The law of Conservation of Energy. Monday, October 31, 11

Size: px
Start display at page:

Download "The law of Conservation of Energy. Monday, October 31, 11"

Transcription

1 The law of Conservation of Energy

2 Force as the derivative of potential energy We often encounter situations where we know the potential energy as a function of position and we need to find the corresponding force. We recall that for a conservative force: W = ΔU So if we now apply this to a small displacement Δx, the work done by the force Fx(x) during this displacement approaches Fx(x) Δx as Δx approaches zero. F x (x)δx = ΔU F x (x) = ΔU Δx So in the limit as Δx 0 F x (x) = du(x) dx

3 Force as the derivative of potential energy F x (x)δx = ΔU F x (x) = ΔU Δx So in the limit as Δx 0 F x (x) = du(x) dx

4 Energy diagrams give us insight Energy diagrams plot energy as a function of position. These diagrams give useful information about limits and zeros for the physical properties involved.

5 The potential energy curve for motion of a particle F x = du dx

6 Energy diagrams give us insight

7 Summary

8 Summary

9 Summary

10 Q7.1 A piece of fruit falls straight down. As it falls, A. the gravitational force does positive work on it and the gravitational potential energy increases. B. the gravitational force does positive work on it and the gravitational potential energy decreases. C. the gravitational force does negative work on it and the gravitational potential energy increases. D. the gravitational force does negative work on it and the gravitational potential energy decreases.

11 A7.1 A piece of fruit falls straight down. As it falls, A. the gravitational force does positive work on it and the gravitational potential energy increases. B. the gravitational force does positive work on it and the gravitational potential energy decreases. C. the gravitational force does negative work on it and the gravitational potential energy increases. D. the gravitational force does negative work on it and the gravitational potential energy decreases. W = ΔU

12 Q7.2 You toss a kg baseball straight upward so that it leaves your hand moving at 20.0 m/s. The ball reaches a maximum height y 2. What is the speed of the ball when it is at a height of y 2 /2? Ignore air resistance. A m/s v 2 = 0 v 1 = 20.0 m/s m = kg y 2 y 1 = 0 B. less than 10.0 m/s but more than zero C. more than 10.0 m/s D. not enough information given to decide

13 A7.2 You toss a kg baseball straight upward so that it leaves your hand moving at 20.0 m/s. The ball reaches a maximum height y 2. What is the speed of the ball when it is at a height of y 2 /2? Ignore air resistance. A m/s v 2 = 0 v 1 = 20.0 m/s m = kg y 2 y 1 = 0 B. less than 10.0 m/s but more than zero C. more than 10.0 m/s D. not enough information given to decide

14 Q7.4 The two ramps shown are both frictionless. The heights y 1 and y 2 are the same for each ramp. A block of mass m is released from rest at the left-hand end of each ramp. Which block arrives at the righthand end with the greater speed? A. the block on the curved track B. the block on the straight track C. Both blocks arrive at the right-hand end with the same speed. D. The answer depends on the shape of the curved track.

15 A7.4 The two ramps shown are both frictionless. The heights y 1 and y 2 are the same for each ramp. A block of mass m is released from rest at the left-hand end of each ramp. Which block arrives at the righthand end with the greater speed? A. the block on the curved track B. the block on the straight track C. Both blocks arrive at the right-hand end with the same speed. D. The answer depends on the shape of the curved track.

16 Q7.5 A block is released from rest on a frictionless incline as shown. When the moving block is in contact with the spring and compressing it, what is happening to the gravitational potential energy U grav and the elastic potential energy U el? A. U grav and U el are both increasing. B. U grav and U el are both decreasing. C. U grav is increasing, U el is decreasing. D. U grav is decreasing, U el is increasing. E. The answer depends on how the block s speed is changing.

17 A7.5 A block is released from rest on a frictionless incline as shown. When the moving block is in contact with the spring and compressing it, what is happening to the gravitational potential energy U grav and the elastic potential energy U el? A. U grav and U el are both increasing. B. U grav and U el are both decreasing. C. U grav is increasing, U el is decreasing. D. U grav is decreasing, U el is increasing. E. The answer depends on how the block s speed is changing.

