Exam. Name. TRUE/FALSE. Write ʹTʹ if the statement is true and ʹFʹ if the statement is false. 1) Kinetic energy is proportional to speed.

Size: px
Start display at page:

Download "Exam. Name. TRUE/FALSE. Write ʹTʹ if the statement is true and ʹFʹ if the statement is false. 1) Kinetic energy is proportional to speed."

Transcription

1 Exam Name TRUE/FALSE. Write ʹTʹ if the statement is true and ʹFʹ if the statement is false. 1) Kinetic energy is proportional to speed. 2) The gravitational force is a conservative force. 3) If work is done on a system by non-conservative forces, the total mechanical energy of a system stays constant. 4) Work is a vector quantity. 5) Power is a vector quantity. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 6) You throw a ball straight up. Compare the sign of the work done by gravity while the ball goes up with the sign of the work done by gravity while it goes down. A) Work is - on the way up and - on the B) Work is + on the way up and + on the C) Work is - on the way up and + on the D) Work is + on the way up and - on the 7) How large a force is required to accelerate a 1600 kg car from rest to a speed of 25 m/s in a distance of 200 m? A) 0 N B) 200 N C) 2500 N D) 400 N E) 1600 N 8) Describe the energy of a car driving up a hill. A) gravitational B) elastic C) entirely potential D) entirely kinetic E) both kinetic and potential 9) Two identical balls are thrown from the top of a building with the same speed. Ball 1 is thrown horizontally, while ball 2 is thrown at an angle θ above the horizontal. Neglecting air resistance, which ball will have the greatest speed when hitting the ground below? A) Ball 1 B) Ball 2 C) Cannot be determined without knowing the time each ball is in the air. D) Cannot be determined without knowing the height of the building. E) Both balls reach the ground with the same speed. 10) A force produces power P by doing work W in a time T. What power will be produced by a force that does six times as much work in half as much time? A) 12P B) 1 6 P C) P D) 1 12 P E) 6P 11) An object is released from rest a height h above the ground. A second object with four times the mass of the first is released from the same height. The potential energy of the second object compared to the first is A) one-half as much. B) four times as much. C) one-fourth as much. D) eight times as much. E) twice as much. 12) A boy throws a ball to another boy who throws it back with half the original speed. What is the ratio of the final kinetic energy to the initial kinetic energy of the ball? A) 0.50 B) 1.0 C) 0.25 D) 2.00 E)

2 13) A student slides her 80.0-kg desk across the level floor of her dormitory room a distance 4.00 m at constant speed. If the coefficient of kinetic friction between the desk and the floor is 0.400, how much work did she do? A) 3.14 kj B) 24.0 J C) 1.26 kj D) 26.7 J E) 128 J 14) A 20-kg object is resting at the top of a table 1.6 m above ground level. The object is then picked up and moved to a height of 8.7 m above ground level. What is the change in the gravitational potential energy of this object? Use g = 10 m/s2. A) 140 J B) 71 J C) 1740 J D) 1420 J E) 320 J 15) A ball is thrown upward with a speed and direction such that it reaches a maximum height of 16.0 m above the point it was released. At its maximum height it has a speed of 18.0 m/s. With what speed was the ball released? A) 22.2 m/s B) 33.0 m/s C) 36.9 m/s D) 29.2 m/s E) 25.3 m/s 16) A simple pendulum, consisting of a mass m and a string of length L, swings upward, making an angle θ with the vertical. The work done by the tension force is A) mgl cos θ. B) mgl tan θ. C) mgl. D) zero. E) mgl sin θ. 17) An object hits a wall and bounces back with half of its original speed. What is the ratio of the final kinetic energy to the initial kinetic energy? A) 2 B) 4 C) 8 D) 1/4 E) 1/2 18) A 20.0-N weight slides down a rough inclined plane which makes an angle of 30.0 with the horizontal. The weight starts from rest and gains a speed of 15.0 m/s after sliding 150 m. How much work is done against friction? Use g = 10 m/s2. A) 1270 J B) 229 J C) J D) 1500 J E) -229 J 19) You slam on the brakes of your car in a panic, and skid a certain distance on a straight, level road. If you had been traveling twice as fast, what distance would the car have skidded, under the same conditions? A) It would have skidded one half as far. B) It would have skidded 4 times farther. C) It would have skidded twice as far. D) It would have skidded 1.4 times farther. E) It is impossible to tell from the information given. 20) Consider a plot of the displacement (x) vs. applied force (F) for an ideal elastic spring. The slope of the curve would be A) the reciprocal of the displacement. B) the acceleration of gravity. C) the reciprocal of the acceleration of gravity. D) the reciprocal of the spring constant. E) the spring constant. 2

