Intelligent Crane Control. Part I: Planning and Controlling Motions


 Herbert Rodney Morton
 1 years ago
 Views:
Transcription
1 Intelligent Crane Control. Part I: Planning and Controlling Motions Leonid Freidovich Department of Applied Physics and Electronics Umeå University, Sweden (http : //www.tfe.umu.se/forskning/control_systems/). DBTcourse: Lecture 1 (September 14, 2007)
2 Outline Introduction Motion Planing Motion Control Plan for the other Lectures 1 Introduction 2 Motion Planing 3 Motion Control 4 Plan for the other Lectures Leonid Freidovich Intelligent Crane Control. Part I: Planning and Controlling Motions
3 Outline Introduction Motion Planing Motion Control Plan for the other Lectures 1 Introduction 2 Motion Planing 3 Motion Control 4 Plan for the other Lectures Leonid Freidovich Intelligent Crane Control. Part I: Planning and Controlling Motions
4 Consultants: Pedro La Hera (Hardware and sensors; dspace; Matlab/Simulink; Theory: motion planning, motion control), Uwe Mettin (Hardware and sensors; dspace; Matlab/Simulink; Theory: motion planning, motion control), Simon Westerberg (Visualization; Video Cameras; 3D Cameras, Ian Manchester (Video Cameras; Matlab/Simulink; Theory: motion planning, motion control), Leonid Freidovich (Matlab/Simulink; Theory: motion planning, motion control), Anton Shiriaev Short questions via are welcome, for more detailed discussions appointments are needed.
5 Structure of the system humanmachine interface (HMI) local tasks global tasks turn 1st link motion planner desired motion actual motion error control system control action valve unit 2nd link telescope rotator gripper actual motion measurement devices...
6 Scenario? Split into small groups to solve more specific problems. For example: Planning a set of good motions (inverse/forward kinematics, defining a good motion, modeling,... ). Designing a Controller (tuning parameters of a standard PID, friction compensation, modeling,... ). Dealing with Sensors (available sensors, sensor fusion, signal processing, hardware,... ), Designing humanmachine interface, and highlevel decision making (visualization, signal processing, data transferring, software,... ).... Learn the available interface to the crane: Matlab / Simulink / dspace Interface (Control Desk)
7 Outline Introduction Motion Planing Motion Control Plan for the other Lectures 1 Introduction 2 Motion Planing 3 Motion Control 4 Plan for the other Lectures Leonid Freidovich Intelligent Crane Control. Part I: Planning and Controlling Motions
8 Crane geometry: picture
9 Crane geometry: scheme
10 Crane geometry: sets of coordinates Coordinates measured by encoders (controlled): d the position defining extension of the telescope, θ 2 the angle defined by the cylinder controlling the 1st link, θ 3 the angle defined by the cylinder controlling the 2nd link. Workspace coordinates: x horizontal position of the grip, z vertical position of the grip.
11 Crane geometry: kinematics Forward kinematics problem: Find the transformation from (d, θ 2, θ 3 ) to (x, z). There is only one solution. Possible usage: visualization, sensor fusion and fault detection (cameras and encoders), reachability analysis,... Inverse kinematics problem: Find a transformation from (x, z) to (d, θ 2, θ 3 ). There are infinitely many solutions. Possible usage: defining tasks for motion control, motion optimization and selection,...
12 Crane geometry: detailed scheme r 0 = , r 1 = , r 2 = , r 3 = , r 4 = , r 5 = , r 6 = , r 7 = ; d 1 = , d 2 = , d 3 = , d 4 = , d 5 = , d 6 =
13 Motion planning problem Motion planning problem: Define the desired trajectories for the controlled coordinates (d (t), θ 2 (t), θ 3 (t)) either online (interactively) or offline (preplanning). You might start as follows: Define a motion in the workspace coordinates: artificial: a simple curve like a circle, natural: record a useful motion done by a driver Derive an algorithm to connect two given points in the workspace with a nice trajectory. After that, use inverse kinematics to obtain the desired motion in controlled coordinates.
