# UNIT 1 Logic Overhead Slides

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 UNIT 1 Logic Overhead Slides Overhead Slides Logic Puzzle Logic Puzzle Logic Puzzle 1.4 Two Way Tables Two Way Tables Constructing Two Way Tables 1.7 Illustrating Sets 1.8 Identifying Sets 1.9 Identifying and Illustrating Sets 1.10 Intersection and Union 1.11 Sets and Venn Diagrams 1.12 Definitions 1.13 Using Set Notation 1.14 Describing Sets Describing Sets Logic Problems and Venn Diagrams Logic Table Logic Table

2 OS Logic Puzzle 1 Rana, Toni and Millie are sisters. You need to deduce which sister is 9 years old, which one is 12 and which one is 14. You have two clues: Clue 1 : Clue 2 : Toni's age is not in the 4-times table. Millie's age can be divided exactly by the number of days in a week. Use the logic table to solve this problem.

3 OS Logic Puzzle 2 Rachel, Emma and Hannah are sisters. Their ages are 2 years, 7 years and 10 years. Clue 1 Clue 2 Emma is older than Hannah. Emma's age is a prime number. Use the logic grid below to solve the problem

4 OS Logic Puzzle In akers Row there are 4 houses, each numbered 1, 2, 3 or 4. The following people live in akers Row, one in each house: Ted, lice, Ernie and Gita Use these clues to find out who lives in which house, using the logic table below. Clue 1 Clue 2 Clue 3 Clue 4 The number of Ted's house is an even number. The number of Ernie's house is an odd number. The number of lice's house is greater than the number of Ted's house. The number of Gita's house is less than the number of Ernie's house.

5 OS 1.4 Two Way Tables 1 Emma collected information about the cats and dogs that children in her class have. She filled in the table below, but missed out one number. Has a dog Does not have a dog Has a cat Does not have a cat (a) (b) (c) (d) If there are 30 children in Emma's class, what is the missing number? How many children own at least one of these pets? Do more children own cats rather than dogs? Could it be true that some of the children do not have any pets?

6 OS 1.5 Two Way Tables 2 The table below gives information about the children in a class. Lefthanded Righthanded oys Girls (a) (b) (c) (d) (e) How many right-handed girls are there in the class? How many left-handed boys are there in the class? How many girls are there in the class? How many of the children are left-handed? How many children there are in the class?

7 OS 1.6 Constructing Two Way Tables In en's class there are 12 girls and 18 boys. There are 6 children who bring packed lunches and the rest eat school lunches. en and dam are the only boys who bring packed lunches. (a) (b) How many children are there in the class? How many girls eat school lunches? oys Girls Packed lunch School lunch

8 OS 1.7 Illustrating Sets The sets and consist of numbers taken from the whole numbers 0, 1, 2, 3,.., 9, so that Set = { 4, 7, 9 } Set = { 1, 2, 3, 4, 5 } Illustrate these sets in a Venn diagram.

9 OS 1.8 Identifying Sets The whole numbers from 1 to 10 are placed in a Venn diagram (a) Write down the members of the sets. = { } = { } (b) Describe the sets and in words.

10 OS 1.9 Identifying and Illustrating Sets Set contains the whole numbers greater than 6 but less than 12. Set contains the whole numbers greater than 2 but less than 10. (a) List set and set. = { } = { } (b) Illustrate the sets and on the Venn diagram below, including all the whole numbers from 1 to 15.

11 OS 1.10 Intersection and Union The sets X and Y are shown in this Venn diagram. X Y Find: (a) the intersection of X and Y : { } (b) the union of X and Y ; { } (c) the complement of X : { }

12 OS 1.11 Sets and Venn Diagrams

13 OS 1.12 Definitions ξ ξ : universal set ξ : the intersection of and ξ : the union of and ξ ' : the complement of and : is a subset of ξ : empty set

14 OS 1.13 Using Set Notation Describe in words, set and set. 2. Find (a) = { } (b) ξ = { } (c) = { } (d) = { } (e) ' = { } (f) ' = { } (g) ( )' = { } (h) ' = { } (i) ' = { }

15 OS 1.14 Describing Sets 1 Use set notation to describe the shaded regions of these diagrams. (a) (b) C

16 OS 1.15 Describing Sets 2 (a) On this diagram, shade the region that represents ( ) C' ξ C (b) On this diagram, shade the region that represents C' ξ C