3 21) An object of mass m with a certain initial speed on a horizontal surface comes to rest after traveling a distance of 10 m. If the coefficient of kinetic friction between the object and the horizontal surface is 0.20, what is the initial speed of the object? Use g = 10 m/s2. A) 8.9 m/s B) 3.6 m/s C) 6.3 m/s D) 7.2 m/s E) 9.8 m/s 22) A kg mass attached to the end of a spring causes it to stretch 5.0 cm. If another kg mass is added to the spring, the potential energy of the spring will be A) the same. B) 4 times as much. C) 3 times as much. D) one-half as much. E) twice as much. FIGURE ) An object of mass = 2 kg is pulled by a constant force F = 4 N for a horizontal distance of 2 m. (Refer to Figure 7-3.) What is the work done along the +x-axis? Neglect friction. A) 9 J B) 5 J C) 2 J D) 8 J E) 7 J FIGURE ) A ball falls from the top of a building, through the air (air friction is present), to the ground below. How does the kinetic energy (K) just before striking the ground compare to the potential energy (U) at the top of the building? A) K is less than U. B) K is equal to U. C) K is greater than U. D) It is impossible to tell. 24) An object of mass 20.0 kg is at rest at the top of an inclined plane whose length is 8.00 m and which makes an angle of 30.0 with the horizontal. The coefficient of kinetic friction between the object and the inclined plane is The object is released and slides down the plane. What is the kinetic energy of this object at the bottom of the inclined plane? Use g = 10.0 m/s2. A) 246 J B) 200 J C) 600 J D) 300 J E) 173 J 26) An object is under the influence of a force as represented by the force vs. position graph as shown in Figure 7-6. What is the work done as it moves from 0 to 10 m? A) 100 J B) 80 J C) 50 J D) 25 J E) 125 J 3

4 FIGURE 8-11 FIGURE 8-7 A 2.0 kg mass is moving along the x-axis. The potential energy curve as a function of position is shown in Figure The system is conservative. There is no friction. 27) Refer to Figure If the speed of the object at the origin is 4.0 m/s, what will be its speed at 4.0 m along the +x-axis? A) 4.6 m/s B) 10 m/s C) 4.0 m/s D) 4.4 m/s E) 4.1 m/s FIGURE 8-6 Two masses M1 = 2.0 kg and M2 = 4.0 kg are attached by a string as shown in Figure 8-7. M1 falls vertically down and M2 moves on a frictionless surface. Initially the system is at rest. Use g = 10 m/s2. 29) Refer to Figure 8-7. What is the potential energy of the mass M1 just before it touches the ground? A) 2.5 J B) 4 J C) 2.3 J D) 5.2 J E) 0 J FIGURE 8-8 A roller coaster of mass 80.0 kg is moving with a speed of 20.0 m/s at position A as shown in Figure 8-6. The vertical height at position A above ground level is 200 m. Neglect friction and use g = 10.0 m/s2. 28) What is the total energy of the roller coaster at point B? A) J B) J C) J D) J E) There is not enough information to solve this problem. 30) An object of mass 2.00 kg starts at rest from the top of a rough inclined plane of height 20.0 m as shown in Figure 8-8. If the work done by the force of friction is -150 J, what is the speed of the object as it reaches the bottom of the inclined plane? Use g = 10.0 m/s2. A) 150 m/s B) 10.0 m/s C) 20.0 m/s D) 15.8 m/s E) 200 m/s 4

5 FIGURE 8-9 An object with a mass of 10.0 kg is at rest at the top of a frictionless inclined plane of height 8.00 m and an angle of inclination 30.0 with the horizontal. The object is released from this position and it stops at a distance d from the bottom of the inclined plane along a horizontal surface, as shown in Figure 8-9. The coefficient of kinetic friction for the horizontal surface is and g = 10.0 m/ s2. 31) Refer to Figure 8-9. At what horizontal distance from the bottom of the inclined plane will this object stop? A) 15.0 m B) 20.0 m C) 25.0 m D) 10.0 m E) 5.00 m SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 32) Lisa runs up 4 flights of stairs in 22. seconds. She weighs 510. Newtons. If each flight rises 310. cm: (a) What is her change in potential? (b) What average power (watts) was required during the 22. s? (c) What minimum horsepower motor would be required to do this? 5

6 Answer Key Testname: AP 7+8 SAMPLES 1) FALSE 2) TRUE 3) FALSE 4) FALSE 5) FALSE 6) C 7) C 8) E 9) E 10) A 11) B 12) C 13) C 14) D 15) E 16) D 17) D 18) A 19) B 20) D 21) C 22) B 23) A 24) A Diff: 3 25) E 26) A 27) D 28) A 29) E 30) D 31) B Diff: 3 32) (a) 6.32 kj (b) 287. watts (c) hp Diff: 3 6

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled. Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

More information

Physics 201 Fall 2009 Exam 2 October 27, 2009

Physics 201 Fall 2009 Exam 2 October 27, 2009 Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

10.1 Quantitative. Answer: A Var: 50+

10.1 Quantitative. Answer: A Var: 50+ Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Physics 201 Homework 5

Physics 201 Homework 5 Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

More information

Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.

Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

PHYSICS MIDTERM REVIEW

PHYSICS MIDTERM REVIEW 1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

More information

Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power

Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Explaining Motion:Forces

Explaining Motion:Forces Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

P211 Midterm 2 Spring 2004 Form D

P211 Midterm 2 Spring 2004 Form D 1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

Physics Exam 1 Review - Chapter 1,2

Physics Exam 1 Review - Chapter 1,2 Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

More information

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

More information

AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

A Review of Vector Addition

A Review of Vector Addition Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Chapter 8: Conservation of Energy

Chapter 8: Conservation of Energy Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I

More information

B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.

B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B. CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass

More information

PHYS101 The Laws of Motion Spring 2014

PHYS101 The Laws of Motion Spring 2014 The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2

More information

Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion.

Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion. Work-Energy Part 2 Springs Spring can be used to apply forces Springs can store energy These can be done by either compression, stretching, or torsion. Springs Ideal, or linear springs follow a rule called:

More information

1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?

1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true? Physics 2A, Sec C00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000

AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000 M31 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000 APPLIED MATHEMATICS - ORDINARY LEVEL FRIDAY, 23 JUNE - AFTERNOON, 2.00 to 4.30 Six questions to be answered. All questions

More information

Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review. Multiple-Choice Questions Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

More information

PHYS 100 Introductory Physics Sample Exam 2

PHYS 100 Introductory Physics Sample Exam 2 PHYS 00 Introductory Physics Sample Exam Formulas: Acceleration due to Gravity = 0 m/s Weight = Mass x Acceleration due to Gravity Work = Force x Distance Gravitational Potential Energy = Weight x Height

More information

Physics Honors Page 1

Physics Honors Page 1 1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12-ounce

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

AP Physics Energy and Springs

AP Physics Energy and Springs AP Physics Energy and Springs Another major potential energy area that AP Physics is enamored of is the spring (the wire coil deals, not the ones that produce water for thirsty humanoids). Now you ve seen

More information

How to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation

How to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation Chapter 6: Work and Kinetic Energy What is work done by a force What is kinetic energy work-energy theorem How to calculate work done by a varying force along a curved path The meaning and calculation

More information

Units DEMO spring scales masses

Units DEMO spring scales masses Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A lawn roller in the form of a uniform solid cylinder is being pulled horizontally by a horizontal

More information

Physics-1 Recitation-3

Physics-1 Recitation-3 Physics-1 Recitation-3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

56 Chapter 5: FORCE AND MOTION I

56 Chapter 5: FORCE AND MOTION I Chapter 5: FORCE AND MOTION I 1 An example of an inertial reference frame is: A any reference frame that is not accelerating B a frame attached to a particle on which there are no forces C any reference

More information

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion) Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

More information

7. Kinetic Energy and Work

7. Kinetic Energy and Work Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

More information

Linear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A

Linear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A 1. Two points, A and B, are on a disk that rotates about an axis. Point A is closer to the axis than point B. Which of the following is not true? A) Point B has the greater speed. B) Point A has the lesser

More information

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed? Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

More information

Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1

Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1 Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Version 001 Quest 3 Forces tubman (20131) 1

Version 001 Quest 3 Forces tubman (20131) 1 Version 001 Quest 3 Forces tubman (20131) 1 This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. l B Conceptual

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

People s Physics book 3e Ch 25-1

People s Physics book 3e Ch 25-1 The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

More information

Physics term 1 reviewsheet

Physics term 1 reviewsheet Name: ate: 1. The length of line shown is closest to one. millimeter. centimeter. meter. kilometer 5. The diagram shown represents a rectangle composed of squares with sides one meter long. What is the

More information

Higher Physics Our Dynamic Universe Notes

Higher Physics Our Dynamic Universe Notes Higher Physics Our Dynamic Universe Notes Teachers Booklet Previous knowledge This section builds on the knowledge from the following key areas from Dynamics and Space Booklet 1 - Dynamics Velocity and

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

Work, Energy and Power

Work, Energy and Power Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

More information

Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

More information

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

Center of Mass/Momentum

Center of Mass/Momentum Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

More information

AP Physics 1 Midterm Exam Review

AP Physics 1 Midterm Exam Review AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement

More information

Rotational Mechanics - 1

Rotational Mechanics - 1 Rotational Mechanics - 1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360

More information

Announcements. Dry Friction

Announcements. Dry Friction Announcements Dry Friction Today s Objectives Understand the characteristics of dry friction Draw a FBD including friction Solve problems involving friction Class Activities Applications Characteristics

More information

Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s Laws: Explaining Motion Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

More information

CHAPTER 2 TEST REVIEW -- ANSWER KEY

CHAPTER 2 TEST REVIEW -- ANSWER KEY AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

More information

Mechanics 1. Revision Notes

Mechanics 1. Revision Notes Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

SAMPLE PAPER 1 XI PHYSICS

SAMPLE PAPER 1 XI PHYSICS SAMPLE PAPER 1 o A n XI PHYSICS Time: Three Hours Maximum Marks: 70 General Instructions (a) All questions are compulsory. (b) There are 30 questions in total. Questions 1 to 8 carry one mark each, questions

More information