14 Example of a planed motion: a circle 2 autonomous motion circle 1 z position [m] x position [m]
15 Example of a planed motion: a circle (cont d) MOVIE: circle_0.25radps_optimized.avi
16 Outline Introduction Motion Planing Motion Control Plan for the other Lectures 1 Introduction 2 Motion Planing 3 Motion Control 4 Plan for the other Lectures Leonid Freidovich Intelligent Crane Control. Part I: Planning and Controlling Motions
17 How to realize the motion? After the motion planning problem is solved, one has a desired (reference) trajectory for each controlled angle. The cylinder must be activated to force following this trajectory via assignment of current (control input). How do we influence the system? Current is generated = Valve opens = Oil flows in = Piston moves = Force is applied = Torque is created However, until certain level of current is reached, nothing is happening! Why? What is wrong?
18 Compensating Coulomb friction Typical force due to Coulomb friction is a function of relative velocity between moving surfaces and look like so: A certain level of current must be generated to overcome this friction force. Experiments must be designed (planned) to identify the required values for each of three cylinders: To initiate moving up when the measured coordinate is smaller than the desired one. To initiate moving down when the measured coordinate is bigger than the desired one.
19 Compensating friction What does the level of current, needed to overcome friction, depend on? Is it enough to compute it around one value of each coordinate? Do we need to know only the desired direction of motion or an estimate for velocity is required to compensate the Coulomb friction as well? If yes, it can be computed using the Euler difference formula or a differentiating block of Simulink: θ(t) θ(t) θ(t ε) ε, θ(t) s 1 + ε s θ(t), where ε > 0 is small. Remark: it is better to saturate the estimates at reasonable levels and to filter out noises. It might be better to compensate viscous friction (proportional to the velocity) as well. In this case, it should be identified experimentally.
20 Compensating gravitational forces When the valve is open and friction is compensated, gravitational torques influence the motion of links. It might be better or not to counteract the gravity directly using forces produced by hydraulic cylinders. It possible to compute the gravitational forces from the geometry and knowledge of masslength distributions? Is it reasonable to assume that the current is proportional to the force, produced by the cylinder? Is the compensation based on such calculations reliable? The gravitational force at every cylinder is defined by the values of all three measured coordinates. A series of experiments must be designed either: to compute the current, needed to compensate gravity, as a function of the measured coordinates; to compute the coefficient of proportionality between the force and the current, and to validate the efficiency of the analytically computed gravitational force.
21 ε > 0 is small (typically, 0.1 T d < ε < 0.2 T d ). The controller must be realized in Simulink. The integral part (1/s) should be restricted and reseted (see help for the integrator block). Total control signal To control the crane, for each cylinder we generate the current input as follows: i = i coulomb + i }{{ viscous + i } gravity + i }{{}} main {{} friction compensation necessary? to be tuned There main part of the controller might often be taken in the following form ( ) i main = C... (s) θ(t) θ (t) where C... (s) is one of the following ( PI is recommended) ( C P (s) = K p, C PID (s) = K p T r s + T d s εs+1 ( ) ( ) C PI (s) = K p T r, C s PD (s) = K p 1 + T d s εs+1 ),
22 Tuning parameters of the main controller The following empiric procedures to tune coefficients of the last part of the controller might work when the desired velocities and desired accelerations are sufficiently small. The range of applicability must be verified experimentally. One of the procedures is ZieglerNichols Oscillation Method. Set the plant under C P (s) with a small gain. Increase the gain until oscillations are observed. They should be detected at the controller output. Record the controller critical gain K c and the period of oscillation T at the controller output. Adjust the controller parameters according to the table: P K p T r T d 0.5K c PI 0.45K c T/1.2 PID 0.6K c T/2 T/8
23 Outline Introduction Motion Planing Motion Control Plan for the other Lectures 1 Introduction 2 Motion Planing 3 Motion Control 4 Plan for the other Lectures Leonid Freidovich Intelligent Crane Control. Part I: Planning and Controlling Motions
24 The other two Lectures Questions / suggestions / requests? What are your background / knowledge / interests? Are you familiar with: Matlab, Simulink, Mechanics, Physics, Control Theory, Differential Equations, Mathematical Analysis, Mechanical Design / Engineering, Sensors, Signal Processing, Networking, Programming, Visualization Techniques, System Engineering? We plan the following two lectures. September 17: Camera sensors, Visualizations,..., (suggestions / requests?) by Ian Manchester and Simon Westerberg September 27: Matlab / Simulink, dspace, available hardware and software,..., (suggestions / requests?) by Pedro La Hera and Uwe Mettin
Estimating Dynamics for (DCmotor)+(1st Link) of the Furuta Pendulum
Estimating Dynamics for (DCmotor)+(1st Link) of the Furuta Pendulum 1 Anton and Pedro Abstract Here the steps done for identification of dynamics for (DCmotor)+(1st Link) of the Furuta Pendulum are described.
