Lesson 14 The Gram-Schmidt Process and QR Factorizations

Size: px
Start display at page:

Download "Lesson 14 The Gram-Schmidt Process and QR Factorizations"

Transcription

1 Lesson 14 The Gram-Schmidt Process and QR Factorizations Math 21b March 12, 2007 Announcements Get your midterm from me if you haven t yet. Homework for March 14: 5.2: 6,14,22,34,40,44* Problem Session Wednesdays, 7-8 PM in SC 101b Office hours: Monday 2-4, Tuesday 3-5 in SC 323 (resuming today)

2 The problem Given a basis B for a subspace V of R n, replace it with an orthonormal basis A having the same span.

3 The problem Given a basis B for a subspace V of R n, replace it with an orthonormal basis A having the same span. Why? Because orthonormal bases are just plain better.

4 Why orthonormal bases are just plain better No need to check for linear independence (automatic from orthogonality) Coordinates are easy just dot: v u 1 v u 2 [ v] A =. v u m Orthogonal projections are easy just dot: proj V ( x) = x = ( x u 1 ) u 1 + ( x u 2 ) u ( x u m ) u m

5 The geometric idea In fact, we will do a little better: Given a basis v 1, v 2,..., v m for a subspace V of R n, replace it with an orthonormal basis u 1, u 2,..., u m such that span( v 1, v 2,..., v k ) = span( u 1, u 2,..., u k ) for each k between 1 and m.

6 The geometric idea In fact, we will do a little better: Given a basis v 1, v 2,..., v m for a subspace V of R n, replace it with an orthonormal basis u 1, u 2,..., u m such that span( v 1, v 2,..., v k ) = span( u 1, u 2,..., u k ) for each k between 1 and m. The process works like this: Scale v 1 to make a unit vector u 1. Choose the rest of the u k to be the (normalized) perpendicular part of the orthogonal decomposition of v k relative to span( v 1, v 2,..., v k 1 ).

7 The geometric idea, in pictures v 2 v 1

8 The geometric idea, in pictures v 2 u 1 v 1

9 The geometric idea, in pictures v 2 u 1 v 1

10 The geometric idea, in pictures v 2 v 2 v 1 v 2 u 1

11 The geometric idea, in pictures v 2 v 2 u 2 v 1 v 2 u 1

12 The geometric idea, in pictures v 2 u 2 v 1 u 1

13 The geometric idea, in 3D v 3 v 2 v 1

14 The geometric idea, in 3D v 3 v 1 u 1 v 2

15 The geometric idea, in 3D v 3 v 1 u 1 v 2

16 The geometric idea, in 3D v 2 v 3 v 1 u 1 v 2 v 2

17 The geometric idea, in 3D v 2 v 3 u 2 v 1 u 1 v 2 v 2

18 The geometric idea, in 3D v 3 u 2 v 2 v 1 u 1

19 The geometric idea, in 3D v 3 v 3 u 2 v 2 v 1 u 1 v 3

20 The geometric idea, in 3D v 3 v 3 u 3 u 2 v 2 v 1 u 1 v 3

21 The geometric idea, in 3D v 3 u3 u 2 v 2 v 1 u 1

22 The algebraic idea Scale v 1 to make a unit vector u 1.

23 The algebraic idea Scale v 1 to make a unit vector u 1. Take v 2 to be the perpendicular part in the orthogonal decomposition of v 2 relative to the subspace spanned by v 1 : v 2 = v 2 proj v1 v 2 = v 2 ( u 1 v 2 ) u 1

24 The algebraic idea Scale v 1 to make a unit vector u 1. Take v 2 to be the perpendicular part in the orthogonal decomposition of v 2 relative to the subspace spanned by v 1 : v 2 = v 2 proj v1 v 2 = v 2 ( u 1 v 2 ) u 1 Scale v 2 to make a unit vector u 2.

