Chapter 3 PROBLEM SOLVING BY SEARCHING (2)

Size: px
Start display at page:

Download "Chapter 3 PROBLEM SOLVING BY SEARCHING (2)"

Transcription

1 King Saud University College of Computer and Information Sciences Information Technology Department IT422 - Intelligent systems Chapter 3 PROBLEM SOLVING BY SEARCHING (2) 1

2 Informed Search One that uses problem specific knowledge beyond the definition of the problem itself to guide the search. Why? Without incorporating knowledge into searching, one is forced to look everywhere to find the answer. Hence, the complexity of uninformed search is intractable. With knowledge, one can search the state space as if he was given hints when exploring a maze. Heuristic information in search = Hints Leads to dramatic speed up in efficiency. 2

3 Informed Search A Search only in this subtree!! B C D E F G H I J K L M N O Best-First Search Greedy Best First Search A* Search Local search algorithms Stochastic Search algorithms 3

4 Best first search Key idea: 1. Use an evaluation function f(n) for each node: estimate of distance to the goal. 2. Node with the lowest evaluation is chosen for expansion. Implementation: frontier: maintain the frontier in ascending order of f- values Special cases: Greedy best-first search A* search 4

5 Formal description of Best-First Search algorithm Function Best-First Graph-Search(problem,frontier,f) returns a solution or a failure // f: evaluation function children an empty set; explored an empty set; frontier Insert (Make-Node(Initial-state[problem],NULL,NULL,d,c),frontier) Loop do If Empty?(frontier) then return failure node POP(frontier) If Goal-Test[ problem] applied to State[node] succeeds then return Solution(node) add State[node] to explored children Expand (node,problem) for each child in children If state [child] is not in explored or frontier then frontier insert(state [child], frontier) // sort frontier in ascending order of f-values else if child[state] is in frontier with higher f-values then replace that frontier node with child End Loop 5

6 Greedy best-first search Let evaluation function f(n) be an estimate of cost from node n to goal This function is often called a heuristic and is denoted by h(n). f(n) = h(n) e.g. h SLD (n) = straight-line distance from n to Bucharest Greedy best-first search expands the node that appears to be closest to goal. Contrast with uniform-cost search in which lowest cost path from start is expanded. Heuristic function is the way knowledge about the problem is used to guide the search process. 6

7 Map of Romania with Step Costs in km 7

8 Greedy best-first search 8

9 Greedy Best-first search 9

10 Greedy Best-first search 10

11 Greedy best-first search Properties Finds solution without ever expanding a node that is not on the solution path. It is not optimal: the optimal path goes through Ptesti. Minimizing h(n) is susceptible to false starts. e.g. getting from Iasi to Fagaras: according to h(n), we take Neamt node to expand but it is a dead end. If repeated states are not detected, the solution will never be found. Search gets stuck in loops: Iasi Neamet Iasi Neamet The graph search version is Complete in finite spaces with repeated state checking but not in infinite ones. 11

12 A* search Most widely known form of best-first search. Key idea: avoid expanding paths that are already expensive. Evaluation function: f(n) = g(n) + h(n) g(n) = path cost so far to reach n. (used in Uniform Cost Search). h(n) = estimated path cost to goal from n. (used in Greedy Best-First Search). f(n) = estimated total cost of path through n to goal. 12

13 A * search example 13

14 A * search example 14

15 A * search example 15

16 A * search example 16

17 A * search example 17

18 A * search example 18

19 A* search Definition: a heuristic h(n) is said to be admissible if it never overestimates the cost to reach the goal. h(n) h*(n) where h*(n) is the TRUE cost from n to the goal. e.g: h sld straight line can not be an overestimate. Consequently: if h(n) is an admissible heuristic, then f(n) never overestimates the true cost of a solution through n. WHY? It is true because g(n) gives the exact cost to reach n. 19

20 A* search root g(n): cost of path n h(n): Heuristic (expected) minimum cost to goal. (estimation) Goal h*(n): true minimum cost to goal 20

21 A* search Theorem: When Tree-Search is used, A* is optimal if h(n) is an admissible heuristic. Proof: Let G be the optimal goal state reached by a path with cost : C* =f(g) = g(g). Let G2 be some other goal state or the same state, but reached by a more costly path. 21

22 A* search f(g2) = g(g2)+h(g2) = g(g2) since h(g2) = 0 g(g2) > C* since G2 is suboptimal Let n be any unexpanded node on the shortest path to the optimal goal G. f(n) = g(n) + h(n) C* since h is admissible Therefore, f(n) C* f(g2) As a consequence, G2 will not be expanded and A* must return an optimal solution. Example: the previous search: f(bucharest)=450 was not chosen for expansion, even though Bucharest is the goal. 22

23 A* search For Graph-Search, A* is optimal if h(n) is consistent. Consistency (= Monotonicity): A heuristic is said to be consistent when for any node n, successor n of n, we have h(n) c(n,n ) + h(n ), where c(n,n ) is the (minimum) cost of a step from n to n. This is a form of triangular inequality: n c(n,n ) n h(n) h(n ) Consistent heuristics are admissible. Not all admissible heuristics are consistent. When a heuristic is consistent, the values of f(n) along any path are non decreasing. g 23

24 A* search properties Completeness: Yes, with f f(g). Optimality: Yes. The tree-search version is optimal if h(n) is admissible, while the graph-search version is optimal if h(n) is consistent. Time complexity: Exponential. Space complexity: Keeps all nodes in memory. 24

