Minimal Residual Disease in Acute Myeloid Leukemia

Size: px
Start display at page:

Download "Minimal Residual Disease in Acute Myeloid Leukemia"

Transcription

1 Molcular Bioloy and Cytometry Course, 16 May 2013, Moll Minimal Residual Disease in Acute Myeloid Leukemia Vincent H.J. van der Velden, NL

2 Survival of AML patients Overall survival 100% 80% 60% 40% 0-14 year year year year year >75 year 20% 0% Years from diagnosis à Clear need for early recognition of good and poor risk patients Dutch Cancer registration:

3 Treatment effectiveness in AML Characteristics of tumor cells e.g. - genetic abnormalities - in vitro drug sensitivity - gene expression profile - immunophenotype/morphology In vivo drug distribution e.g. - gastrointestinal absorption - distribution in body (e.g. CNS) - drug metabolism (e.g. polymorphisms in enzymes) - liver excretion - kidney excretion Treatment compliance e.g. - duration of Rx - side effects (e.g. allergy, infections) r e l a t i v e f r e q u e n c y o f l e u k e m i c c e l l s Evaluation of overall treatment effectiveness by detection of MRD cure follow-up in years

4 Detection of MRD in AML Clinical significance Methods to detect MRD: PCR analysis of genetic abnormalities Flowcytometric analysis of aberrant immunophenotypes

5 Clinical significance of MRD in AML Does MRD has clinical significance? If so, What time-points are informative? What cut-off levels are informative? Is there any difference between adult and childhood AML?

6 MRD: prognostic significance - adults Relapse-free survival Relapse-free survival Buccisano et al. Leukemia 2006 After induction 1 Cut-off: 0.035% MRD negative: 35% MRD positive: 65% After consolidation Cut-off: 0.035% MRD negative: 39% MRD positive: 61%

7 MRD: prognostic significance - adults Relapse-free survival Relapse-free survival Feller et al. Leukemia 2004 After induction 2 Cut-off: 0.14% (median) MRD negative: 50% MRD positive: 50% After consolidation Cut-off: 0.11% (median) MRD negative: 50% MRD positive: 50%

8 MRD: prognostic significance - childhood Overall survival Event-free survival (3-y) Coustan-smith et al. BJH 2003 Langebrake et al. JCO 2006 After induction 1 After induction 1 Cut-off: 0.1% Cut-off: 0.1% (+0.3%) MRD negative: 66% MRD positive: 34% MRD negative: 60% MRD positive: 40%

9 MRD: prognostic significance - childhood Relapse-free survival Inaba et al. JCO 2012 Relapse-free survival Van der Velden et al. Leukemia 2010 MRD 0.1% After induction 1 Cut-off: 0.1% MRD negative: 63% MRD positive: 37% After induction 1 Cut-off: 0.1% and 0.5% MRD negative: 34% MRD low positive: 40% MRD high positive: 26%

10 Clinical significance of MRD in AML MRD is an strong and independent prognostic factor, both in childhood and adult AML Relevant cut-off levels vary between 0.01% and 0.5% Relevant cut-off levels are protocol-dependent

11 Detection of MRD in AML Clinical significance Methods to detect MRD: PCR analysis of genetic abnormalities Flowcytometric analysis of aberrant immunophenotypes

12 Molecular MRD analysis in AML Only applicable in limited number of patients Prognostic factor in adult AML Clinical significance still questionable in childhood AML (particularly for AML1- ETO and CBFB-MYH11) Inaba et al, JCO 2012

13 Detection of MRD in AML Clinical significance Methods to detect MRD: PCR analysis of genetic abnormalities Flowcytometric analysis of aberrant immunophenotypes

14 Detection of aberrant immunophenotypes 1 Normal bone marrow AML at diagnosis (AML12-GLA-017) asynchronous antigen expression

15 Detection of aberrant immunophenotypes 2 Normal bone marrow AML at diagnosis (AML12-DUB-005) cross-lineage antigen expression

16 Detection of aberrant immunophenotypes 3 Detection of leukemia-associated immunophenotypes Type of aberrant immunophenotype childhood AML 1 adult AML 2 Cross-lineage antigen expression 80% 35% (e.g. CD33+CD2+) Antigen over-expression 25% 10% (e.g. CD34++, CD10++) Asynchronous antigen expression 80% 60% (e.g. CD34+HLA-DR-) Ectopic antigen expression <10% <10% (e.g. TdT+CD2+ in blood) one Leukemia-associated immunophenotype >90% >90% 1 Van der Velden et al, Leukemia 2010; 2 Dutch-Belgian working group, submitted

17 MRD detection by flow cytometry Diagnosis (AML12-DUB-005) Follow-up 0.03% Sensitivity: % ( )

18 MRD detection by flow cytometry: pitfalls 1 Heterogeneity of AML blast cells Blast cell subsets observed in ~75% of AML Preferably all subpopulations should be monitored (focus on immature cells) AML at diagnosis (AML12-SHE-014)

19 MRD detection by flow cytometry: pitfalls 2 Multiple myeloid lineages and differentiation stages Experience and knowledge required for recognition of LAIP (TdT) (MPO) myeloid progenitor cell HLA-DR CD34 CD117 ( CD13 ) ( CD33 ) ( CD7 ) MPO myelomonocytic progenitor cell HLA-DR CD34 CD117 CD13 CD33 ( CD15 ) MPO monoblast HLA-DR CD34 CD13 CD33 CD36 MPO MPO MPO myeloblast (HLA-DR) CD34 CD117 CD13 CD33 (CD15) MPO promonocyte HLA-DR CD13 CD33 CD11b (CD14) CD36 promyelocyte CD117 CD13 CD33 CD15 myelocyte CD13 CD33 CD15 CD11b (CD16) MPO monocyte HLA-DR CD13 CD33 CD11b CD14 CD36 MPO granulocyte CD13 CD33 CD15 CD11b CD16 CyCD68 macrophage HLA-DR ( CD13 ) ( CD33 ) CD11c ( CD14 ) ( CD36 ) ( CD1 ) CD68 RFD9 Monocytic lineage Granulocytic lineage Erythroid lineage immature megakaryoblast HLA-DR CD34 CD33 ( CD36 ) ( CD41/CD61 ) ( CD42 ) proerythroblast CD36 CD71 (CD235a) megakaryoblast CD36 CD41/CD61 CD42 ( CD9 ) erythroblast CD36 CD71 CD235a megakaryocyte CD36 CD41/CD61 CD42 CD9 erythrocytes CD235a platelets CD36 CD41/CD61 CD42 CD9 Megakaryocytic lineage Dendritic cells Eosinophils Basophils Mast cells

