Exam. Name. TRUE/FALSE. Write ʹTʹ if the statement is true and ʹFʹ if the statement is false. 1) Kinetic energy is proportional to speed.


 Austen Richards
 1 years ago
 Views:
Transcription
1 Exam Name TRUE/FALSE. Write ʹTʹ if the statement is true and ʹFʹ if the statement is false. 1) Kinetic energy is proportional to speed. 2) The gravitational force is a conservative force. 3) If work is done on a system by nonconservative forces, the total mechanical energy of a system stays constant. 4) Work is a vector quantity. 5) Power is a vector quantity. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 6) You throw a ball straight up. Compare the sign of the work done by gravity while the ball goes up with the sign of the work done by gravity while it goes down. A) Work is  on the way up and  on the B) Work is + on the way up and + on the C) Work is  on the way up and + on the D) Work is + on the way up and  on the 7) How large a force is required to accelerate a 1600 kg car from rest to a speed of 25 m/s in a distance of 200 m? A) 0 N B) 200 N C) 2500 N D) 400 N E) 1600 N 8) Describe the energy of a car driving up a hill. A) gravitational B) elastic C) entirely potential D) entirely kinetic E) both kinetic and potential 9) Two identical balls are thrown from the top of a building with the same speed. Ball 1 is thrown horizontally, while ball 2 is thrown at an angle θ above the horizontal. Neglecting air resistance, which ball will have the greatest speed when hitting the ground below? A) Ball 1 B) Ball 2 C) Cannot be determined without knowing the time each ball is in the air. D) Cannot be determined without knowing the height of the building. E) Both balls reach the ground with the same speed. 10) A force produces power P by doing work W in a time T. What power will be produced by a force that does six times as much work in half as much time? A) 12P B) 1 6 P C) P D) 1 12 P E) 6P 11) An object is released from rest a height h above the ground. A second object with four times the mass of the first is released from the same height. The potential energy of the second object compared to the first is A) onehalf as much. B) four times as much. C) onefourth as much. D) eight times as much. E) twice as much. 12) A boy throws a ball to another boy who throws it back with half the original speed. What is the ratio of the final kinetic energy to the initial kinetic energy of the ball? A) 0.50 B) 1.0 C) 0.25 D) 2.00 E)
2 13) A student slides her 80.0kg desk across the level floor of her dormitory room a distance 4.00 m at constant speed. If the coefficient of kinetic friction between the desk and the floor is 0.400, how much work did she do? A) 3.14 kj B) 24.0 J C) 1.26 kj D) 26.7 J E) 128 J 14) A 20kg object is resting at the top of a table 1.6 m above ground level. The object is then picked up and moved to a height of 8.7 m above ground level. What is the change in the gravitational potential energy of this object? Use g = 10 m/s2. A) 140 J B) 71 J C) 1740 J D) 1420 J E) 320 J 15) A ball is thrown upward with a speed and direction such that it reaches a maximum height of 16.0 m above the point it was released. At its maximum height it has a speed of 18.0 m/s. With what speed was the ball released? A) 22.2 m/s B) 33.0 m/s C) 36.9 m/s D) 29.2 m/s E) 25.3 m/s 16) A simple pendulum, consisting of a mass m and a string of length L, swings upward, making an angle θ with the vertical. The work done by the tension force is A) mgl cos θ. B) mgl tan θ. C) mgl. D) zero. E) mgl sin θ. 17) An object hits a wall and bounces back with half of its original speed. What is the ratio of the final kinetic energy to the initial kinetic energy? A) 2 B) 4 C) 8 D) 1/4 E) 1/2 18) A 20.0N weight slides down a rough inclined plane which makes an angle of 30.0 with the horizontal. The weight starts from rest and gains a speed of 15.0 m/s after sliding 150 m. How much work is done against friction? Use g = 10 m/s2. A) 1270 J B) 229 J C) J D) 1500 J E) 229 J 19) You slam on the brakes of your car in a panic, and skid a certain distance on a straight, level road. If you had been traveling twice as fast, what distance would the car have skidded, under the same conditions? A) It would have skidded one half as far. B) It would have skidded 4 times farther. C) It would have skidded twice as far. D) It would have skidded 1.4 times farther. E) It is impossible to tell from the information given. 20) Consider a plot of the displacement (x) vs. applied force (F) for an ideal elastic spring. The slope of the curve would be A) the reciprocal of the displacement. B) the acceleration of gravity. C) the reciprocal of the acceleration of gravity. D) the reciprocal of the spring constant. E) the spring constant. 2