18 Q7.6 The graph shows the potential energy U for a particle that moves along the x-axis. The particle is initially at x = d and moves in the negative x- direction. At which of the labeled x-coordinates does the particle have the greatest speed? A. at x = a B. at x = b C. at x = c D. at x = d E. more than one of the above

19 A7.6 Potential energy lowest, The graph shows the potential kinetic energy highest energy U for a particle that moves along the x-axis. The particle is initially at x = d and moves in the negative x- direction. At which of the labeled x-coordinates does the particle have the greatest speed? A. at x = a B. at x = b C. at x = c D. at x = d E. more than one of the above

20 Q7.7 The graph shows the potential energy U for a particle that moves along the x-axis. The particle is initially at x = d and moves in the negative x- direction. At which of the labeled x-coordinates is the particle slowing down? A. at x = a B. at x = b C. at x = c D. at x = d E. more than one of the above

21 A7.7 The graph shows the potential energy U for a particle that moves along the x-axis. The particle is initially at x = d and moves in the negative x- direction. At which of the labeled x-coordinates is the particle slowing down? The slope is positive so the acceleration is negative F x = du dx = ma x A. at x = a B. at x = b C. at x = c D. at x = d E. more than one of the above

22 Q7.8 The graph shows the potential energy U for a particle that moves along the x-axis. At which of the labeled x-coordinates is there zero force on the particle? A. at x = a and x = c B. at x = b only C. at x = d only D. at x = b and d E. misleading question there is a force at all values of x.

23 A7.8 The graph shows the potential energy U for a particle that moves along the x-axis. At which of the labeled x-coordinates is there zero force on the particle? The slope is zero so the force is zero F x = du dx A. at x = a and x = c B. at x = b only C. at x = d only D. at x = b and d E. misleading question there is a force at all values of x.

24

25 Q7.9 The graph shows a conservative force F x as a function of x in the vicinity of x = a. As the graph shows, F x = 0 at x = a. Which statement about the associated potential energy function U at x = a is correct? 0 F x a x A. U = 0 at x = a B. U is a maximum at x = a. C. U is a minimum at x = a D. U is neither a minimum or a maximum at x = a, and its value at x = a need not be zero.

26 A7.9 The graph shows a conservative force F x as a function of x in the vicinity of x = a. As the graph shows, F x = 0 at x = a. Which statement about the associated potential energy function U at x = a is correct? 0 F x a x A. U = 0 at x = a B. U is a maximum at x = a. C. U is a minimum at x = a. D. U is neither a minimum or a maximum at x = a, and its value at x = a need not be zero.

27

28 Q7.10 The graph shows a conservative force F x as a function of x in the vicinity of x = a. As the graph shows, F x = 0 at x = a. Which statement about the associated potential energy function U at x = a is correct? 0 F x a x A. U = 0 at x = a B. U is a maximum at x = a. C. U is a minimum at x = a. D. U is neither a minimum or a maximum at x = a, and its value at x = a need not be zero.

29 A7.10 The graph shows a conservative force F x as a function of x in the vicinity of x = a. As the graph shows, F x = 0 at x = a. Which statement about the associated potential energy function U at x = a is correct? 0 F x a x A. U = 0 at x = a B. U is a maximum at x = a. C. U is a minimum at x = a. D. U is neither a minimum or a maximum at x = a, and its value at x = a need not be zero.

30

31 Q7.11 The graph shows a conservative force F x as a function of x in the vicinity of x = a. As the graph shows, F x > 0 and df x /dx < 0 at x = a. Which statement about the associated potential energy function U at x = a is correct? 0 F x a x A. du/dx > 0 at x = a B. du/dx < 0 at x = a C. du/dx = 0 at x = a D. Any of the above could be correct.

32 A7.11 The graph shows a conservative force F x as a function of x in the vicinity of x = a. As the graph shows, F x > 0 and df x /dx < 0 at x = a. Which statement about the associated potential energy function U at x = a is correct? 0 F x a x A. du/dx > 0 at x = a B. du/dx < 0 at x = a C. du/dx = 0 at x = a D. Any of the above could be correct. F x = du dx At a Fx>0 so du/dx<0

33 Momentum, Impulse and Angular Momentum

34 Introduction If you watch a football game, you ll see collisions, tackles, many men colliding at once, maybe just two in an open area. Are these situations different? Newton told us the forces result in acceleration of a mass. We will now study two new points of view momentum and impulse. F = ma = m d v dt = d dt (m v) = d p dt

35 How does momentum relate to mass and velocity? Understanding momentum begins with the simple relationship that momentum is equal to mass multiplied by velocity.