More informationSIMULATION OF WALKING HUMANOID ROBOT BASED ON MATLAB/SIMMECHANICS. Sébastien Corner
SIMULATION OF WALKING HUMANOID ROBOT BASED ON MATLAB/SIMMECHANICS Sébastien Corner scorner@vt.edu The Robotics & Mechanisms Laboratory, RoMeLa Department of Mechanical Engineering of the University of
More informationLesson 5 Rotational and Projectile Motion
Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular
More informationObjective: Part 1: OpenLoop System. ITI SimulationX Page 1 of 20 ITI GmbH 2003
ITI SimulationX Page 1 of 20 ITI GmbH 2003 Tutorial 2: Hydraulic Cylinder Drive Objective: In this tutorial you will create a model for a simple hydraulic cylinder drive, which is controlled by a proportional
More informationSOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS
SOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS This work covers elements of the syllabus for the Engineering Council Exam D225 Dynamics of Mechanical Systems C103 Engineering Science. This
More informationTHE SECRET OF FREE ENERGY FROM THE PENDULUM
THE SECRET OF FREE ENERGY FROM THE PENDULUM Jovan Marjanovic M.Sc. in Electrical Engineering email: jmarjanovic@hotmail.com Veljko Milkovic Research & Development Center VEMIRC May 05, 2011, Novi Sad,
More informationAssignment 1: System Modeling
Assignment 1: System Modeling Problem 1. (10 pts.) Consider a biological control system consisting of a human reaching for an object. Below is a list of general block diagram elements (on the left, labeled
More informationUnit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING
Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING Technological Literacy Review of Robotics I Topics and understand and be able to implement the "design 8.1, 8.2 Technology Through the Ages
More informationPrerequisites 20122013
Prerequisites 20122013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.
More informationFirst Semester Learning Targets
First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes
More informationHYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS
Engineering MECHANICS, Vol. 16, 2009, No. 4, p. 287 296 287 HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Stanislav Věchet, Jiří Krejsa* System modeling is a vital tool for cost reduction and design
More informationDesignSimulationOptimization Package for a Generic 6DOF Manipulator with a Spherical Wrist
DesignSimulationOptimization Package for a Generic 6DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot
More informationEDUMECH Mechatronic Instructional Systems. Ball on Beam System
EDUMECH Mechatronic Instructional Systems Ball on Beam System Product of Shandor Motion Systems Written by Robert Hirsch Ph.D. 9989 All Rights Reserved. 999 Shandor Motion Systems, Ball on Beam Instructional
More informationDCMS DC MOTOR SYSTEM User Manual
DCMS DC MOTOR SYSTEM User Manual release 1.3 March 3, 2011 Disclaimer The developers of the DC Motor System (hardware and software) have used their best efforts in the development. The developers make
More informationManufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationJournal of Engineering Science and Technology Review 2 (1) (2009) 7681. Lecture Note
Journal of Engineering Science and Technology Review 2 (1) (2009) 7681 Lecture Note JOURNAL OF Engineering Science and Technology Review www.jestr.org Time of flight and range of the motion of a projectile
More informationCONTROL OF ELECTRONIC THROTTLE VALVE POSITION OF SI ENGINE
CONTROL OF ELECTRONIC THROTTLE VALVE POSITION OF SI ENGINE Marek Honek, Slawomir Wojnar, Peter Šimončič and Boris RohaľIlkiv Slovak University of Technology, Faculty of Mechanical Engineering Námestie
More informationLecture L2  Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L  Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
More informationSingle and Double plane pendulum
Single and Double plane pendulum Gabriela González 1 Introduction We will write down equations of motion for a single and a double plane pendulum, following Newton s equations, and using Lagrange s equations.