17 OS 1.16 Logic Problems and Venn Diagrams In a class there are 8 children who play football and hockey 7 children who do not play football or hockey 13 children who play hockey 19 children who play football. Illustrate these facts on a Venn diagram, and find how many children there are in the class. F H Total number of children in class =

18 OS Logic Table

19 OS Logic Table

### Math 117 Chapter 7 Sets and Probability

Math 117 Chapter 7 and Probability Flathead Valley Community College Page 1 of 15 1. A set is a well-defined collection of specific objects. Each item in the set is called an element or a member. Curly

Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish

### Clicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Tuesday, 1/21/14 General course Information Sets Reading: [J] 1.1 Optional: [H] 1.1-1.7 Exercises: Do before next class; not to hand in [J] pp. 12-14:

### Math 166 - Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Week in Review #4 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that

### Sections 2.1, 2.2 and 2.4

SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete

### The Mathematics Driving License for Computer Science- CS10410

The Mathematics Driving License for Computer Science- CS10410 Venn Diagram, Union, Intersection, Difference, Complement, Disjoint, Subset and Power Set Nitin Naik Department of Computer Science Venn-Euler

### CmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B

CmSc 175 Discrete Mathematics Lesson 10: SETS Sets: finite, infinite, : empty set, U : universal set Describing a set: Enumeration = {a, b, c} Predicates = {x P(x)} Recursive definition, e.g. sequences

### Check Skills You ll Need. New Vocabulary union intersection disjoint sets. Union of Sets

NY-4 nion and Intersection of Sets Learning Standards for Mathematics..31 Find the intersection of sets (no more than three sets) and/or union of sets (no more than three sets). Check Skills You ll Need

### LESSON SUMMARY. Set Operations and Venn Diagrams

LESSON SUMMARY CXC CSEC MATHEMATICS UNIT Three: Set Theory Lesson 4 Set Operations and Venn Diagrams Textbook: Mathematics, A Complete Course by Raymond Toolsie, Volumes 1 and 2. (Some helpful exercises

### Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

### A set is a Many that allows itself to be thought of as a One. (Georg Cantor)

Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains

### Name Date. Goal: Understand and represent the intersection and union of two sets.

F Math 12 3.3 Intersection and Union of Two Sets p. 162 Name Date Goal: Understand and represent the intersection and union of two sets. A. intersection: The set of elements that are common to two or more

### SETS. Chapter Overview

Chapter 1 SETS 1.1 Overview This chapter deals with the concept of a set, operations on sets.concept of sets will be useful in studying the relations and functions. 1.1.1 Set and their representations

### not to be republishe NCERT SETS Chapter Introduction 1.2 Sets and their Representations

SETS Chapter 1 In these days of conflict between ancient and modern studies; there must surely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but

### The Language of Mathematics

CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

### VENN DIAGRAMS. Condition #1 Condition #2 A B C. Answer: B and C have reflection symmetry. C and D have at least one pair of parallel sides.

VENN DIAGRAMS VENN DIAGRAMS AND CLASSIFICATIONS A Venn diagram is a tool used to classify objects. It is usually composed of two or more circles that represent different conditions. An item is placed or

### Prime Time Notes. Problem 1.1

Problem 1.1 factor - one of two or more whole numbers that when multiplied together give a product proper factor - all the factors of that number, except the number itself abundant numbers - numbers whose

### L01 - Set Theory. CSci/Math May 2015

L01 - Set Theory CSci/Math 2112 06 May 2015 1 / 10 Elements and Subsets of a Set a A means a is an element of the set A a / A means a is not an element of the set A A B means A is a subset of B (all elements

### Sets and Logic. Chapter Sets

Chapter 2 Sets and Logic This chapter introduces sets. In it we study the structure on subsets of a set, operations on subsets, the relations of inclusion and equality on sets, and the close connection

### Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.

Complement If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. For example, if A is the event UNC wins at least 5 football games, then A c is the

### Packet: Sets and Venn Diagrams

Packet: Sets and Venn Diagrams Standards covered: *MA.912.D.7.1 Perform set operations such as union and intersection, complement, and cross product. *MA.912.D.7.2 Use Venn diagrams to explore relationships

### Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.

Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in

### Chapter 2: Systems of Linear Equations and Matrices:

At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

### 4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set.

Section 4. Set Theory 4.1. Definitions A set may be viewed as any well defined collection of objects, called elements or members of the set. Sets are usually denoted with upper case letters, A, B, X, Y,

### THE LANGUAGE OF SETS AND SET NOTATION

THE LNGGE OF SETS ND SET NOTTION Mathematics is often referred to as a language with its own vocabulary and rules of grammar; one of the basic building blocks of the language of mathematics is the language

### AP Stats - Probability Review

AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

### + Section 6.2 and 6.3

Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

### Grade 8 Mathematics Data Analysis, Probability, and Discrete Mathematics: Lesson 3

Grade 8 Mathematics Data Analysis, Probability, and Discrete Mathematics: Lesson 3 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type

### 4.1. Sets. Introduction. Prerequisites. Learning Outcomes. Learning Style

ets 4.1 Introduction If we can identify a property which is common to several objects, it is often useful to group them together. uch a grouping is called a set. Engineers for example, may wish to study

### What is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13

What is a set? Sets CS 231 Dianna Xu set is a group of objects People: {lice, ob, Clara} Colors of a rainbow: {red, orange, yellow, green, blue, purple} States in the S: {labama, laska, Virginia, } ll

### Factorizations: Searching for Factor Strings

" 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

### Chapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.

MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.

### Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets

CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.3-2.6 Homework 2 due Tuesday Recitation 3 on Friday

### Direct Proofs. CS 19: Discrete Mathematics. Direct Proof: Example. Indirect Proof: Example. Proofs by Contradiction and by Mathematical Induction

Direct Proofs CS 19: Discrete Mathematics Amit Chakrabarti Proofs by Contradiction and by Mathematical Induction At this point, we have seen a few examples of mathematical proofs. These have the following

### Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE

Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,

### GRADE 7 MATH LEARNING GUIDE

GRDE 7 MTH Lesson 2.1: Union and Intersection of Sets Time: 1.5 hours Pre-requisite Concepts: Whole Numbers, definition of sets, Venn diagrams bout the Lesson: fter learning some introductory concepts

### Set Theory: Shading Venn Diagrams

Set Theory: Shading Venn Diagrams Venn diagrams are representations of sets that use pictures. We will work with Venn diagrams involving two sets (two-circle diagrams) and three sets (three-circle diagrams).

### 2.1 Symbols and Terminology

2.1 Symbols and Terminology Definitions: set is a collection of objects. The objects belonging to the set are called elements, ormembers, oftheset. Sets can be designated in one of three different ways:

### Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

### Basics of Probability

Basics of Probability August 27 and September 1, 2009 1 Introduction A phenomena is called random if the exact outcome is uncertain. The mathematical study of randomness is called the theory of probability.

### Notes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Sets Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

### Sets and set operations

CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used

### 2.1 The Algebra of Sets

Chapter 2 Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations

### Sets, Venn Diagrams & Counting

MT 142 College Mathematics Sets, Venn Diagrams & Counting Module SC Terri Miller revised January 5, 2011 What is a set? Sets set is a collection of objects. The objects in the set are called elements of

### Solving and Graphing Inequalities

Algebra I Pd Basic Inequalities 3A What is the answer to the following questions? Solving and Graphing Inequalities We know 4 is greater than 3, so is 5, so is 6, so is 7 and 3.1 works also. So does 3.01

### OPERATIONS AND PROPERTIES

CHAPTER OPERATIONS AND PROPERTIES Jesse is fascinated by number relationships and often tries to find special mathematical properties of the five-digit number displayed on the odometer of his car. Today

### OA3-10 Patterns in Addition Tables

OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20

### Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then

Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance

### PROBABILITY NOTIONS. Summary. 1. Random experiment

PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non

### axiomatic vs naïve set theory

ED40 Discrete Structures in Computer Science 1: Sets Jörn W. Janneck, Dept. of Computer Science, Lund University axiomatic vs naïve set theory s Zermelo-Fraenkel Set Theory w/choice (ZFC) extensionality

### Benchmark Test : Algebra 1

1 Benchmark: MA.91.A.3.3 If a ar b r, what is the value of a in terms of b and r? A b + r 1 + r B 1 + b r + b C 1 + b r D b r 1 Benchmark: MA.91.A.3.1 Simplify: 1 g(5 3) 4g 13 4 F 11 4 g 16 G g 1 H 15

### I. Vocabulary. Two-way Frequency table: a table listing two categorical variables who values have been paired.

I. Vocabulary Two-way Frequency table: a table listing two categorical variables who values have been paired. Joint relative frequency: is found by dividing a frequency that is not in the Total row or

### Pupils analyse a numerical puzzle, solve some examples and then deduce that a further example is impossible.

Task description Pupils analyse a numerical puzzle, solve some examples and then deduce that a further example is impossible. Suitability National Curriculum levels 5 to 7 Time Resources 30 minutes to