25 The algebraic idea Scale v 1 to make a unit vector u 1. Take v 2 to be the perpendicular part in the orthogonal decomposition of v 2 relative to the subspace spanned by v 1 : v 2 = v 2 proj v1 v 2 = v 2 ( u 1 v 2 ) u 1 Scale v 2 to make a unit vector u 2. Take v 3 to be the perpendicular part in the orthogonal decomposition of v 3 relative to the subspace spanned by v 1 and v 2 : v 3 = v 3 proj v1, v 2 v 3 = v 3 ( u 1 v 3 ) u 1 ( u 2 v 3 ) u 2

26 The algebraic idea Scale v 1 to make a unit vector u 1. Take v 2 to be the perpendicular part in the orthogonal decomposition of v 2 relative to the subspace spanned by v 1 : v 2 = v 2 proj v1 v 2 = v 2 ( u 1 v 2 ) u 1 Scale v 2 to make a unit vector u 2. Take v 3 to be the perpendicular part in the orthogonal decomposition of v 3 relative to the subspace spanned by v 1 and v 2 : v 3 = v 3 proj v1, v 2 v 3 = v 3 ( u 1 v 3 ) u 1 ( u 2 v 3 ) u 2 Scale v 3 to make a unit vector u

27 The algebraic idea Scale v 1 to make a unit vector u 1. Take v 2 to be the perpendicular part in the orthogonal decomposition of v 2 relative to the subspace spanned by v 1 : v 2 = v 2 proj v1 v 2 = v 2 ( u 1 v 2 ) u 1 Scale v 2 to make a unit vector u 2. Take v 3 to be the perpendicular part in the orthogonal decomposition of v 3 relative to the subspace spanned by v 1 and v 2 : v 3 = v 3 proj v1, v 2 v 3 = v 3 ( u 1 v 3 ) u 1 ( u 2 v 3 ) u 2 Scale v 3 to make a unit vector u

28 The algebraic idea Scale v 1 to make a unit vector u 1. Take v 2 to be the perpendicular part in the orthogonal decomposition of v 2 relative to the subspace spanned by v 1 : v 2 = v 2 proj v1 v 2 = v 2 ( u 1 v 2 ) u 1 Scale v 2 to make a unit vector u 2. Take v 3 to be the perpendicular part in the orthogonal decomposition of v 3 relative to the subspace spanned by v 1 and v 2 : v 3 = v 3 proj v1, v 2 v 3 = v 3 ( u 1 v 3 ) u 1 ( u 2 v 3 ) u 2 Scale v 3 to make a unit vector u This is known as the Gram-Schmidt process for orthonormalization.

29 Worksheet Do Problems 1 3

30 QR Factorizations

31 When are the spans of two sets the same? When is span( v 1, v 2,..., v m ) = span( u 1, u 2,..., u m )?

32 When are the spans of two sets the same? When is span( v 1, v 2,..., v m ) = span( u 1, u 2,..., u m )? If each of the v i s can be written as a linear combination of the u i s and vice versa. v 1 = c 11 u 1 + c 21 u c m1 u m v 2 = c 12 u 1 + c 22 u c m2 u m. v m = c 1m u 1 + c 2m u c mm u m

33 Writing it all in terms of matrices, we have [ v1 c 11 c 12 c 1m ] [ ] c 21 c 22 c 2m v 2... v m = u1 u 2... u m c m1 } c m2 {{ c mm } S

34 Writing it all in terms of matrices, we have [ v1 c 11 c 12 c 1m ] [ ] c 21 c 22 c 2m v 2... v m = u1 u 2... u m c m1 } c m2 {{ c mm } S The matrix S is the change of basis matrix from ( v 1,..., v m ) to ( u 1,..., u m )

35 From Gram-Schmidt to QR Suppose an n m matrix M has rank m, so its columns v 1,..., v m are linearly independent. Let u 1,..., u m be the orthonormal basis of span( v 1,..., v m ) = image M gotten by the Gram-Schmidt process, and let Q = [ u 1... u m ]. Then M = QR for some invertible matrix R.