More informationFigure 1. The Ball and Beam System.
BALL AND BEAM : Basics Peter Wellstead: control systems principles.co.uk ABSTRACT: This is one of a series of white papers on systems modelling, analysis and control, prepared by Control Systems Principles.co.uk
More informationLecture 4. Vectors. Motion and acceleration in two dimensions. Cutnell+Johnson: chapter ,
Lecture 4 Vectors Motion and acceleration in two dimensions Cutnell+Johnson: chapter 1.51.8, 3.13.3 We ve done motion in one dimension. Since the world usually has three dimensions, we re going to do
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More informationPeople s Physics book 3e Ch 251
The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate
More informationVIBRATION DUE TO ROTATION UNBALANCE
Fall 08 Prepared by: Keivan Anbarani Abstract In this experiment four eccentric masses are used in conjunction with four springs and one damper to simulate the vibration. Masses are aligned in different
More informationdspace DSP DS1104 based State Observer Design for Position Control of DC Servo Motor
dspace DSP DS1104 based State Observer Design for Position Control of DC Servo Motor Jaswandi Sawant, Divyesh Ginoya Department of Instrumentation and control, College of Engineering, Pune. ABSTRACT This
More informationSlide 10.1. Basic system Models
Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal
More informationOperational Space Control for A Scara Robot
Operational Space Control for A Scara Robot Francisco Franco Obando D., Pablo Eduardo Caicedo R., Oscar Andrés Vivas A. Universidad del Cauca, {fobando, pacaicedo, avivas }@unicauca.edu.co Abstract This
More informationPSS 27.2 The Electric Field of a Continuous Distribution of Charge
Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight ProblemSolving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationRobotics and Automation Blueprint
Robotics and Automation Blueprint This Blueprint contains the subject matter content of this Skill Connect Assessment. This Blueprint does NOT contain the information one would need to fully prepare for
More informationNewton s Universal Law of Gravitation The Apple and the Moon Video
Name Date Pd Newton s Universal Law of Gravitation The Apple and the Moon Video Objectives Recognize that a gravitational force exists between any two objects and that the force is directly proportional
More informationCatapult Engineering Pilot Workshop. LA Tech STEP 20072008
Catapult Engineering Pilot Workshop LA Tech STEP 20072008 Some Background Info Galileo Galilei (15641642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
More informationA simple method to determine control valve performance and its impacts on control loop performance
A simple method to determine control valve performance and its impacts on control loop performance Keywords Michel Ruel p.eng., Top Control Inc. Process optimization, tuning, stiction, hysteresis, backlash,
More informationParameter identification of a linear single track vehicle model
Parameter identification of a linear single track vehicle model Edouard Davin D&C 2011.004 Traineeship report Coach: dr. Ir. I.J.M. Besselink Supervisors: prof. dr. H. Nijmeijer Eindhoven University of
More informationSOLUTIONS TO PROBLEM SET 4
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.