### Probability and Venn diagrams UNCORRECTED PAGE PROOFS

Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve

### Frames and Arrows Having Two Rules

Frames and Arrows Having Two s Objective To guide children as they solve Frames-and-Arrows problems having two rules. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop

### Additional Fractions Problems With Solutions

6/6/009 Additional Fractions Problems With Solutions Ordering fractions with unlike denominators What is the first step? How do we do that? Then what? Find the lowest common denominator Write each denominator

### (Refer Slide Time: 1:41)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must

### DISCRETE MATHEMATICS W W L CHEN

DISCRETE MATHEMATICS W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It is available free

### Basic concepts in probability. Sue Gordon

Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

### If a tennis player was selected at random from the group, find the probability that the player is

Basic Probability. The table below shows the number of left and right handed tennis players in a sample of 0 males and females. Left handed Right handed Total Male 3 29 32 Female 2 6 8 Total 4 0 If a tennis

### Lecture 1. Basic Concepts of Set Theory, Functions and Relations

September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2

### (b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw

### Assigning Probabilities

What is a Probability? Probabilities are numbers between 0 and 1 that indicate the likelihood of an event. Generally, the statement that the probability of hitting a target- that is being fired at- is

### Florida Department of Education/Office of Assessment January 2012. Algebra 1 End-of-Course Assessment Achievement Level Descriptions

Florida Department of Education/Office of Assessment January 2012 Algebra 1 End-of-Course Assessment Achievement Level Descriptions Algebra 1 EOC Assessment Reporting Category Functions, Linear Equations,

### Cultural diversity. Teacher Lesson Plan. Similarities and differences between the UK and your country overseas. Age Group: Any. Time: 60 minutes.

Teacher Lesson Plan Cultural diversity Topic Similarities and differences between the UK and your country overseas. Age Group: Any Aim: To think about similarities and differences between the UK and other

### Introduction to mathematical arguments

Introduction to mathematical arguments (background handout for courses requiring proofs) by Michael Hutchings A mathematical proof is an argument which convinces other people that something is true. Math

### Deductive reasoning is the application of a general statement to a specific instance.

Section1.1: Deductive versus Inductive Reasoning Logic is the science of correct reasoning. Websters New World College Dictionary defines reasoning as the drawing of inferences or conclusions from known

### ACTIVITY: Identifying Common Multiples

1.6 Least Common Multiple of two numbers? How can you find the least common multiple 1 ACTIVITY: Identifying Common Work with a partner. Using the first several multiples of each number, copy and complete

### Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Chung-Chih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from

### Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

### Creating and Analyzing a Survey

Creating and Analyzing a Survey Collect, organize, and display the results of a survey. Trudy wants to know about TV-watching habits of students in her school. She wrote a question for a survey.. How often

### PROBABILITY. Chapter Overview

Chapter 6 PROBABILITY 6. Overview Probability is defined as a quantitative measure of uncertainty a numerical value that conveys the strength of our belief in the occurrence of an event. The probability

Answers Investigation Applications. a. Divide 24 by 2 to see if you get a whole number. Since 2 * 2 = 24 or 24, 2 = 2, 2 is a factor. b. Divide 29 by 7 to see if the answer is a whole number. Since 29,

### Data Investigations and Assessment in the Math Classroom For 1 st grade

Data Investigations and Assessment in the Math Classroom For 1 st grade By: Darlene Riewer- driewer@bemiji.k12.mn.us and Angie Rogers-Elstad- arogers@bemidji.k12.mn.us Data Investigations and Assessment

### Exam Style Questions. Revision for this topic. Name: Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser

Name: Exam Style Questions Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser You may use tracing paper if needed Guidance 1. Read each question carefully before you begin answering

### TABLE OF CONTENTS Click on a title to go directly to the handout. Handout 2: Estimating Challenge. Handout 3: Din-O-Rama Exploration

SCALE CITY The Road to Proportional Reasoning: Dinosaur World Handouts TABLE OF CONTENTS Click on a title to go directly to the handout. Handout 1: Review: Fractions, Decimals, and Percents Problems assessing

### Introduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim

6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can

### Multiplication and Division

E Student Book 6 7 = 4 Name Series E Contents Topic Multiplication facts (pp. 7) 5 and 0 times tables and 4 times tables 8 times table and 6 times tables Date completed Topic Using known facts (pp. 8 )