20 Identification of LAIPs: experience is required Electronic data file of diagnostic samples were distributed over 5 labs Identification of LAIP in every center Institute Percentage of missed LAIPs Phase 1 Phase 2 Total period 1 11 (6/55) 3 (3/88) 6 (9/143) 2 39 (18/46) 27 (24/88) 31 (42/134) 3 51 (28/55) 36 (32/88) 42 (60/143) 4 63 (34/54) 40 (34/84) 49 (68/138) 5 61 (20/33) 28 (18/65) 39 (38/98) Missed: 40-66% 25-40% 30-50% Dutch/Belgian MRD working party: Department of Hematology, VUmc, Amsterdam (coordinator: GJ Schuurhuis); Department of Hematology, University Hospital KU, Leuven; Central Hematological Laboratory, University Medical Center, Nijmegen; Department of Clinical and Tumor Immunology, Erasmus MC, Rotterdam; Department of Immunology Erasmus MC, Rotterdam

21 Non-evaluable patients due to missing of LAIPs Patients (%) in whom none of the consensus LAIPs was identified Samples with no LAIPs (%) Phase 1 Phase 2 Institute 1 Institute 2 Institute 3 Institute 4 Institute 5 33% 7% Dutch/Belgian MRD working party: Department of Hematology, VUmc, Amsterdam (coordinator: GJ Schuurhuis); Department of Hematology, University Hospital KU, Leuven; Central Hematological Laboratory, University Medical Center, Nijmegen; Department of Clinical and Tumor Immunology, Erasmus MC, Rotterdam; Department of Immunology Erasmus MC, Rotterdam

22 MRD detection by flow cytometry: pitfalls 3 Sensitivity: 1. How to determine sensitivity Testing LAIP on bone marrow FU samples from other AML patients Testing LAIP on normal bone marrow à not easy! Samples should be matched for age and for time-point in protocol Gated on CD34+CD13- cells Coustan-Smith et al, BJH 2003

23 Background of LAIP in normal bone marrow Percentage of leukocytes Dutch/Belgian MRD working party: Department of Hematology, VUmc, Amsterdam (coordinator: GJ Schuurhuis); Department of Hematology, University Hospital KU, Leuven; Central Hematological Laboratory, University Medical Center, Nijmegen; Department of Clinical and Tumor Immunology, Erasmus MC, Rotterdam; Department of Immunology Erasmus MC, Rotterdam

24 MRD detection by flow cytometry: pitfalls 3 Sensitivity: 1. How to determine sensitivity Testing LAIP on bone marrow FU samples from other AML patients Testing LAIP on normal bone marrow à not easy! Samples should be matched for age and for time-point in protocol à not easy! 2. Sensitivity/Specificity Adult AML studies: 0.01% in ~70% of patients Childhood AML studies: 0.01% in ~50% of patients à Due to differences in immunophenotype (related to difference in genotype)? à Due to differences in bone marrow regeneration?

25 Bone marrow regeneration after course 1 Adults: Myeloblast : 0.8% Lymphoblasts: 0.4% Erythroblasts: 0.4% Children: Myeloblast : 1.8% Lymphoblasts: 3.9% Erythroblasts: 1.0%

26 MRD detection by flow cytometry: pitfalls 4 10 Center 1 Variability in MRD assessment MRD level (%) 1 0,1 0,01 negative Samples (ordered according to increasing MRD %) Dutch/Belgian MRD working party: Department of Hematology, VUmc, Amsterdam (coordinator: GJ Schuurhuis); Department of Hematology, University Hospital KU, Leuven; Central Hematological Laboratory, University Medical Center, Nijmegen; Department of Clinical and Tumor Immunology, Erasmus MC, Rotterdam; Department of Immunology Erasmus MC, Rotterdam

27 Variability in MRD assessment 10 Center 1; Center 2; Center 3; Center 4; 1 MRD level (%) 0,1 0,01 negative 22% Samples (ordered according to increasing MRD %) Dutch/Belgian MRD working party: Department of Hematology, VUmc, Amsterdam (coordinator: GJ Schuurhuis); Department of Hematology, University Hospital KU, Leuven; Central Hematological Laboratory, University Medical Center, Nijmegen; Department of Clinical and Tumor Immunology, Erasmus MC, Rotterdam; Department of Immunology Erasmus MC, Rotterdam

28 MRD detection by flow cytometry: pitfalls 5 Immunophenotypic changes between diagnosis and relapse Diagnosis (AML12-GLA-024) Relapse Immunophenotypic shifts occur in >90% of patients Preferably 2 patient-specific labelings should be used per patient In vast majority of patients at least one MRD labelling remains informative

29 MRD detection by flow cytometry: pitfalls 6 Reporting of data: Percentage per MNC Rubnitz et al. Lancet Oncology 2010

30 MRD detection by flow cytometry: pitfalls 6 Reporting of data: Percentage per MNC Percentage per leukocytes Including erythroid precursors? Van der Velden et al. Leukemia 2010 Feller et al. Leukemia 2004

31 MRD detection by flow cytometry: pitfalls 6 Reporting of data: Percentage per MNC Percentage per leukocytes Including erythroid precursors? Correction for %LAIP? Feller et al. Leukemia 2004

32 Flow cytometric MRD detection Applicable in vast majority of patients Fast But: Sensitivity not yet optimal Not standardized Interpretation/data analysis subjective and experience-based à Improvements are needed

33 Improving MRD detection by flow cytometry Focus on stem cells (CD34+CD38-) van Rhenen et al. Clin Cancer Res 2005 % CD38-/CD34+ stem cells at diagnosis à High frequency of stem cells associated with poor clinical outcome

34 CLL1: expressed on AML stem cells van Rhenen et al. Blood 2007 à CLL1 can be used as an AML stem cell specific marker

35 Clinical significance of stem cell MRD Thesis M. Terwijn, VUmc, Amsterdam Cut off: 3x10-6 (!!)

36 Improving MRD detection by flow cytometry Additional markers ( 8 color flow) à more specific (?) New software tools? Abnormal? à Erythroid precursors

37 Conclusions MRD detection has clinical significance in AML Optimal cut-off levels and time-points are protocol dependent At present: very complex, should only be done in limited number of reference laboratories Sensitive, standardized, widely applicable, and reproducible MRD approach is required This may be achieved by improvements in flow cytometry: focus on stem cells new software à more objective and automated analysis possible Standardization

38 Acknowledgements Department of Immunology Leukemia and Lymphoma Diagnostics Contact:

39 MRD: prognostic significance overview Study n Cut-off Time point Survival (MRD+ vs MRD-) Adults Al Mawali et al % post-ind RFS 29% vs 56% % post-cons RFS 11% vs 77% Maurillo et al % post-cons 5-y RFS 16% vs 60% Buccisano et al % post-cons RFS 16% vs 75% Kern et al variable post-ind RFS 0% vs 50% post-cons RFS 26% vs 83% San Miguel et al % post-ind RFS 0% vs 14% vs 50% vs 84% San Miguel et al % post-ind RFS 33% vs 80% % Post-Cons RFS 31% vs 68% Venditti et al % post-cons RFS 23% vs 83% Children Langebrake et al variable post-ind EFS 50% vs 70% Sievers et al % post-cons 3-y OS 41% vs 69% Coustan-Smith et al % post-ind 2-y OS 30% vs 72%

40 Improving MRD detection by flow cytometry Additional markers ( 8 color flow)? New software tools?

Subtypes of AML follow branches of myeloid development, making the FAB classificaoon relaovely simple to understand.