More informationMATHEMATICAL MODEL OF PROPELLER CONTROL SYSTEM
18 Proceedings of the International Scientific Conference Modern Safety Technologies in Transportation 2015 MATHEMATICAL MODEL OF PROPELLER CONTROL SYSTEM Jaroslav BRAŤKA 1 Jozef ZAKUCIA 2 Abstract: This
More informationMECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 2 BELT DRIVES
MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL BELT DRIVES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential pulley
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationAn Introduction to Using Simulink. Exercises
An Introduction to Using Simulink Exercises Eric Peasley, Department of Engineering Science, University of Oxford version 4.1, 2013 PART 1 Exercise 1 (Cannon Ball) This exercise is designed to introduce
More informationANTI LOCK BRAKING SYSTEM MODELLING AND DEVELOPMENT
ANTI LOCK BRAKING SYSTEM MODELLING AND DEVELOPMENT Aldi Manikanth ME10B004 A Manoj Kumar ME10B006 C Vijay Chauhan ME10B010 Nachiket Dongre ME10B013 Lithas ME10B020 Rajesh Kumar Meena ME10B030 Varada Karthik
More informationRotation: Kinematics
Rotation: Kinematics Rotation refers to the turning of an object about a fixed axis and is very commonly encountered in day to day life. The motion of a fan, the turning of a door knob and the opening
More informationPrinciples and Laws of Motion
2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause
More informationInteractive Animation: A new approach to simulate parametric studies
Interactive Animation: A new approach to simulate parametric studies Darwin Sebayang and Ignatius Agung Wibowo Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO) Abstract Animation is the one of novel
More informationCHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER
93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed
More informationExperiment Type: OpenEnded
Simple Harmonic Oscillation Overview Experiment Type: OpenEnded In this experiment, students will look at three kinds of oscillators and determine whether or not they can be approximated as simple harmonic
More informationPHYSICS AND MATH LAB ON GRAVITY NAME
RIVERDALE HIGH SCHOOL PHYSICS AND MATH LAB ON GRAVITY NAME Purpose: To investigate two of the levels of gravity experienced by Florida teachers during their recent ZeroG flight. Background: NASA supplied
More informationSpeed Control of DC Motor by Programmable Logic Control with High Accuracy
Universal Journal of Control and Automation 1(4): 9197, 2013 DOI: 10.13189/ujca.2013.010401 http://www.hrpub.org Speed Control of DC Motor by Programmable Logic Control with High Accuracy Parviz Amiri,
More informationModeling, simulation and control of high speed nonlinear hydraulic servo system
ISSN 1 7467233, England, UK World Journal of Modelling and Simulation Vol. 6 (21) No. 1, pp. 2739 Modeling, simulation and control of high speed nonlinear hydraulic servo system Dechrit Maneetham, Nitin
More informationENERGYand WORK (PART I and II) 9MAC
ENERGYand WORK (PART I and II) 9MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:
More informationDynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
More informationProjectile Motion. AP Physics B
Projectile Motion AP Physics B What is projectile? Projectile Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile
More informationPhysics In Hockey. Zac Frischmon. May 4, Physics Pres. 1 Numerical Methods 1 / 22
Physics In Zac Frischmon May 4, 2014 Physics Pres. 1 Numerical Methods 1 / 22 Find Your Favorite Professors Physics Pres. 1 Numerical Methods 2 / 22 Variables 5 Trajectory of Shots Velocity Initial and
More informationReavis High School Physics Honors Curriculum Snapshot
Reavis High School Physics Honors Curriculum Snapshot Unit 1: Mathematical Toolkit Students will be able to: state definition for physics; measure length using a meter stick; measure the time with a stopwatch
More informationIntelligent Submersible ManipulatorRobot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible ManipulatorRobot, Design, Modeling, Simulation and
More informationKinematics. Demonstrated Through. Projectile Launcher
Kinematics Demonstrated Through Projectile Launcher E. ElZammar Physics 420: Demonstration Physics Department of Physics University of British Columbia Vancouver,B.C. Canada V6T 1Z1 October 28 th, 2008
More informationPhysics 100 Friction Lab
Åsa Bradley SFCC Physics Name: AsaB@spokanefalls.edu 509 533 3837 Lab Partners: Physics 100 Friction Lab Two major types of friction are static friction and kinetic (also called sliding) friction. Static
More informationIMPROVED VIRTUAL MOUSE POINTER USING KALMAN FILTER BASED GESTURE TRACKING TECHNIQUE