36 What is R? u 1 = v 1 v 1 = v 1 = v 1 u 1

37 What is R? u 1 = v 1 v 1 = v 1 = v 1 u 1 v 2 = v 2 ( v 2 u 1 ) u 1 and u 2 = v 2 v 2, so v 2 = ( u 1 v 2 ) u 1 + v 2 u 2

38 What is R? u 1 = v 1 v 1 = v 1 = v 1 u 1 v 2 = v 2 ( v 2 u 1 ) u 1 and u 2 = v 2 v 2, so v 2 = ( u 1 v 2 ) u 1 + v 2 u 2 And so on: v k = ( u 1 v k ) u 1 + ( u 2 v k ) u ( u k 1 v k ) u k 1 + v k u k

39 So v 1 u 1 v 2 u 1 v 3 u 1 v m 0 v 2 u 2 v 3 u 2 v m R = 0 0 v 3... u 3 v m v m That is, R is upper triangular. u i v j if i < j r ij = v i = ui v i if i = j 0 if i > j

40 Example Find the QR factorization of M = [ ]

41 Example Find the QR factorization of M = Solution We have v 1 = [ ] [ ] 1 and r 1 11 = v 1 = 2, so u 2 = [ 1/ ] 2. 1/ 2

42 Example Find the QR factorization of M = Solution We have v 1 = [ ] [ ] 1 and r 1 11 = v 1 = 2, so u 2 = v 2 = v 2 ( u 1 v 2 }{{} r 12 ) u 1 = [ ] [ 1/ ] 2 = 2 1/ 2 [ 1/ ] 2. Also, 1/ 2 [ 1/2 1 /2 ]

43 Example Find the QR factorization of M = Solution We have v 1 = Therefore [ ] [ ] 1 and r 1 11 = v 1 = 2, so u 2 = v 2 = v 2 ( u 1 v 2 }{{} r 12 ) u 1 = r 22 = v 2 [ ] [ 1/ ] 2 = 2 1/ 2 [ 1/ ] 2. Also, 1/ 2 [ 1/2 1 /2 = 1 u 2 = 1 [ 1/ ] v 2 2 = 2 r 22 1 /. 2 ]

44 Example Find the QR factorization of M = Solution We have v 1 = Therefore [ ] [ ] 1 and r 1 11 = v 1 = 2, so u 2 = v 2 = v 2 ( u 1 v 2 }{{} r 12 ) u 1 = r 22 = v 2 [ ] [ 1/ ] 2 = 2 1/ 2 [ 1/ ] 2. Also, 1/ 2 [ 1/2 1 /2 = 1 u 2 = 1 [ 1/ ] v 2 2 = 2 r 22 1 /. 2 Putting this all together, [ ] [ 1 1 1/ 2 1/ ] [ 2 2 1/ ] M = = 1 0 1/ 2 1 / / = QR 2 ]

45 Example (Worksheet, #4) Find the QR Factorization of

46 Example (Worksheet, #4) Find the QR Factorization of Solution 1/2 1/2 1 /2 1 / /2 1/2 Q = 1 /2 1 /2 1/2 1/2 1/2 1/2 1/2 R = / /2 1/2 1 /2 1/2 1 / /2

47 Who cares? A lot of important things are easier to calculate once you have the QR factorization, especially if M is square. It turns out Q 1 = Q T, so M 1 = R 1 Q T and R 1 is easier to calculate than M 1. It turns out det Q = ±1, so det M = ± det R, and det R is very easy to calculate (more later) The eigenvalues of M are easier to calculate when M is factored as QR.

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V. .4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n. ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

More information

x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3

x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3 Math 24 FINAL EXAM (2/9/9 - SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

MAT 242 Test 3 SOLUTIONS, FORM A

MAT 242 Test 3 SOLUTIONS, FORM A MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection

More information

Lecture 5: Singular Value Decomposition SVD (1)

Lecture 5: Singular Value Decomposition SVD (1) EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25-Sep-02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT-240 Action Taken (Please Check One) New Course Initiated

More information

Orthogonal Projections and Orthonormal Bases

Orthogonal Projections and Orthonormal Bases CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points.