Subtypes of AML follow branches of myeloid development, making the FAB classificaoon relaovely simple to understand. 1 2 3 4 The FAB assigns a cut off of 30% blasts to define AML and relies predominantly on morphology and cytochemical stains (MPO, Sudan Black, and NSE which will be discussed later). Subtypes of AML follow

More information

Diagnostics of the AML with immunophenotypical data

Diagnostics of the AML with immunophenotypical data Math. Model. Nat. Phenom. Vol. 2, No. 1, 28, pp. 4-123 Diagnostics of the AML with immunophenotypical data A. Plesa a, G. Ciuperca b V. Louvet b, L. Pujo-Menjouet b 1 S. Génieys b, C. Dumontet a X. Thomas

More information

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL VOLUME I RESPONSE ASSESSMENT LEUKEMIA CHAPTER 11A REVISED: OCTOBER 2015

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL VOLUME I RESPONSE ASSESSMENT LEUKEMIA CHAPTER 11A REVISED: OCTOBER 2015 LEUKEMIA Response in Acute Myeloid Leukemia (AML) Response criteria in Acute Myeloid Leukemia for SWOG protocols is based on the review article Diagnosis and management of acute myeloid leukemia in adults:

More information

Pathology No: SHS-CASE No. Date of Procedure: Client Name Address

Pathology No: SHS-CASE No. Date of Procedure: Client Name Address TEL #: (650) 725-5604 FAX #: (650) 725-7409 Med. Rec. No.: Date of Procedure: Sex: A ge: Date Received: Date of Birth: Account No.: Physician(s): Client Name Address SPECIMEN SUBMITTED: LEFT PIC BONE MARROW,

More information

PROGNOSIS IN ACUTE LYMPHOBLASTIC LEUKEMIA PROGNOSIS IN ACUTE MYELOID LEUKEMIA

PROGNOSIS IN ACUTE LYMPHOBLASTIC LEUKEMIA PROGNOSIS IN ACUTE MYELOID LEUKEMIA PROGNOSIS IN ACUTE LYMPHOBLASTIC LEUKEMIA UNFAVORABLE Advanced age High leukocyte count at diagnosis Presence of myeloid antigens Late achievement of CR Chromosomal abnormalities: t(9:22)(q34:q11) t(4;11)(q21;q23)

More information

Treating Minimal Residual Disease in Acute Leukemias: How low should you go?

Treating Minimal Residual Disease in Acute Leukemias: How low should you go? Treating Minimal Residual Disease in Acute Leukemias: How low should you go? Ramsie Lujan, Pharm.D. PGY1 Pharmacy Practice Resident Methodist Hospital, San Antonio, Texas Pharmacotherapy Education and

More information

Emerging New Prognostic Scoring Systems in Myelodysplastic Syndromes 2012

Emerging New Prognostic Scoring Systems in Myelodysplastic Syndromes 2012 Emerging New Prognostic Scoring Systems in Myelodysplastic Syndromes 2012 Arjan A. van de Loosdrecht, MD, PhD Department of Hematology VU University Medical Center VU-Institute of Cancer and Immunology

More information

Introduction. About 10,500 new cases of acute myelogenous leukemia are diagnosed each

Introduction. About 10,500 new cases of acute myelogenous leukemia are diagnosed each Introduction 1.1 Introduction: About 10,500 new cases of acute myelogenous leukemia are diagnosed each year in the United States (Hope et al., 2003). Acute myelogenous leukemia has several names, including

More information

Leukemias and Lymphomas: A primer

Leukemias and Lymphomas: A primer Leukemias and Lymphomas: A primer Normal blood contains circulating white blood cells, red blood cells and platelets 700 red cells (oxygen) 1 white cell Neutrophils (60%) bacterial infection Lymphocytes

More information

Acute leukemias and myeloproliferative neoplasms

Acute leukemias and myeloproliferative neoplasms Acute leukemias and myeloproliferative neoplasms GERGELY SZOMBATH SEMMELWEIS UNIVERSITY OF MEDICINE IIIRD. DEPARTMENT OF INTERNAL MEDICINE Basics of acute leukemia Neoplastic disease Cell of origin is

More information

CASE 2. Seven week old female infant presents with hepatosplenomegaly l and WBC 31.0k/mm 3, Hgb 9.2 g/dl, Plt 110k/mm 3 with 60% blasts

CASE 2. Seven week old female infant presents with hepatosplenomegaly l and WBC 31.0k/mm 3, Hgb 9.2 g/dl, Plt 110k/mm 3 with 60% blasts CASE 2 Seven week old female infant presents with hepatosplenomegaly l and WBC 31.0k/mm 3, Hgb 9.2 g/dl, Plt 110k/mm 3 with 60% blasts A bone marrow biopsy and aspirate were performed (photos provided).

More information

Project Lead: Stephen Forman, M.D. PI: Elizabeth Budde, M.D., Ph.D

Project Lead: Stephen Forman, M.D. PI: Elizabeth Budde, M.D., Ph.D Phase I study using T cells expressing a CD123-specific chimeric antigen receptor and truncated EGFR for patients with relapsed or refractory acute myeloid leukemia Project Lead: Stephen Forman, M.D. PI:

More information

EDUCATIONAL COMMENTARY - GRANULOCYTE FORMATION AND CHRONIC MYELOCYTIC LEUKEMIA

EDUCATIONAL COMMENTARY - GRANULOCYTE FORMATION AND CHRONIC MYELOCYTIC LEUKEMIA LEUKEMIA Educational commentary is provided through our affiliation with the American Society for Clinical Pathology (ASCP). To obtain FREE CME/CMLE credits click on Earn CE Credits under Continuing Education

More information

What Leukemia Is. Understanding blood

What Leukemia Is. Understanding blood Leukemia is a malignant disease of the blood-forming cells. It involves white blood cells that do not mature and that reproduce too rapidly. Eventually, they replace the normal bone marrow, leaving insufficient

More information

Why discuss CLL? Common: 40% of US leukaemia. approx 100 pa in SJH / MWHB 3 inpatients in SJH at any time

Why discuss CLL? Common: 40% of US leukaemia. approx 100 pa in SJH / MWHB 3 inpatients in SJH at any time Why discuss CLL? Common: 40% of US leukaemia approx 100 pa in SJH / MWHB 3 inpatients in SJH at any time Median age of dx is 65 (30s. Incurable, survival 2-202 20 years Require ongoing supportive care