39 IMPROVED VIRTUAL MOUSE POINTER USING KALMAN FILTER BASED GESTURE TRACKING TECHNIQUE D.R.A.M. Dissanayake, U.K.R.M.H. Rajapaksha 2 and M.B Dissanayake 3 Department of Electrical and Electronic Engineering,
More informationHow to program a Zumo Robot with Simulink
How to program a Zumo Robot with Simulink Created by Anuja Apte Last updated on 20150313 11:15:06 AM EDT Guide Contents Guide Contents Overview Hardware Software List of Software components: Simulink
More informationSOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
More informationMotion Control of 3 DegreeofFreedom DirectDrive Robot. Rutchanee Gullayanon
Motion Control of 3 DegreeofFreedom DirectDrive Robot A Thesis Presented to The Academic Faculty by Rutchanee Gullayanon In Partial Fulfillment of the Requirements for the Degree Master of Engineering
More informationFric3. force F k and the equation (4.2) may be used. The sense of F k is opposite
4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The
More informationFREE FALL AND PROJECTILE MOTION
FREE FALL AND PROJECTILE MOTION 1 Let s review equations and then split them into X (horizontal) and Y (vertical). GENERAL HORIZONTAL VERTICAL V f = V i + aδt V fx = V ix + a x t V fy = V iy + a y t x
More informationSinking Bubble in Vibrating Tanks Christian Gentry, James Greenberg, Xi Ran Wang, Nick Kearns University of Arizona
Sinking Bubble in Vibrating Tanks Christian Gentry, James Greenberg, Xi Ran Wang, Nick Kearns University of Arizona It is experimentally observed that bubbles will sometimes sink to the bottom of their
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationACTUATOR DESIGN FOR ARC WELDING ROBOT
ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda391760,
More informationExperiment 4 ~ Newton s Second Law: The Atwood Machine
xperiment 4 ~ Newton s Second Law: The twood Machine Purpose: To predict the acceleration of an twood Machine by applying Newton s 2 nd Law and use the predicted acceleration to verify the equations of
More informationReal Time Simulation for OffRoad Vehicle Analysis. Dr. Pasi Korkealaakso Mevea Ltd., May 2015
Real Time Simulation for OffRoad Vehicle Analysis Dr. Pasi Korkealaakso Mevea Ltd., May 2015 Contents Introduction Virtual machine model Machine interaction with environment and realistic environment
More informationThe quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:
Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of
More informationOur main researches: Condition monitoring, Cleanliness of hydraulic fluid and filtration, Control Technology, Industrial and mobile hydraulic
Our main researches: Condition monitoring, Cleanliness of hydraulic fluid and filtration, Control Technology, Industrial and mobile hydraulic components oil and water, Industrial and mobile hydraulic systems
More informationMECE 102 Mechatronics Engineering Orientation
MECE 102 Mechatronics Engineering Orientation Mechatronic System Components Associate Prof. Dr. of Mechatronics Engineering Çankaya University Compulsory Course in Mechatronics Engineering Credits (2/0/2)
More information3.6 Solving Problems Involving Projectile Motion
INTRODUCTION 12 Physics and its relation to other fields introduction of physics, its importance and scope 15 Units, standards, and the SI System description of the SI System description of base and
More informationWEEK 6: FORCE, MASS, AND ACCELERATION
Name Date Partners WEEK 6: FORCE, MASS, AND ACCELERATION OBJECTIVES To develop a definition of mass in terms of an object s acceleration under the influence of a force. To find a mathematical relationship
More informationLabVIEW Based Speed Control of DC Motor Using PID Controller
LabVIEW Based Speed Control of DC Motor Using PID Controller Dileep Kumar 1, Mazhar Hussain 2, Shaurya Varendra Tyagi 3, Prof. Ravi Gupta 4, Prof. Salim 5 1,2,3,4,5 Electrical & Electronics Department,
More informationDESIGN, BUILD AND CONTROL OF A SINGLE ROTATIONAL INVERTED PENDULUM
University of Tehran School of Electrical and Computer Engineering Final Project of Mechatronics DESIGN, BUILD AND CONTROL OF A SINGLE ROTATIONAL INVERTED PENDULUM M. Amin Sharifi K. Supervisors: Dr. Rajaei
More informationChapter 4. Kinematics  Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction
Chapter 4 Kinematics  Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.
More information3) a 1 = a 2. 5) a 1 = 2 a 2
ConcepTest Pulley Two masses are connected by a light rope as shown below. What is the 1) a 1 = 1/3 a 2 2) a 1 = ½ a 2 relationship between the magnitude of 3) a 1 = a 2 the acceleration of m 1 to that
More informationRotational Motion. So far, you have studied translational motion. Here you will explore the physics of rotational motion.