36 Impulse F = ma = d p dt = p p 2 1 t 2 t 1 F(t t ) 2 1 = p 2 p 1 = J

37 Impulse

38 The meaning of the area of a F versus t graph The impulse is the area under the F versus t graph

39 Impulse Although impulse and momentum are both vector quantities, it is often easier to deal with the components.

40 Compare momentum and kinetic energy The work-energy theorem tells us that a change in a particle s kinetic energy is due to work done on the particle W tot = K 2 K 1 The impulse-momentum theorem tells us that a change in a particle s momentum is due to an impulse J = p 2 p 1

41 Compare momentum and kinetic energy The work-energy theorem focuses on the distance of force application. The impulse momentum relationship depends on duration of an impact. Both rest on the foundation of Newton s laws and are integral principles, relating the motion at two different times separated by a finite interval. Newton s second law is a differential principle, relating forces to the rate of change of either velocity or momentum.

42 A ball hits a wall

43 A ball hits a wall (a) J = p p 2 1

44 A ball hits a wall (a) J = p p 2 1

45 A ball hits a wall (a) J = p p 2 1

46 A ball hits a wall (a) J = p p 2 1

47 A ball hits a wall

48 A ball hits a wall (b) F(t t ) 2 1 = p 2 p 1 = J

49 A ball hits a wall (b) F(t t ) 2 1 = p 2 p 1 = J

50 A ball hits a wall (b) F(t t ) 2 1 = p 2 p 1 = J

51 A ball hits a wall (b) F(t t ) 2 1 = p 2 p 1 = J

52 F av = J Δt Duration of an impact F(t t ) 2 1 = p 2 p 1 = J

53 F av = J Δt Duration of an impact The impulse momentum relationship depends on the duration of an impact. Golf ball hitting a steel plate at 150 mph shot at 70,000 fps F(t t ) 2 1 = p 2 p 1 = J

54 Kicking a soccer ball

55 Kicking a soccer ball

56 Kicking a soccer ball

57 Kicking a soccer ball

58 Kicking a soccer ball

59 Like energy, momentum also has conservation rules

60 Like energy, momentum also has conservation rules

61 Like energy, momentum also has conservation rules

62 Conservation of Momentum means Conservation of its components If the vector sum of the external forces on the system is zero, then the components of momentum are all constant.

63 Recoil of a rifle

64 Recoil of a rifle Conservation of momentum in the x-direction gives:

65 Recoil of a rifle

66 Recoil of a rifle W tot = K 2 K 1 The Kinetic Energy gained is: F s, where s is the displacement. During the period of interaction between the bullet and the rifle, t, the bullet travelled much farther than the rifle, so the bullet acquires much greater kinetic energy than the rifle. Work is F s, so the bullet does more work than the rifle. The ratio of the two kinetic energies is 600:1, this is equal to the inverse ratio of their masses (get this from conservation of momentum). This always happens, if the rifle was powered by a stiff spring instead of an explosion we would have got the same result.

67 Objects colliding along a straight line

68 Objects colliding along a straight line Conservation of momentum in the x-direction gives:

69 Objects colliding along a straight line Conservation of momentum in the x-direction gives:

70 Objects colliding along a straight line Conservation of momentum in the x-direction gives: Same momentum after the collision, so:

71 Objects colliding along a straight line Conservation of momentum in the x-direction gives: Same momentum after the collision, so:

72 Objects colliding along a straight line Conservation of momentum in the x-direction gives:

73 Objects colliding along a straight line Conservation of momentum in the x-direction gives: Same momentum after the collision, so:

74 Objects colliding along a straight line

75 Objects colliding along a straight line

76 Objects colliding along a straight line

77 Now, consider a two-dimensional collision

78 Now, consider a two-dimensional collision Conservation of momentum in x & y directions gives:

79 Now, consider a two-dimensional collision Conservation of momentum in x & y directions gives:

80 Now, consider a two-dimensional collision

81 Elastic compared to inelastic

82 Elastic compared to inelastic

83 Elastic compared to inelastic

84 Completely (or nearly) inelastic collisions

85 Completely (or nearly) inelastic collisions Cars are designed to crumple and absorb as much energy as possible so the passengers do not need to.

86 Completely (or nearly) inelastic collisions Cars are designed to crumple and absorb as much energy as possible so the passengers do not need to.

87 The ballistic pendulum A ballistic pendulum is a system for measuring the speed of a bullet. This can be demonstrated with a 4 4 block and a.22 caliber rifle. The bullet of mass mb, is fired into a wood block of mass mw, suspended like a pendulum and makes a completely inelastic collision with it. After the bullet s impact the block swings up to a maximum height, y. If we know the values of y, mb, and mw, what is the initial speed of the bullet vi?

