about the direction of variation of the data set. SKEWNESS All about Skewness: Aim Definition Types of Skewness Measure of Skewness Example A fundamental task in many statistical analyses is to characterize the location and variability of a data set.

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r), Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

More information

Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Sampling Strategies for Error Rate Estimation and Quality Control

Sampling Strategies for Error Rate Estimation and Quality Control Project Number: JPA0703 Sampling Strategies for Error Rate Estimation and Quality Control A Major Qualifying Project Report Submitted to the faculty of the Worcester Polytechnic Institute in partial fulfillment

More information

PLANNING PROBLEMS OF A GAMBLING-HOUSE WITH APPLICATION TO INSURANCE BUSINESS. Stockholm

PLANNING PROBLEMS OF A GAMBLING-HOUSE WITH APPLICATION TO INSURANCE BUSINESS. Stockholm PLANNING PROBLEMS OF A GAMBLING-HOUSE WITH APPLICATION TO INSURANCE BUSINESS HARALD BOHMAN Stockholm In the classical risk theory the interdependence between the security loading and the initial risk reserve

More information

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

More information

Binomial Sampling and the Binomial Distribution

Binomial Sampling and the Binomial Distribution Binomial Sampling and the Binomial Distribution Characterized by two mutually exclusive events." Examples: GENERAL: {success or failure} {on or off} {head or tail} {zero or one} BIOLOGY: {dead or alive}

More information

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

More information

Summary of R software commands used to generate bootstrap and permutation test output and figures in Chapter 16

Summary of R software commands used to generate bootstrap and permutation test output and figures in Chapter 16 Summary of R software commands used to generate bootstrap and permutation test output and figures in Chapter 16 Since R is command line driven and the primary software of Chapter 16, this document details

More information

AP STATISTICS 2010 SCORING GUIDELINES

AP STATISTICS 2010 SCORING GUIDELINES 2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

More information

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( ) Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

Normality Testing in Excel

Normality Testing in Excel Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

More information

Review of Random Variables

Review of Random Variables Chapter 1 Review of Random Variables Updated: January 16, 2015 This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. 1.1 Random

More information

Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

More information

seven Statistical Analysis with Excel chapter OVERVIEW CHAPTER

seven Statistical Analysis with Excel chapter OVERVIEW CHAPTER seven Statistical Analysis with Excel CHAPTER chapter OVERVIEW 7.1 Introduction 7.2 Understanding Data 7.3 Relationships in Data 7.4 Distributions 7.5 Summary 7.6 Exercises 147 148 CHAPTER 7 Statistical

More information

1.5 Oneway Analysis of Variance

1.5 Oneway Analysis of Variance Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables 2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

More information

Descriptive Statistics

Descriptive Statistics Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

More information

Measurement with Ratios

Measurement with Ratios Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

individualdifferences

individualdifferences 1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

More information

Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

More information