3 21) An object of mass m with a certain initial speed on a horizontal surface comes to rest after traveling a distance of 10 m. If the coefficient of kinetic friction between the object and the horizontal surface is 0.20, what is the initial speed of the object? Use g = 10 m/s2. A) 8.9 m/s B) 3.6 m/s C) 6.3 m/s D) 7.2 m/s E) 9.8 m/s 22) A kg mass attached to the end of a spring causes it to stretch 5.0 cm. If another kg mass is added to the spring, the potential energy of the spring will be A) the same. B) 4 times as much. C) 3 times as much. D) onehalf as much. E) twice as much. FIGURE ) An object of mass = 2 kg is pulled by a constant force F = 4 N for a horizontal distance of 2 m. (Refer to Figure 73.) What is the work done along the +xaxis? Neglect friction. A) 9 J B) 5 J C) 2 J D) 8 J E) 7 J FIGURE ) A ball falls from the top of a building, through the air (air friction is present), to the ground below. How does the kinetic energy (K) just before striking the ground compare to the potential energy (U) at the top of the building? A) K is less than U. B) K is equal to U. C) K is greater than U. D) It is impossible to tell. 24) An object of mass 20.0 kg is at rest at the top of an inclined plane whose length is 8.00 m and which makes an angle of 30.0 with the horizontal. The coefficient of kinetic friction between the object and the inclined plane is The object is released and slides down the plane. What is the kinetic energy of this object at the bottom of the inclined plane? Use g = 10.0 m/s2. A) 246 J B) 200 J C) 600 J D) 300 J E) 173 J 26) An object is under the influence of a force as represented by the force vs. position graph as shown in Figure 76. What is the work done as it moves from 0 to 10 m? A) 100 J B) 80 J C) 50 J D) 25 J E) 125 J 3
4 FIGURE 811 FIGURE 87 A 2.0 kg mass is moving along the xaxis. The potential energy curve as a function of position is shown in Figure The system is conservative. There is no friction. 27) Refer to Figure If the speed of the object at the origin is 4.0 m/s, what will be its speed at 4.0 m along the +xaxis? A) 4.6 m/s B) 10 m/s C) 4.0 m/s D) 4.4 m/s E) 4.1 m/s FIGURE 86 Two masses M1 = 2.0 kg and M2 = 4.0 kg are attached by a string as shown in Figure 87. M1 falls vertically down and M2 moves on a frictionless surface. Initially the system is at rest. Use g = 10 m/s2. 29) Refer to Figure 87. What is the potential energy of the mass M1 just before it touches the ground? A) 2.5 J B) 4 J C) 2.3 J D) 5.2 J E) 0 J FIGURE 88 A roller coaster of mass 80.0 kg is moving with a speed of 20.0 m/s at position A as shown in Figure 86. The vertical height at position A above ground level is 200 m. Neglect friction and use g = 10.0 m/s2. 28) What is the total energy of the roller coaster at point B? A) J B) J C) J D) J E) There is not enough information to solve this problem. 30) An object of mass 2.00 kg starts at rest from the top of a rough inclined plane of height 20.0 m as shown in Figure 88. If the work done by the force of friction is 150 J, what is the speed of the object as it reaches the bottom of the inclined plane? Use g = 10.0 m/s2. A) 150 m/s B) 10.0 m/s C) 20.0 m/s D) 15.8 m/s E) 200 m/s 4
5 FIGURE 89 An object with a mass of 10.0 kg is at rest at the top of a frictionless inclined plane of height 8.00 m and an angle of inclination 30.0 with the horizontal. The object is released from this position and it stops at a distance d from the bottom of the inclined plane along a horizontal surface, as shown in Figure 89. The coefficient of kinetic friction for the horizontal surface is and g = 10.0 m/ s2. 31) Refer to Figure 89. At what horizontal distance from the bottom of the inclined plane will this object stop? A) 15.0 m B) 20.0 m C) 25.0 m D) 10.0 m E) 5.00 m SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 32) Lisa runs up 4 flights of stairs in 22. seconds. She weighs 510. Newtons. If each flight rises 310. cm: (a) What is her change in potential? (b) What average power (watts) was required during the 22. s? (c) What minimum horsepower motor would be required to do this? 5
6 Answer Key Testname: AP 7+8 SAMPLES 1) FALSE 2) TRUE 3) FALSE 4) FALSE 5) FALSE 6) C 7) C 8) E 9) E 10) A 11) B 12) C 13) C 14) D 15) E 16) D 17) D 18) A 19) B 20) D 21) C 22) B 23) A 24) A Diff: 3 25) E 26) A 27) D 28) A 29) E 30) D 31) B Diff: 3 32) (a) 6.32 kj (b) 287. watts (c) hp Diff: 3 6
AP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More information1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More informationB) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B
Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time
More informationPhysics 201 Fall 2009 Exam 2 October 27, 2009
Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More information10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationCurso20122013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
More informationAP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
More informationPhysics 201 Homework 5
Physics 201 Homework 5 Feb 6, 2013 1. The (nonconservative) force propelling a 1500kilogram car up a mountain 1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest
More informationAP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.
1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach
More informationAssignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors
More informationClicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.