88 The ballistic pendulum

89 The ballistic pendulum Stage 1) Conservation of momentum

90 The ballistic pendulum Stage 1) Conservation of momentum Stage 2) Conservation of energy

91 The ballistic pendulum Stage 1) Conservation of momentum gives:

92 The ballistic pendulum Stage 1) Conservation of momentum gives: Stage 2) Conservation of energy gives: Initial kinetic energy Final potential energy

93 The ballistic pendulum Stage 1) Conservation of momentum gives: Stage 2) Conservation of energy gives: Initial kinetic energy Final potential energy

94 Classifying Collisions

95 A possible simple model for automobile accidents

96 A possible simple model for automobile accidents

97 A possible simple model for automobile accidents Components of momentum before the collision An Inelastic Collision Momentum Conserved Kinetic Energy NOT conserved

98 A possible simple model for automobile accidents Components of momentum before the collision An Inelastic Collision Momentum Conserved Kinetic Energy NOT conserved

99 A possible simple model for automobile accidents Components of momentum before the collision An Inelastic Collision Momentum Conserved Kinetic Energy NOT conserved

100 A possible simple model for automobile accidents Components of momentum before the collision An Inelastic Collision Momentum Conserved Kinetic Energy NOT conserved By conservation of momentum during the collision

101 Elastic collisions Billiard balls are a very good example of objects that collide elastically.

102 Q8.1 A ball (mass 0.40 kg) is initially moving to the left at 30 m/s. After hitting the wall, the ball is moving to the right at 20 m/s. What is the impulse of the net force on the ball during its collision with the wall? A. 20 kg m/s to the right B. 20 kg m/s to the left C. 4.0 kg m/s to the right D. 4.0 kg m/s to the left E. none of the above

103 A8.1 A ball (mass 0.40 kg) is initially moving to the left at 30 m/s. After hitting the wall, the ball is moving to the right at 20 m/s. What is the impulse of the net force on the ball during its collision with the wall? J = p p 2 1 A. 20 kg m/s to the right B. 20 kg m/s to the left C. 4.0 kg m/s to the right D. 4.0 kg m/s to the left E. none of the above = = 20

104 Q8.2 You are testing a new car using crash test dummies. Consider two ways to slow the car from 90 km/h (56 mi/h) to a complete stop: (i) You let the car slam into a wall, bringing it to a sudden stop. (ii) You let the car plow into a giant tub of gelatin so that it comes to a gradual halt. In which case is there a greater impulse of the net force on the car? A. in case (i) B. in case (ii) C. The impulse is the same in both cases. D. not enough information given to decide

105 A8.2 You are testing a new car using crash test dummies. Consider two ways to slow the car from 90 km/h (56 mi/h) to a complete stop: (i) You let the car slam into a wall, bringing it to a sudden stop. (ii) You let the car plow into a giant tub of gelatin so that it comes to a gradual halt. In which case is there a greater impulse of the net force on the car? A. in case (i) B. in case (ii) C. The impulse is the same in both cases. D. not enough information given to decide J = p 2 p 1, in both cases the car comes to a complete stop so both p 1 & p 2 are the same

106 Q8.3 A 3.00-kg rifle fires a kg bullet at a speed of 300 m/s. Which force is greater in magnitude: (i) the force that the rifle exerts on the bullet; or (ii) the force that the bullet exerts on the rifle? A. the force that the rifle exerts on the bullet B. the force that the bullet exerts on the rifle C. both forces have the same magnitude D. not enough information given to decide

107 A8.3 A 3.00-kg rifle fires a kg bullet at a speed of 300 m/s. Which force is greater in magnitude: (i) the force that the rifle exerts on the bullet; or (ii) the force that the bullet exerts on the rifle? A. the force that the rifle exerts on the bullet B. the force that the bullet exerts on the rifle C. both forces have the same magnitude D. not enough information given to decide Newton s third law, for every action there is an equal and opposite reaction

108 Q8.4 Two objects with different masses collide and stick to each other. Compared to before the collision, the system of two objects after the collision has A B A. the same total momentum and the same total kinetic energy. B. the same total momentum but less total kinetic energy. C. less total momentum but the same total kinetic energy. D. less total momentum and less total kinetic energy. E. not enough information given to decide

109 A8.4 Two objects with different masses collide and stick to each other. Compared to before the collision, the system of two objects after the collision has A B A. the same total momentum and the same total kinetic energy. B. the same total momentum but less total kinetic energy. C. less total momentum but the same total kinetic energy. D. less total momentum and less total kinetic energy. E. not enough information given to decide An Inelastic Collision Momentum Conserved Kinetic Energy NOT conserved