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points. 806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 2-06 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are right-hand-sides b for which A x = b has no solution (a) What

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan 7.1 DYNAMICAL

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

More information

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

4 MT210 Notebook 4 3. 4.1 Eigenvalues and Eigenvectors... 3. 4.1.1 Definitions; Graphical Illustrations... 3

4 MT210 Notebook 4 3. 4.1 Eigenvalues and Eigenvectors... 3. 4.1.1 Definitions; Graphical Illustrations... 3 MT Notebook Fall / prepared by Professor Jenny Baglivo c Copyright 9 by Jenny A. Baglivo. All Rights Reserved. Contents MT Notebook. Eigenvalues and Eigenvectors................................... Definitions;

More information

Orthogonal Bases and the QR Algorithm

Orthogonal Bases and the QR Algorithm Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 Lecture 3: QR, least squares, linear regression Linear Algebra Methods for Data Mining, Spring 2007, University

More information

MAT 242 Test 2 SOLUTIONS, FORM T

MAT 242 Test 2 SOLUTIONS, FORM T MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these

More information

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0. Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Math 2270 - Lecture 33 : Positive Definite Matrices

Math 2270 - Lecture 33 : Positive Definite Matrices Math 2270 - Lecture 33 : Positive Definite Matrices Dylan Zwick Fall 2012 This lecture covers section 6.5 of the textbook. Today we re going to talk about a special type of symmetric matrix, called a positive

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Chapter 7. Lyapunov Exponents. 7.1 Maps

Chapter 7. Lyapunov Exponents. 7.1 Maps Chapter 7 Lyapunov Exponents Lyapunov exponents tell us the rate of divergence of nearby trajectories a key component of chaotic dynamics. For one dimensional maps the exponent is simply the average

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices 3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

Linear Algebra: Determinants, Inverses, Rank

Linear Algebra: Determinants, Inverses, Rank D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

More information

The Projection Matrix

The Projection Matrix The Projection Matrix David Arnold Fall 996 Abstract In this activity you will use Matlab to project a set of vectors onto a single vector. Prerequisites. Inner product (dot product) and orthogonal vectors.

More information

More than you wanted to know about quadratic forms

More than you wanted to know about quadratic forms CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences More than you wanted to know about quadratic forms KC Border Contents 1 Quadratic forms 1 1.1 Quadratic forms on the unit

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

More information

Math 215 HW #6 Solutions

Math 215 HW #6 Solutions Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

More information

Math 333 - Practice Exam 2 with Some Solutions

Math 333 - Practice Exam 2 with Some Solutions Math 333 - Practice Exam 2 with Some Solutions (Note that the exam will NOT be this long) Definitions (0 points) Let T : V W be a transformation Let A be a square matrix (a) Define T is linear (b) Define

More information

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Math Common Core Sampler Test

Math Common Core Sampler Test High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

More information

Computing Orthonormal Sets in 2D, 3D, and 4D

Computing Orthonormal Sets in 2D, 3D, and 4D Computing Orthonormal Sets in 2D, 3D, and 4D David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: March 22, 2010 Last Modified: August 11,

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

APPLICATIONS. are symmetric, but. are not.

APPLICATIONS. are symmetric, but. are not. CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Notes on Symmetric Matrices

Notes on Symmetric Matrices CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

More information

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION 4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Lecture notes on linear algebra

Lecture notes on linear algebra Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

The Determinant: a Means to Calculate Volume

The Determinant: a Means to Calculate Volume The Determinant: a Means to Calculate Volume Bo Peng August 20, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Lecture 5 Least-squares

Lecture 5 Least-squares EE263 Autumn 2007-08 Stephen Boyd Lecture 5 Least-squares least-squares (approximate) solution of overdetermined equations projection and orthogonality principle least-squares estimation BLUE property

More information