A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the
More informationWORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newtonmeter (Nm) = Joule, J If you exert a force of
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationConservative vs. Nonconservative forces Gravitational Potential Energy. Work done by nonconservative forces and changes in mechanical energy
Next topic Conservative vs. Nonconservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by nonconservative forces and changes in mechanical energy
More informationPHYSICS MIDTERM REVIEW
1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationChapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the WorkEnergy Theorem Work Done by a Variable Force Power
Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the WorkEnergy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this
More informationConceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
More informationWork, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationP211 Midterm 2 Spring 2004 Form D
1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationExam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
More informationName: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.
1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationWork, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
More informationPhysics Exam 1 Review  Chapter 1,2
Physics 1401  Exam 1 Review  Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental
More informationPhysics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath
Physics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information
More informationAP Physics Newton's Laws Practice Test
AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More informationChapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationA Review of Vector Addition
Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More informationKE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationChapter 8: Conservation of Energy
Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I
More informationB Answer: neither of these. Mass A is accelerating, so the net force on A must be nonzero Likewise for mass B.
CTA1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass
More informationPHYS101 The Laws of Motion Spring 2014
The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2
More informationSprings. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion.
WorkEnergy Part 2 Springs Spring can be used to apply forces Springs can store energy These can be done by either compression, stretching, or torsion. Springs Ideal, or linear springs follow a rule called:
More information1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationAN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000
M31 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000 APPLIED MATHEMATICS  ORDINARY LEVEL FRIDAY, 23 JUNE  AFTERNOON, 2.00 to 4.30 Six questions to be answered. All questions
More informationPhysics Midterm Review. MultipleChoice Questions
Physics Midterm Review MultipleChoice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves
More informationPHYS 100 Introductory Physics Sample Exam 2
PHYS 00 Introductory Physics Sample Exam Formulas: Acceleration due to Gravity = 0 m/s Weight = Mass x Acceleration due to Gravity Work = Force x Distance Gravitational Potential Energy = Weight x Height
More informationPhysics Honors Page 1
1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12ounce
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationAP Physics Energy and Springs
AP Physics Energy and Springs Another major potential energy area that AP Physics is enamored of is the spring (the wire coil deals, not the ones that produce water for thirsty humanoids). Now you ve seen
More informationHow to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation
Chapter 6: Work and Kinetic Energy What is work done by a force What is kinetic energy workenergy theorem How to calculate work done by a varying force along a curved path The meaning and calculation
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A lawn roller in the form of a uniform solid cylinder is being pulled horizontally by a horizontal
More informationPhysics1 Recitation3
Physics1 Recitation3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
More information56 Chapter 5: FORCE AND MOTION I
Chapter 5: FORCE AND MOTION I 1 An example of an inertial reference frame is: A any reference frame that is not accelerating B a frame attached to a particle on which there are no forces C any reference
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More information7. Kinetic Energy and Work
Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic
More informationLinear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A
1. Two points, A and B, are on a disk that rotates about an axis. Point A is closer to the axis than point B. Which of the following is not true? A) Point B has the greater speed. B) Point A has the lesser
More information2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?
Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140
More informationForce. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1
Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationVersion 001 Quest 3 Forces tubman (20131) 1
Version 001 Quest 3 Forces tubman (20131) 1 This printout should have 19 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. l B Conceptual
More informationProblem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
More informationPeople s Physics book 3e Ch 251
The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate
More informationPhysics term 1 reviewsheet
Name: ate: 1. The length of line shown is closest to one. millimeter. centimeter. meter. kilometer 5. The diagram shown represents a rectangle composed of squares with sides one meter long. What is the
More informationHigher Physics Our Dynamic Universe Notes
Higher Physics Our Dynamic Universe Notes Teachers Booklet Previous knowledge This section builds on the knowledge from the following key areas from Dynamics and Space Booklet 1  Dynamics Velocity and
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More information1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
More informationSpeed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
More informationWork, Energy and Power
Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed
More informationPhysics 11 Chapter 4 HW Solutions
Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationWorksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing FreeBody Diagrams Freebody diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
More information1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2
1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than
More informationReview Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
More informationCenter of Mass/Momentum
Center of Mass/Momentum 1. 2. An Lshaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the Lshaped
More informationAP Physics 1 Midterm Exam Review
AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement
More informationRotational Mechanics  1
Rotational Mechanics  1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360
More informationAnnouncements. Dry Friction
Announcements Dry Friction Today s Objectives Understand the characteristics of dry friction Draw a FBD including friction Solve problems involving friction Class Activities Applications Characteristics
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationCHAPTER 2 TEST REVIEW  ANSWER KEY
AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST
More informationMechanics 1. Revision Notes
Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationSAMPLE PAPER 1 XI PHYSICS
SAMPLE PAPER 1 o A n XI PHYSICS Time: Three Hours Maximum Marks: 70 General Instructions (a) All questions are compulsory. (b) There are 30 questions in total. Questions 1 to 8 carry one mark each, questions
More information