110 Q8.5 Two objects with different masses collide and bounce off each other. Compared to before the collision, the system of two objects after the collision has A B A. the same total momentum and the same total kinetic energy. B. the same total momentum but less total kinetic energy. C. less total momentum but the same total kinetic energy. D. less total momentum and less total kinetic energy. E. not enough information given to decide

111 A8.5 Two objects with different masses collide and bounce off each other. Compared to before the collision, the system of two objects after the collision has A B A. the same total momentum and the same total kinetic energy. B. the same total momentum but less total kinetic energy. C. less total momentum but the same total kinetic energy. D. less total momentum and less total kinetic energy. E. not enough information given to decide Do not know if elastic or inelastic collision

112 Q8.6 Block A has mass 1.00 kg and block B has mass 3.00 kg. The blocks collide and stick together on a level, frictionless surface. After the collision, the kinetic energy (KE) of block A is A. 1/9 the KE of block B. B. 1/3 the KE of block B. C. 3 times the KE of block B. D. 9 times the KE of block B. E. the same as the KE of block B.

113 A8.6 Block A has mass 1.00 kg and block B has mass 3.00 kg. The blocks collide and stick together on a level, frictionless surface. After the collision, the kinetic energy (KE) of block A is A. 1/9 the KE of block B. B. 1/3 the KE of block B. C. 3 times the KE of block B. D. 9 times the KE of block B. E. the same as the KE of block B. The ratio of the two kinetic energies is equal to the inverse ratio of their masses.

114 Q8.7 Block A on the left has mass 1.00 kg. Block B on the right has mass 3.00 kg. The blocks are forced together, compressing the spring. Then the system is released from rest on a level, frictionless surface. After the blocks are released, the kinetic energy (KE) of block A is A. 1/9 the KE of block B. B. 1/3 the KE of block B. C. 3 times the KE of block B. D. 9 times the KE of block B. E. the same as the KE of block B.

115 A8.7 Block A on the left has mass 1.00 kg. Block B on the right has mass 3.00 kg. The blocks are forced together, compressing the spring. Then the system is released from rest on a level, frictionless surface. After the blocks are released, the kinetic energy (KE) of block A is A. 1/9 the KE of block B. B. 1/3 the KE of block B. C. 3 times the KE of block B. D. 9 times the KE of block B. E. the same as the KE of block B. Conservation of momentum

116 Q8.8 An open cart is rolling to the left on a horizontal surface. A package slides down a chute and lands in the cart. Which quantities have the same value just before and just after the package lands in the cart? A. the horizontal component of total momentum B. the vertical component of total momentum C. the total kinetic energy D. two of A., B., and C. E. all of A., B., and C.

117 A8.8 An open cart is rolling to the left on a horizontal surface. A package slides down a chute and lands in the cart. Which quantities have the same value just before and just after the package lands in the cart? A. the horizontal component of total momentum B. the vertical component of total momentum C. the total kinetic energy D. two of A., B., and C. E. all of A., B., and C.

118 Angular Momentum Every rotational quantity we have encountered has a translational analog. The analog of momentum, p=mv, is angular momentum,

119 Angular Momentum

120 Conservation of Angular Momentum The conservation of angular momentum follows directly from As τ = d L dt If τ = 0 then d L dt = 0, and so L remains constant

121 A Falling Cat

122 The professor as ballerina? Angular momentum is conserved.

123 This is how a car s clutch works!

124 This is how a car s clutch works! This is analogous to a completely inelastic collision

125 Q10.11 A spinning figure skater pulls his arms in as he rotates on the ice. As he pulls his arms in, what happens to his angular momentum L and kinetic energy K? A. L and K both increase. B. L stays the same, K increases. C. L increases, K stays the same. D. L and K both stay the same.

126 A10.11 A spinning figure skater pulls his arms in as he rotates on the ice. As he pulls his arms in, what happens to his angular momentum L and kinetic energy K? A. L and K both increase. B. L stays the same, K increases. C. L increases, K stays the same. D. L and K both stay the same.

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

More information

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same. 1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

More information

Problem Set #8 Solutions

Problem Set #8 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

More information

Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Chapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.

Chapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary. Chapter 9 9.2 Figure 9-37 shows a three particle system with masses m 1 3.0 kg, m 2 4.0 kg, and m 3 8.0 kg. The scales are set by x s 2.0 m and y s 2.0 m. What are (a) the x coordinate and (b) the y coordinate

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

AP physics C Web Review Ch 6 Momentum

AP physics C Web Review Ch 6 Momentum Name: Class: _ Date: _ AP physics C Web Review Ch 6 Momentum Please do not write on my tests Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The dimensional

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed?

A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed? A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed? 1 2 PHYS 1021: Chap. 9, Pg 2 Page 1 1 A uranium nucleus

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

10.1 Quantitative. Answer: A Var: 50+

10.1 Quantitative. Answer: A Var: 50+ Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Chapter 9. particle is increased.

Chapter 9. particle is increased. Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

AP Physics 1 Midterm Exam Review

AP Physics 1 Midterm Exam Review AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

The Physics of Kicking a Soccer Ball

The Physics of Kicking a Soccer Ball The Physics of Kicking a Soccer Ball Shael Brown Grade 8 Table of Contents Introduction...1 What actually happens when you kick a soccer ball?...2 Who kicks harder shorter or taller people?...4 How much

More information

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

More information

Problem Set 5 Work and Kinetic Energy Solutions

Problem Set 5 Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Fundamental Mechanics: Supplementary Exercises

Fundamental Mechanics: Supplementary Exercises Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

More information

Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

More information

Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

9. Momentum and Collisions in One Dimension*

9. Momentum and Collisions in One Dimension* 9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

More information

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Chapter #7 Giancoli 6th edition Problem Solutions

Chapter #7 Giancoli 6th edition Problem Solutions Chapter #7 Giancoli 6th edition Problem Solutions ü Problem #8 QUESTION: A 9300 kg boxcar traveling at 5.0 m/s strikes a second boxcar at rest. The two stick together and move off with a speed of 6.0 m/s.

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

Lesson 39: Kinetic Energy & Potential Energy

Lesson 39: Kinetic Energy & Potential Energy Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

Name per due date mail box

Name per due date mail box Name per due date mail box Rolling Momentum Lab (1 pt for complete header) Today in lab, we will be experimenting with momentum and measuring the actual force of impact due to momentum of several rolling

More information

Exercises on Work, Energy, and Momentum. A B = 20(10)cos98 A B 28

Exercises on Work, Energy, and Momentum. A B = 20(10)cos98 A B 28 Exercises on Work, Energy, and Momentum Exercise 1.1 Consider the following two vectors: A : magnitude 20, direction 37 North of East B : magnitude 10, direction 45 North of West Find the scalar product

More information

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ

More information

P211 Midterm 2 Spring 2004 Form D

P211 Midterm 2 Spring 2004 Form D 1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

LAB 4: MOMENTUM AND COLLISIONS

LAB 4: MOMENTUM AND COLLISIONS 1 Name Date Day/Time of Lab Partner(s) Lab TA LAB 4: MOMENTUM AND COLLISIONS NEWTON S THIRD LAW OBJECTIVES To examine action-reaction force pairs To examine collisions and relate the law of conservation

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

Name Partners Date. Energy Diagrams I

Name Partners Date. Energy Diagrams I Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

More information

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

WATCH THIS ICON: View this short clip from the Insurance Institute for Highway Safety DVD called Understanding Car Crashes It s basic physics.

WATCH THIS ICON: View this short clip from the Insurance Institute for Highway Safety DVD called Understanding Car Crashes It s basic physics. Lesson 3: Energy, Momentum, and Understanding Car Crashes Many of us have lost students to violent motor vehicle crashes. In the United States, motor vehicle crashes are the number one cause of death among

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Practice TEST 2. Explain your reasoning

Practice TEST 2. Explain your reasoning Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

Physics Momentum and Impulse Car Safety Engineering (egg drop) Conservation of Momentum

Physics Momentum and Impulse Car Safety Engineering (egg drop) Conservation of Momentum Physics Momentum and Impulse Car Safety Engineering (egg drop) Intro to Momentum Conservation of Momentum Impulse Student Experience Students brainstorm the meaning of momentum. Students use different

More information

Newton s Laws Quiz Review

Newton s Laws Quiz Review Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force?

Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Lifting A Load 1 NAME LIFTING A LOAD Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Background Information:

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Chapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum

Chapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum Chapter 8 Conservation of Linear Momentum Physics 201 October 22, 2009 Conservation of Linear Momentum Definition of linear momentum, p p = m v Linear momentum is a vector. Units of linear momentum are

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

Work-Energy Bar Charts

Work-Energy Bar Charts Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information