More information

Acute myeloid leukaemia (AML) in children

Acute myeloid leukaemia (AML) in children 1 61.02 Acute myeloid leukaemia (AML) in children AML can affect children of any age, and girls and boys are equally affected. Leukaemia Acute myeloid leukaemia (AML) FAB classification of AML Causes of

More information

Response Definition, Evaluation and Monitoring. Michele Baccarani

Response Definition, Evaluation and Monitoring. Michele Baccarani Response Definition, Evaluation and Monitoring Michele Baccarani European LeukemiaNet EVOLVING CONCEPTS IN THE MANAGEMENT OF CHRONIC MYELOID LEUKEMIA VENICE 8 9 MAY 2006 Response definition, evaluation

More information

Acute Myeloid Leukemia

Acute Myeloid Leukemia Acute Myeloid Leukemia Introduction Leukemia is cancer of the white blood cells. The increased number of these cells leads to overcrowding of healthy blood cells. As a result, the healthy cells are not

More information

Childhood Leukemia. Normal bone marrow, blood, and lymphoid tissue

Childhood Leukemia. Normal bone marrow, blood, and lymphoid tissue Childhood Leukemia What is childhood leukemia? Cancer starts when cells start to grow out of control. Cells in nearly any part of the body can become cancer. To learn more about how cancers start and spread,

More information

Acute myeloid leukemia (AML)

Acute myeloid leukemia (AML) Acute myeloid leukemia (AML) Adult acute myeloid leukemia (AML) is a type of cancer in which the bone marrow makes abnormal myeloblasts (a type of white blood cell), red blood cells, or platelets. Adult

More information

ACUTE MYELOID LEUKEMIA (AML),

ACUTE MYELOID LEUKEMIA (AML), 1 ACUTE MYELOID LEUKEMIA (AML), ALSO KNOWN AS ACUTE MYELOGENOUS LEUKEMIA WHAT IS CANCER? The body is made up of hundreds of millions of living cells. Normal body cells grow, divide, and die in an orderly

More information

Uses of Flow Cytometry

Uses of Flow Cytometry Uses of Flow Cytometry 1. Multicolour analysis... 2 2. Cell Cycle and Proliferation... 3 a. Analysis of Cellular DNA Content... 4 b. Cell Proliferation Assays... 5 3. Immunology... 6 4. Apoptosis... 7

More information

UNIVERSITY OF PÉCS MEDICAL SCHOOL FLOW CYTOMETRY AND CELL SEPARATION BIOPHYSICS 2. 2015 4th March Dr. Beáta Bugyi Department of Biophysics Flow cytometry and cell separation FLOW = STREAM OF FLUID in a

More information

Relative Risk (Sokal & Hasford): Relationship with Treatment Results. Michele Baccarani

Relative Risk (Sokal & Hasford): Relationship with Treatment Results. Michele Baccarani Relative Risk (Sokal & Hasford): Relationship with Treatment Results Michele Baccarani European LeukemiaNet EVOLVING CONCEPTS IN THE MANAGEMENT OF CHRONIC MYELOID LEUKEMIA VENICE 8 9 MAY 2006 Disease risk

More information

LEUKEMIA LYMPHOMA MYELOMA Advances in Clinical Trials

LEUKEMIA LYMPHOMA MYELOMA Advances in Clinical Trials LEUKEMIA LYMPHOMA MYELOMA Advances in Clinical Trials OUR FOCUS ABOUT emerging treatments Presentation for: Judith E. Karp, MD Advancements for Acute Myelogenous Leukemia Supported by an unrestricted educational

More information

NEW YORK STATE CYTOHEMATOLOGY PROFICIENCY TESTING PROGRAM Glass Slide Critique ~ November 2010

NEW YORK STATE CYTOHEMATOLOGY PROFICIENCY TESTING PROGRAM Glass Slide Critique ~ November 2010 NEW YORK STATE CYTOHEMATOLOGY PROFICIENCY TESTING PROGRAM Glass Slide Critique ~ November 2010 Slide 081 Available data: 72 year-old female Diagnosis: MDS to AML WBC 51.0 x 10 9 /L RBC 3.39 x 10 12 /L

More information

LYMPHOMA. BACHIR ALOBEID, M.D. HEMATOPATHOLOGY DIVISION PATHOLOGY DEPARTMENT Columbia University/ College of Physicians & Surgeons

LYMPHOMA. BACHIR ALOBEID, M.D. HEMATOPATHOLOGY DIVISION PATHOLOGY DEPARTMENT Columbia University/ College of Physicians & Surgeons LYMPHOMA BACHIR ALOBEID, M.D. HEMATOPATHOLOGY DIVISION PATHOLOGY DEPARTMENT Columbia University/ College of Physicians & Surgeons Normal development of lymphocytes Lymphocyte proliferation and differentiation:

More information

Myelodysplasia Acute Myeloid Leukemia Chronic Myelogenous Leukemia Non Hodgkin Lymphoma Chronic Lymphocytic Leukemia Plasma Cell (Multiple) Myeloma

Myelodysplasia Acute Myeloid Leukemia Chronic Myelogenous Leukemia Non Hodgkin Lymphoma Chronic Lymphocytic Leukemia Plasma Cell (Multiple) Myeloma Myelodysplasia Acute Myeloid Leukemia Chronic Myelogenous Leukemia Non Hodgkin Lymphoma Chronic Lymphocytic Leukemia Plasma Cell (Multiple) Myeloma Hodgkin Lymphoma Overview Case Pathophysiology Diagnosis

More information

Estimated New Cases of Leukemia, Lymphoma, Myeloma 2014

Estimated New Cases of Leukemia, Lymphoma, Myeloma 2014 ABOUT BLOOD CANCERS Leukemia, Hodgkin lymphoma (HL), non-hodgkin lymphoma (NHL), myeloma, myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPNs) are types of cancer that can affect the

More information

Pro Cure in Multiple Myeloma. Nicolaus Kröger Dept. of Stem Cell Transplantation University Hospital Hamburg Hamburg, Germany

Pro Cure in Multiple Myeloma. Nicolaus Kröger Dept. of Stem Cell Transplantation University Hospital Hamburg Hamburg, Germany Pro Cure in Multiple Myeloma Nicolaus Kröger Dept. of Stem Cell Transplantation University Hospital Hamburg Hamburg, Germany Pro Cure in Multiple Myeloma Several hematological malignancies can be cured

More information

White Blood Cells (WBCs) or Leukocytes

White Blood Cells (WBCs) or Leukocytes Lec.5 Z.H.Al-Zubaydi Medical Physiology White Blood Cells (WBCs) or Leukocytes Although leukocytes are far less numerous than red blood cells, they are important to body defense against disease. On average,

More information

Outline of thesis and future perspectives.