### Proof of Crossword Puzzle Record

Proof of rossword Puzzle Record Kevin K. Ferland kferland@bloomu.edu Bloomsburg niversity, Bloomsburg, PA 17815 Abstract We prove that the maximum number of clues possible for a 15 15 daily New York imes

### A set is an unordered collection of objects.

Section 2.1 Sets A set is an unordered collection of objects. the students in this class the chairs in this room The objects in a set are called the elements, or members of the set. A set is said to contain

### Access The Mathematics of Internet Search Engines

Lesson1 Access The Mathematics of Internet Search Engines You are living in the midst of an ongoing revolution in information processing and telecommunications. Telephones, televisions, and computers are

### KEEPING NOTES. Remember Sudoku is a game of logic and you shouldn t need to guess.

Number puzzles and games have been around for a very long time, perhaps ancient cave-dwellers even played puzzles with rocks and sticks! Sudoku (which means single number in Japanese) probably has it s

### Coimisiún na Scrúduithe Stáit State Examinations Commission. Junior Certificate Examination 2015 Sample Paper. Mathematics

2015. S34 S Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination 2015 Mathematics Paper 1 Higher Level Time: 2 hours, 30 minutes 300 marks Examination number Running

### Boolean_Algebra. Access the Boolean Algebra Tool through the Analyze Genesets tab under the Analyze Genesets option.

The Boolean Algebra Tools preforms a Union, Intersection, or Exception on at least two GeneSets. It then provides a listing of genes grouped by the number of GeneSets they have in common. This view may

### GRADE 7 MATH TEACHING GUIDE

GRDE 7 MTH Lesson 2.1: Union and Intersection of Sets Pre-requisite Concepts: Whole Numbers, definition of sets, Venn diagrams Objectives: In this lesson, you are expected to: 1. Describe and define a.

### CHAPTER 2. Set, Whole Numbers, and Numeration

CHAPTER 2 Set, Whole Numbers, and Numeration 2.1. Sets as a Basis for Whole Numbers A set is a collection of objects, called the elements or members of the set. Three common ways to define sets: (1) A

### MATH 214 Mathematical Problem Solving for MCED Spring 2011

MATH 214 Mathematical Problem Solving for MCED Spring 2011 Venn Diagrams 1 The English logician John Venn (1834-1923) 2 invented a simple visual way of describing relationships between sets. His diagrams,

### Applied Liberal Arts Mathematics MAT-105-TE

Applied Liberal Arts Mathematics MAT-105-TE This TECEP tests a broad-based overview of mathematics intended for non-math majors and emphasizes problem-solving modeled on real-life applications. Topics

### Basic Probability Concepts

page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

### 2015 Junior Certificate Higher Level Official Sample Paper 1

2015 Junior Certificate Higher Level Official Sample Paper 1 Question 1 (Suggested maximum time: 5 minutes) The sets U, P, Q, and R are shown in the Venn diagram below. (a) Use the Venn diagram to list

### Test B. Calculator allowed. Mathematics test. First name. Last name. School. DCSF no. KEY STAGE LEVELS

Ma KEY STAGE 2 LEVELS 3 5 Mathematics test Test B Calculator allowed First name Last name School DCSF no. 2010 For marker s use only Page 5 7 9 11 13 15 17 19 21 23 TOTAL Marks These three children appear

### The study of probability has increased in popularity over the years because of its wide range of practical applications.

6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,

### Algebra EOC Practice Test #2

Class: Date: Algebra EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following lines is perpendicular to the line y =

### Introduction to Proofs

Chapter 1 Introduction to Proofs 1.1 Preview of Proof This section previews many of the key ideas of proof and cites [in brackets] the sections where they are discussed thoroughly. All of these ideas are

### Grade 6 Math Circles Fall 2012 Logic Problems

1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2012 Logic Problems Logic problems are problems that can be solved using reasoning

### NNC Year 6 Graphs and Charts

NNC Year 6 Graphs and Charts 95 minutes 93 marks Page of 53 Q2. These two graphs convert pounds ( ) to Deutschmarks (Dm) and pounds ( ) to dollars (\$). Use the graphs to complete the table. number of approximate

### Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008

Basic Set Theory LX 502 - Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?

### 4 th Grade. Interactive Notebook: math. Fractions Edition. Based on the Common Core Standards.

4 th Grade Interactive Notebook: math Fractions Edition Based on the Common Core Standards www.mrsrojasteaches.blogspot.com 4 th Grade Interactive Math Notebook Fractions Thank you so much for purchasing