Team: Rotational Motion Rotational motion is everywhere. When you push a door, it rotates. When you pedal a bike, the wheel rotates. When you start an engine, many parts rotate. Electrons rotate in an
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationGPS: Theory of Operation and Applications
GPS: Theory of Operation and Applications Christopher R. Carlson March 18, 2004 D D L ynamic esign aboratory. Motivation There are many interesting applications for GPS technology Sailing, flying or hiking
More informationEQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today s Objectives: Students will be able to: 1. Analyze the planar kinetics of a rigid body undergoing rotational motion. InClass Activities: Applications
More informationKey for Physics first semester final (questions , save honorable ones)
Key for Physics first semester final (questions 20512, save honorable ones) 20. Reaction time only appears in the equation for reaction distance and therefore braking distance., which means it only affects
More informationTest  A2 Physics. Primary focus Magnetic Fields  Secondary focus electric fields (including circular motion and SHM elements)
Test  A2 Physics Primary focus Magnetic Fields  Secondary focus electric fields (including circular motion and SHM elements) Time allocation 40 minutes These questions were ALL taken from the June 2010
More informationHere is a guide if you are looking for practice questions in the old Physics 111 tests. SUMMARY
31 May 11 1 phys115_in_phys111_examsnew.docx PHYSICS 115 MATERIAL IN OLD PHYSICS 111 EXAMS Here is a guide if you are looking for practice questions in the old Physics 111 tests. SUMMARY Giambattista
More informationLaws of Motion, Velocity, Displacement, and Acceleration
Physical Science, Quarter 1, Unit 1.1 Laws of Motion, Velocity, Displacement, and Acceleration Overview Number of instructional days: 13 (1 day = 53 minutes) Content to be learned Add distance and displacement
More informationFLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS  CB0235 2014_1
COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT
More informationThe derivation of Kepler's three laws using Newton s law of gravity and the law of force. A topic in Mathematical Physics Seminar at Secondary School
The derivation of Kepler's three laws using Newton s law of gravity and the law of force A topic in Mathematical Physics Seminar at Secondary School Name: Martin Kazda Introduction Ph.D student: Faculty
More informationACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
More informationLogger Pro Modeling, Fitting and Linearization
Appendix C When physicists compare theory with experiment, they usually consider a physical model of the situation. The Bohr model or quark model may be the first that come to mind, but in fact nearly
More informationDetermining the Angular Velocity of Winks using High Speed Video. Yan Wang. 5/14/ Measurement and Instrumentation Prof.
Thursday 25 Determining the Angular Velocity of Winks using High Speed Video Yan Wang 5/14/2008 2.671 Measurement and Instrumentation Prof. Leonard Abstract Tiddlywinks is a strategy game founded in
More informationPath Tracking for a Miniature Robot
Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationCH205: Fluid Dynamics
CH05: Fluid Dynamics nd Year, B.Tech. & Integrated Dual Degree (Chemical Engineering) Solutions of Mid Semester Examination Data Given: Density of water, ρ = 1000 kg/m 3, gravitational acceleration, g
More informationChapter 2 Lead Screws
Chapter 2 Lead Screws 2.1 Screw Threads The screw is the last machine to joint the ranks of the six fundamental simple machines. It has a history that stretches back to the ancient times. A very interesting
More informationFlorida Department of Education/Office of Assessment January 2012. Grade 7 FCAT 2.0 Mathematics Achievement Level Descriptions
Florida Department of Education/Office of Assessment January 2012 Grade 7 FCAT 2.0 Mathematics Grade 7 FCAT 2.0 Mathematics Reporting Category Geometry and Measurement Students performing at the mastery
More informationAP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
More informationLab 5: Conservation of Energy
Lab 5: Conservation of Energy Equipment SWS, 1meter stick, 2meter stick, heavy duty bench clamp, 90cm rod, 40cm rod, 2 double clamps, brass spring, 100g mass, 500g mass with 5cm cardboard square
More informationThe Use of Camera Information in Formulating and Solving Sensor Fusion Problems
The Use of Camera Information in Formulating and Solving Sensor Fusion Problems Thomas Schön Division of Automatic Control Linköping University Sweden Oc c The Problem Inertial sensors Inertial sensors
More information