Outline of thesis and future perspectives. Outline of thesis and future perspectives. This thesis is divided into two different sections. The B- section involves reviews and studies on B- cell non- Hodgkin lymphoma [NHL] and radioimmunotherapy

More information

CAP Accreditation Checklists 2015 Edition

CAP Accreditation Checklists 2015 Edition CAP Accreditation Checklists 2015 Edition The College of American Pathologists (CAP) accreditation checklists contain the CAP accreditation program requirements, developed on more than 50 years of insight

More information

Interesting Case Review. Renuka Agrawal, MD Dept. of Pathology City of Hope National Medical Center Duarte, CA

Interesting Case Review. Renuka Agrawal, MD Dept. of Pathology City of Hope National Medical Center Duarte, CA Interesting Case Review Renuka Agrawal, MD Dept. of Pathology City of Hope National Medical Center Duarte, CA History 63 y/o male with h/o CLL for 10 years Presents with worsening renal function and hypercalcemia

More information

Flow Cytometric Diagnosis of Low Grade B-cell Leukemia/Lymphoma

Flow Cytometric Diagnosis of Low Grade B-cell Leukemia/Lymphoma Flow Cytometric Diagnosis of Low Grade B-cell Leukemia/Lymphoma Maryalice Stetler-Stevenson, M.D., Ph.D. Flow Cytometry Unit, Laboratory of Pathology, DCS, NCI,NIH DEPARTMENT OF HEALTH & HUMAN SERVICES

More information

BioResearch. Hematopoietic and Immune Cell Products Essential Tools for Hematopoietic Research

BioResearch. Hematopoietic and Immune Cell Products Essential Tools for Hematopoietic Research BioResearch Hematopoietic and Immune Cell Products Essential Tools for Hematopoietic Research BioResearch Hematopoietic and Immune Cell Products Essential Tools for Hematopoietic Research Working with

More information

APPROACH TO THE DIAGNOSIS AND TREATMENT OF ACUTE MYELOID LEUKEMIA (AML) Hematology Rounds Thurs July 23, 2009 Carolyn Owen

APPROACH TO THE DIAGNOSIS AND TREATMENT OF ACUTE MYELOID LEUKEMIA (AML) Hematology Rounds Thurs July 23, 2009 Carolyn Owen APPROACH TO THE DIAGNOSIS AND TREATMENT OF ACUTE MYELOID LEUKEMIA (AML) Hematology Rounds Thurs July 23, 2009 Carolyn Owen Outline Diagnosis Prognosis Treatment AML Elderly AML APL Future directions AML

More information

Specific Standards of Accreditation for Residency Programs in Pediatric Hematology/Oncology

Specific Standards of Accreditation for Residency Programs in Pediatric Hematology/Oncology Specific Standards of Accreditation for Residency Programs in Pediatric Hematology/Oncology INTRODUCTION 2009 A university wishing to have an accredited program in Pediatric Hematology/Oncology must also

More information

Collect and label sample according to standard protocols. Gently invert tube 8-10 times immediately after draw. DO NOT SHAKE. Do not centrifuge.

Collect and label sample according to standard protocols. Gently invert tube 8-10 times immediately after draw. DO NOT SHAKE. Do not centrifuge. Complete Blood Count CPT Code: CBC with Differential: 85025 CBC without Differential: 85027 Order Code: CBC with Differential: C915 Includes: White blood cell, Red blood cell, Hematocrit, Hemoglobin, MCV,

More information

Leukemia Acute Myeloid (Myelogenous)

Leukemia Acute Myeloid (Myelogenous) Leukemia Acute Myeloid (Myelogenous) What is acute myeloid leukemia? Cancer starts when cells in a part of the body begins to grow out of control and can spread to other areas of the body. There are many

More information

Long Term Low Dose Maintenance Chemotherapy in the Treatment of Acute Myeloid Leukemia

Long Term Low Dose Maintenance Chemotherapy in the Treatment of Acute Myeloid Leukemia Long Term Low Dose Chemotherapy in the Treatment of Acute Myeloid Leukemia Murat TOMBULO LU*, Seçkin ÇA IRGAN* * Department of Hematology, Faculty of Medicine, Ege University, zmir, TURKEY ABSTRACT In

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Hematopoietic Stem-Cell Transplantation for CLL and SLL File Name: Origination: Last CAP Review: Next CAP Review: Last Review: hematopoietic_stem-cell_transplantation_for_cll_and_sll

More information

Exercise 9: Blood. Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826.

Exercise 9: Blood. Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826. Exercise 9: Blood Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826. Blood Typing The membranes of human red blood cells (RBCs) contain a variety of cell surface proteins called

More information

General Discussion Summary Recommendation Samenvatting Intisari

General Discussion Summary Recommendation Samenvatting Intisari 9 General Discussion Summary Recommendation Samenvatting Intisari General Discussion Summary Recommendation 169 9 General Discussion Summary Recommendation Samenvatting Intisari 170 Diagnostic Advances

More information

Introduction to Flow Cytometry

Introduction to Flow Cytometry Introduction to Flow Cytometry presented by: Flow Cytometry y Core Facility Biomedical Instrumentation Center Uniformed Services University Topics Covered in this Lecture What is flow cytometry? Flow cytometer

More information

CML. cure. A Patient s Guide. Molecular Biology Diagnosis Stem Cell Transplant Monitoring New Drugs Questions to Ask and More

CML. cure. A Patient s Guide. Molecular Biology Diagnosis Stem Cell Transplant Monitoring New Drugs Questions to Ask and More A Patient s Guide to CML Molecular Biology Diagnosis Stem Cell Transplant Monitoring New Drugs Questions to Ask and More cure C a n c e r U p d at e s, R e s e a r c h & E d u c at i o n Based on science,

More information

KEY CHAPTER 14: BLOOD OBJECTIVES. 1. Describe blood according to its tissue type and major functions.

KEY CHAPTER 14: BLOOD OBJECTIVES. 1. Describe blood according to its tissue type and major functions. KEY CHAPTER 14: BLOOD OBJECTIVES 1. Describe blood according to its tissue type and major functions. TISSUE TYPE? MAJOR FUNCTIONS connective Transport Maintenance of body temperature 2. Define the term

More information

I was just diagnosed, so my doctor and I are deciding on treatment. My doctor said there are several

I was just diagnosed, so my doctor and I are deciding on treatment. My doctor said there are several Track 3: Goals of therapy I was just diagnosed, so my doctor and I are deciding on treatment. My doctor said there are several factors she ll use to decide what s best for me. Let s talk about making treatment

More information

Evaluation of focal adhesions as new therapeutic targets in acute myeloid leukemia

Evaluation of focal adhesions as new therapeutic targets in acute myeloid leukemia Evaluation of focal adhesions as new therapeutic targets in acute myeloid leukemia Dr Jordi Sierra Gil IRHSP Institut de Recerca Hospital de la Santa Creu i Sant Pau Dr. Miguel Ángel Sanz Alonso Fundación

More information

My Sister s s Keeper. Science Background Talk

My Sister s s Keeper. Science Background Talk My Sister s s Keeper Science Background Talk Outline Acute promyelocytic leukemia (APL) APL Treatment Savior Siblings In vitro fertilization (IVF) Pre-implantation Genetic Diagnosis (PGD) Risks of donating

More information

Hematopathology VII Acute Lymphoblastic Leukemia, Chronic Lymphocytic Leukemia, And Hairy Cell Leukemia

Hematopathology VII Acute Lymphoblastic Leukemia, Chronic Lymphocytic Leukemia, And Hairy Cell Leukemia John L. Kennedy, M.D. UIC College of Medicine Associate Professor of Clinical Pathology M2 Pathology Course Lead Pathologist, VA Chicago Health Care System Lecture #43 Phone: (312) 569-6690 Thursday, November

More information

Risk Stratification in AML. Michelle Geddes Feb 27, 2014

Risk Stratification in AML. Michelle Geddes Feb 27, 2014 Risk Stratification in AML Michelle Geddes Feb 27, 2014 Objectives Outline the challenges in post-remission therapy for AML Review etiology of disease escape mechanisms from therapy Evaluate prognostic

More information

Acute Myeloid Leukemia- How can we fix it?

Acute Myeloid Leukemia- How can we fix it? Acute Myeloid Leukemia- ow can we fix it? Jeffrey W. Taub, M.D. Division of ematology/ncology Children s ospital of Michigan Wayne State University School of Medicine Detroit, Michigan Proliferation of

More information

Cord Blood for Cellular Therapy: A Snapshot of this Evolving Market Landscape

Cord Blood for Cellular Therapy: A Snapshot of this Evolving Market Landscape GENReports: Market & Tech Analysis Cord Blood for Cellular Therapy: A Snapshot of this Evolving Market Landscape > Enal Razvi, Ph.D. Biotechnology Analyst, Managing Director SELECTBIO US enal@selectbio.us

More information

Flow Cytometry A Guide for Data Analysis

Flow Cytometry A Guide for Data Analysis Flow Cytometry A Guide for Data Analysis Last revisions 12 Aug 2013 Ron Lee, M.D. Introduction This guide is intended to provide a basic overview of clinical flow cytometry data analysis. General Principles

More information

Minimal residual disease detection in Acute Myeloid Leukaemia on a Becton Dickinson flow cytometer

Minimal residual disease detection in Acute Myeloid Leukaemia on a Becton Dickinson flow cytometer Minimal residual disease detection in Acute Myeloid Leukaemia on a Becton Dickinson flow cytometer Purpose This procedure gives instruction on minimal residual disease (MRD) detection in patients with

More information

Sommaire projets sélectionnés mesure 29: Soutien à la recherche translationnelle

Sommaire projets sélectionnés mesure 29: Soutien à la recherche translationnelle Sommaire projets sélectionnés mesure 29: Soutien à la recherche translationnelle TITLE PROJET NOM HOPITAL Assessment of tumor angiogenesis using PET/CT with 18 F-Galacto- RGD. (PNC_29_001) Division of

More information

Molecular diagnostics is now used for a wide range of applications, including:

Molecular diagnostics is now used for a wide range of applications, including: Molecular Diagnostics: A Dynamic and Rapidly Broadening Market Molecular diagnostics is now used for a wide range of applications, including: Human clinical molecular diagnostic testing Veterinary molecular

More information

Before continuing, try to answer the following questions. The answers can be found at the end of the article.

Before continuing, try to answer the following questions. The answers can be found at the end of the article. BLOOD PHYSIOLOGY PART 1 ANAESTHESIA TUTORIAL OF THE WEEK 222 9 TH May 2011 Dr Karen Hayes Royal Devon and Exeter NHS Foundation Trust Correspondence: to kmhayes@hotmail.co.uk QUESTIONS Before continuing,

More information

Recognition of T cell epitopes (Abbas Chapter 6)

Recognition of T cell epitopes (Abbas Chapter 6) Recognition of T cell epitopes (Abbas Chapter 6) Functions of different APCs (Abbas Chapter 6)!!! Directon Routes of antigen entry (Abbas Chapter 6) Flow of Information Barrier APCs LNs Sequence of Events

More information

Pr Eliane Gluckman, MD, FRCP, Disclosure of Interest: Nothing to Disclose

Pr Eliane Gluckman, MD, FRCP, Disclosure of Interest: Nothing to Disclose Pr Eliane Gluckman, MD, FRCP, Hospital Saint Louis, University Paris- Diderot, France Should Haplo-identical transplantation be preferred to cord blood in patients without a matched donor? Disclosure of

More information

MEDICAL COVERAGE POLICY

MEDICAL COVERAGE POLICY Important note Even though this policy may indicate that a particular service or supply is considered covered, this conclusion is not necessarily based upon the terms of your particular benefit plan. Each

More information

DNA Methylation in MDS/MPD/AML: Implications for application

DNA Methylation in MDS/MPD/AML: Implications for application DNA Methylation in MDS/MPD/AML: Implications for application James G. Herman, M.D. Professor of Oncology Evelyn Grollman Glick Scholar The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Disclosures

More information

Malignant Lymphomas and Plasma Cell Myeloma

Malignant Lymphomas and Plasma Cell Myeloma Malignant Lymphomas and Plasma Cell Myeloma Dr. Bruce F. Burns Dept. of Pathology and Lab Medicine Overview definitions - lymphoma lymphoproliferative disorder plasma cell myeloma pathogenesis - translocations

More information

The immune system. Bone marrow. Thymus. Spleen. Bone marrow. NK cell. B-cell. T-cell. Basophil Neutrophil. Eosinophil. Myeloid progenitor

The immune system. Bone marrow. Thymus. Spleen. Bone marrow. NK cell. B-cell. T-cell. Basophil Neutrophil. Eosinophil. Myeloid progenitor The immune system Basophil Neutrophil Bone marrow Eosinophil Myeloid progenitor Dendritic cell Pluripotent Stem cell Lymphoid progenitor Platelets Bone marrow Thymus NK cell T-cell B-cell Spleen Cancer

More information

Deep profiling of multitube flow cytometry data Supplemental information

Deep profiling of multitube flow cytometry data Supplemental information Deep profiling of multitube flow cytometry data Supplemental information Kieran O Neill et al December 19, 2014 1 Table S1: Markers in simulated multitube data. The data was split into three tubes, each

More information

Stem Cell Transplantation

Stem Cell Transplantation Harmony Behavioral Health, Inc. Harmony Behavioral Health of Florida, Inc. Harmony Health Plan of Illinois, Inc. HealthEase of Florida, Inc. Ohana Health Plan, a plan offered by WellCare Health Insurance

More information

Leukemia Research Foundation 2004-2005 Scientific Research Grant Recipients

Leukemia Research Foundation 2004-2005 Scientific Research Grant Recipients Page 1 of 5 NEW INVESTIGATOR AWARDS Ioannis Aifantis, Ph.D. The University of Chicago, Chicago, IL $75,000.00 Cooperation of Notch and pre-tcr Signaling in the Induction of T Cell Leukemia The pre-t Cell

More information

Haematopoietic Chimerism Analysis after Allogeneic Stem Cell Transplantation

Haematopoietic Chimerism Analysis after Allogeneic Stem Cell Transplantation Haematopoietic Chimerism Analysis after Allogeneic Stem Cell Transplantation Dr Ros Ganderton, Ms Kate Parratt, Dr Debbie Richardson, Dr Kim Orchard and Dr Liz Hodges Departments of Molecular Pathology

More information

Blood. Functions of Blood. Components of Blood. Transporting. Distributing body heat. A type of connective tissue. Formed elements.

Blood. Functions of Blood. Components of Blood. Transporting. Distributing body heat. A type of connective tissue. Formed elements. Blood Functions of Blood Transporting nutrients respiratory gases waste products Distributing body heat Components of Blood A type of connective tissue Formed elements Living blood cells Plasma Nonliving

More information

Adult Medical-Surgical Nursing H A E M A T O L O G Y M O D U L E : L E U K A E M I A 2

Adult Medical-Surgical Nursing H A E M A T O L O G Y M O D U L E : L E U K A E M I A 2 Adult Medical-Surgical Nursing H A E M A T O L O G Y M O D U L E : L E U K A E M I A 2 Leukaemia: Description A group of malignant disorders affecting: White blood cells (lymphocytes or leucocytes) Bone

More information

Cancer. 9p21.3 deletion. t(12;21) t(15;17)

Cancer. 9p21.3 deletion. t(12;21) t(15;17) CANCER FISH PROBES INDIVIDUAL AND PANEL S Acute Lymphoblastic Leukemia (ALL) ALL FISH Panel (includes all probes below) 8010 LSI MYB/CEP6 LSI p16 (CDKN2A) LSI BCR/ABL with ASS LSI ETV6 (TEL)/AML1 (RUNX1)

More information

How do plasma cells survive

How do plasma cells survive How do plasma cells survive Claudia Berek Deutsches Rheuma Forschungs Zentrum, Berlin Institut der Leibniz Gemeinschaft Immune response Naive B cell Peripheral lymphoid organs Memory B cell Germinal T

More information

Chronic lymphocytic EBMT Slideleukemia. University of Heidelberg, Germany March 22, 2010. The European Group for Blood and Marrow Transplantation

Chronic lymphocytic EBMT Slideleukemia. University of Heidelberg, Germany March 22, 2010. The European Group for Blood and Marrow Transplantation Chronic lymphocytic EBMT Slideleukemia template Peter Barcelona Dreger Chairman, CLL 7 February subcommittee 2008 University of Heidelberg, Germany March 22, 2010 The European Group for Blood and Marrow

More information

Experience of a Pediatric Oncology Clinical Research Center in Brazil. Antonio Sergio Petrilli, MD, PhD

Experience of a Pediatric Oncology Clinical Research Center in Brazil. Antonio Sergio Petrilli, MD, PhD Experience of a Pediatric Oncology Clinical Research Center in Brazil Antonio Sergio Petrilli, MD, PhD Children and adolescents Heterogeneous in many aspects 38% of Brazilian population (IBGE, 2000) 11,530

More information

What Does My Bone Marrow Do?

What Does My Bone Marrow Do? What Does My Bone Marrow Do? the myelodysplastic syndromes foundation, inc. Illustrations by Kirk Moldoff Published by The Myelodysplastic Syndromes Foundation, Inc. First Edition, 2009. 2012. Table of

More information

Childhood Leukemia Overview

Childhood Leukemia Overview Childhood Leukemia Overview What is childhood leukemia? Leukemia is a type of cancer that starts in early forms of blood cells. Cancer starts when cells grow out of control. Cells in nearly any part of

More information

Cardiovascular System. Blood Components

Cardiovascular System. Blood Components Cardiovascular System Blood Components 1 Components of Blood Formed elements: erythrocytes, leukocytes, platelets Plasma: water, proteins, other solutes The components of blood can be divided into two

More information

What we will discuss today

What we will discuss today Umbilical cord blood banking It s Utility? Dr. Nita Radhakrishnan Pediatric Hematology Oncology Unit, Sir Ganga Ram Hospital, New Delhi What we will discuss today What are stem cells? What are the sources

More information

treatments) worked by killing cancerous cells using chemo or radiotherapy. While these techniques can

treatments) worked by killing cancerous cells using chemo or radiotherapy. While these techniques can Shristi Pandey Genomics and Medicine Winter 2011 Prof. Doug Brutlag Chronic Myeloid Leukemia: A look into how genomics is changing the way we treat Cancer. Until the late 1990s, nearly all treatment methods

More information

A Public Cord Blood Bank for South Africa? i

A Public Cord Blood Bank for South Africa? i No. 42/2007 A Public Cord Blood Bank for South Africa? i By Dr Robert Crookes MBChB (Wits), Dip. Internal Medicine (American Board of Internal Medicine, USA) Transfusion Medicine Consultant. South African

More information

DELPHI 27 V 2016 CYTOMETRY STRATEGIES IN THE DIAGNOSIS OF HEMATOLOGICAL DISEASES

DELPHI 27 V 2016 CYTOMETRY STRATEGIES IN THE DIAGNOSIS OF HEMATOLOGICAL DISEASES DELPHI 27 V 2016 CYTOMETRY STRATEGIES IN THE DIAGNOSIS OF HEMATOLOGICAL DISEASES CLAUDIO ORTOLANI UNIVERSITY OF URBINO - ITALY SUN TZU (544 b.c. 496 b.c) SUN TZU (544 b.c. 496 b.c.) THE ART OF CYTOMETRY

More information

Stem cells possess 2 main characteristics: Sources of pluripotent stem cells: -Long-term self renewal. -The inner cell mass of the blastocyst.

Stem cells possess 2 main characteristics: Sources of pluripotent stem cells: -Long-term self renewal. -The inner cell mass of the blastocyst. Stem cells possess 2 main characteristics: -Long-term self renewal. - They give rise to all types of differentiate cells. Sources of pluripotent stem cells: -The inner cell mass of the blastocyst. - Fetal

More information

Reference Range: 0.5-1.6 mmol/l (arterial) 0.7-2.1 mmol/l (venous) CPT Code: 83605

Reference Range: 0.5-1.6 mmol/l (arterial) 0.7-2.1 mmol/l (venous) CPT Code: 83605 LACTIC ACID Fasting, arterial specimen preferred. Please note whether arterial or venous. 0.5 ml heparinized plasma. Green top or PST must be drawn, placed on ice, and spun within 15 minutes. Immediately

More information

Understanding the Immune System in Myeloma

Understanding the Immune System in Myeloma Brian GM Durie Understanding the Immune System in Myeloma Living Well with Myeloma Teleconference Series Thursday, March 19 th 2015 1 The Immune System is Like a Swiss Watch B Cell T Cell Plasma Cell Changing

More information

Current Issues in Stem Cell Technologies. Lance D. Trainor, MD OneBlood, Inc.

Current Issues in Stem Cell Technologies. Lance D. Trainor, MD OneBlood, Inc. Current Issues in Stem Cell Technologies Lance D. Trainor, MD OneBlood, Inc. Objective: The big picture of stem cell therapy Outline: Relevant definitions History of Stem Cell Therapy Hematopoietic Stem

More information

Bone Marrow, Peripheral Blood Stem Cells or Umbilical Cord Blood transplantation? Federica Giannotti, MD Eurocord-Hôpital Saint Louis, Paris

Bone Marrow, Peripheral Blood Stem Cells or Umbilical Cord Blood transplantation? Federica Giannotti, MD Eurocord-Hôpital Saint Louis, Paris Bone Marrow, Peripheral Blood Stem Cells or Umbilical Cord Blood transplantation? Federica Giannotti, MD Eurocord-Hôpital Saint Louis, Paris Background Hematopoietic stem cell transplantation (HSCT) is

More information

Daiichi Sankyo to Acquire Ambit Biosciences

Daiichi Sankyo to Acquire Ambit Biosciences For Immediate Release Company name: DAIICHI SANKYO COMPANY, LIMITED Representative: Joji Nakayama, Representative Director, President and CEO (Code no.: 4568, First Section, Tokyo Stock Exchange) Please

More information

INFORMATION ON STEM CELLS/BONE MARROW AND REINFUSION/TRANSPLANTATION SUR703.002

INFORMATION ON STEM CELLS/BONE MARROW AND REINFUSION/TRANSPLANTATION SUR703.002 INFORMATION ON STEM CELLS/BONE MARROW AND REINFUSION/TRANSPLANTATION SUR703.002 COVERAGE: SPECIAL COMMENT ON POLICY REVIEW: Due to the complexity of the Peripheral and Bone Marrow Stem Cell Transplantation

More information

Chimeric Antigen Receptor T Cell Therapy

Chimeric Antigen Receptor T Cell Therapy Chimeric Antigen Receptor T Cell Therapy Yi Lin, MD, PhD Mayo Clinic, Rochester, MN Alliance Spring Group Meeting - May 13, 2016 Presentation Objectives l Scientific overview of chimeric antigen receptor

More information

A Career in Pediatric Hematology-Oncology? Think About It...

A Career in Pediatric Hematology-Oncology? Think About It... A Career in Pediatric Hematology-Oncology? Think About It... What does a pediatric hematologist-oncologist do? What kind of training is necessary? Is there a future need for specialists in this area? T

More information

Stem Cell Transplantation for Acute Lymphoblastic Leukemia

Stem Cell Transplantation for Acute Lymphoblastic Leukemia Stem Cell Transplantation for Acute Lymphoblastic Leukemia Mona Shafey MD, FRCPC Bone Marrow Transplant Fellow Alberta Blood and Marrow Transplant Program 1 of 14 Stem Cell Transplantation for Acute Lymphoblastic

More information

Blood & Marrow Transplant Glossary. Pediatric Blood and Marrow Transplant Program Patient Guide

Blood & Marrow Transplant Glossary. Pediatric Blood and Marrow Transplant Program Patient Guide Blood & Marrow Transplant Glossary Pediatric Blood and Marrow Transplant Program Patient Guide Glossary Absolute Neutrophil Count (ANC) -- Also called "absolute granulocyte count" amount of white blood

More information

UNDERSTANDING MULTIPLE MYELOMA AND LABORATORY VALUES Benjamin Parsons, DO bmparson@gundersenhealth.org Gundersen Health System Center for Cancer and

UNDERSTANDING MULTIPLE MYELOMA AND LABORATORY VALUES Benjamin Parsons, DO bmparson@gundersenhealth.org Gundersen Health System Center for Cancer and UNDERSTANDING MULTIPLE MYELOMA AND LABORATORY VALUES Benjamin Parsons, DO bmparson@gundersenhealth.org Gundersen Health System Center for Cancer and Blood Disorders La Crosse, WI UNDERSTANDING MULTIPLE

More information

Hodgkin Lymphoma Disease Specific Biology and Treatment Options. John Kuruvilla

Hodgkin Lymphoma Disease Specific Biology and Treatment Options. John Kuruvilla Hodgkin Lymphoma Disease Specific Biology and Treatment Options John Kuruvilla My Disclaimer This is where I work Objectives Pathobiology what makes HL different Diagnosis Staging Treatment Philosophy

More information

Genomic Analysis of Mature B-cell Malignancies

Genomic Analysis of Mature B-cell Malignancies Genomic Analysis of Mature B-cell Malignancies Update and Lessons Learned Omar Abdel-Wahab, MD Memorial Sloan Kettering Cancer Center Human Oncology and Pathogenesis Program and Leukemia Service Disclaimer:

More information

Early mortality rate (EMR) in Acute Myeloid Leukemia (AML)

Early mortality rate (EMR) in Acute Myeloid Leukemia (AML) Early mortality rate (EMR) in Acute Myeloid Leukemia (AML) George Yaghmour, MD Hematology Oncology Fellow PGY5 UTHSC/West cancer Center, Memphis, TN May,1st,2015 Off-Label Use Disclosure(s) I do not intend

More information

Hematology Morphology Critique

Hematology Morphology Critique Survey Slide: History: 60-year-old female presenting with pneumonia Further Laboratory Data: Hgb : 90 g/l RBC : 2.92 10 12 /L Hct : 0.25 L/L MCV : 87 fl MCH : 30.8 pg MCHC : 355 g/l RDW : 17.7 % WBC :

More information

Enhance Sensitivity of FISH Analysis with Highly Purified Multiple Myeloma Cells Using RoboSep, the Fully Automated Cell Separator

Enhance Sensitivity of FISH Analysis with Highly Purified Multiple Myeloma Cells Using RoboSep, the Fully Automated Cell Separator Enhance Sensitivity of FISH Analysis with Highly Purified Multiple Myeloma Cells Using RoboSep, the Fully Automated Cell Separator Benoit Guilbault, PhD Field Applications Scientist t STEMCELL Technologies,

More information

Chronic Lymphocytic Leukemia. Case Study. AAIM Triennial October 2012 Susan Sokoloski, M.D.

Chronic Lymphocytic Leukemia. Case Study. AAIM Triennial October 2012 Susan Sokoloski, M.D. Chronic Lymphocytic Leukemia AAIM Triennial October 2012 Susan Sokoloski, M.D. Case Study 57 year old male, trial application for $1,000,000 Universal Life coverage Cover letter from sales agent indicates

More information