25 Some admissible heuristics 8-Puzzle: g(n): the path cost can be measured by the total number of horizontal and vertical moves. h(n): two different heuristics h1 (n): number of misplaced tiles. h2 (n): the sum of the distances of the tiles from their goal positions. 25

26 Some admissible heuristics 26

27 Local Search algorithms Blind search and informed search strategies addressed a single category of problems: observable, deterministic, known environments where the solution is a sequence of actions. The search algorithms we have seen so far keep track of the current state, the frontier of the search space, and the path to the final state. In some problems, one doesn t care about a solution path but only the final goal state. The solution is the goal state. Example: 8-queen problem, integrated circuit design, telecommunication network optimization Local search algorithms are also useful for optimization problems where the goal is to find a state such that an objective function is optimized. For the 8-queen algorithm, the objective function may be the number of attacks. 27

28 Local Search algorithms Basic idea: Local search algorithms operate on a single state current state and move to one of its neighboring states. Therefore: Solution path does not need to be maintained. Hence, the search is local. Two advantages: 1. Use little memory. 2. More applicable in searching large/infinite search space. They find reasonable solutions in this case. 28

29 Local Search algorithms A state space landscape is a graph of states associated with their costs Problem: local search can get stuck on a local maximum and not find the optimal solution 29

30 Hill Climbing Hill climbing search algorithm (also known as greedy local search) uses a loop that continually moves in the direction of increasing values (that is uphill). Hill-climbing search modifies the current state to try to improve it, as shown by the arrow in figure on slide 28. It terminates when it reaches a peak where no neighbor has a higher value. A complete local search algorithm always find a goal if one exists. An optimal algorithm always finds a global maximum/minimum. 30

31 Steepest ascent version Function Hill climbing (problem) return state that is a local maximum Inputs: problem, a problem Local variables: current, a node neighbor, a node Current Make-Node (initial-state [problem]) Loop do neighbor a highest-valued successor of current If Value[neighbor] Value[current] then return state [current] Current neighbor 31

32 Simulated Annealing Basic inspiration: What is annealing? In metallurgy, annealing is the physical process used to temper or harden metals or glass by heating them to a high temperature and then gradually cooling them, thus allowing the material to coalesce into a low energy crystalline state. Heating then slowly cooling a substance to obtain a strong crystalline structure. Key idea: Simulated Annealing combines Hill Climbing with a random walk in some way that yields both efficiency and completeness. Used to solve VLSI layout problems in the early

33 Simulated Annealing 33

34 Local Beam Search Unlike Hill Climbing, Local Beam Search keeps track of k states rather than just one. It starts with k randomly generated states. At each step, all the successors of all the states are generated. If any one is a goal, the algorithm halts, otherwise it selects the k best successors from the complete list and repeats. LBS running k random restarts in parallel instead of sequence. Drawback: less diversity Stochastic Beam Search 34

35 Stochastic search: Genetic algorithms Formally introduced in the US in the 70s by John Holland. GAs emulate ideas from genetics and natural selection and can search potentially large spaces. Before we can apply Genetic Algorithm to a problem, we need to answer: How is an individual represented? What is the fitness function? How are individuals selected? How do individuals reproduce? 35

36 Stochastic search: Genetic algorithms Genetic algorithms is a variant of local beam search. Successors in this case are generated by combining two parent states rather than modifying a single state. Like local beam search, genetic algorithms starts with a set of k randomly generated states called Population. Each state or individual is represented as a string over a finite alphabet. It is also called chromosome. 36

37 Stochastic search: Genetic algorithms Each state is rated by the evaluation function called fitness function. Fitness function should return higher values for better states. For reproduction, individuals are selected with a probability which is directly proportional to the fitness score. For each pair to be mated, a crossover point is randomly chosen from the positions in the string. The offspring themselves are created by crossing over the parent strings at the crossover point. Mutation is performed randomly with a small independent probability. 37

38 Stochastic search: Genetic algorithms 38

39 Stochastic search: Genetic algorithms 39

40 Summary Informed search uses knowledge about the problem to reduce search costs. This knowledge is expressed in terms of heuristics. Best first search is a class of methods that use a variant of graph-search where the minimum-cost unexpanded nodes are chosen for expansion. Best first search methods use a heuristic function h(n) that estimates the cost of a solution from a node. Greedy best-first search is a best first search that expands nodes with minimal h(n). It is not optimal but often efficient. A* search is a best first search that takes into account the total cost from the root node to goal node. It expands node with minimal f(n) = g(n) + h(n). It is complete and optimal provided that h(n) is admissible (for tree search) or consistent (for graph search). The space complexity is prohibitive. 40

41 Summary Construction of heuristics can be done by relaxing the problem definition (in a sense simplifying the problem), by precomputing solution costs for subproblems or learning from experience with the problem class. Local search methods keep small number of nodes in memory. They are suitable for problems where the solution is the goal state itself and not the path. Hill climbing, simulated annealing and local beam search are examples of local search algorithms. Stochastic algorithms represent another class of methods for informed search. Genetic algorithms are a kind of stochastic hill-climbing search in which a large population of states is maintained. New states are generated by mutation and by crossover which combines pairs of states from the population. 41

Informed search algorithms. Chapter 4, Sections 1 2 1

Informed search algorithms. Chapter 4, Sections 1 2 1 Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

AI: A Modern Approach, Chpts. 3-4 Russell and Norvig

AI: A Modern Approach, Chpts. 3-4 Russell and Norvig AI: A Modern Approach, Chpts. 3-4 Russell and Norvig Sequential Decision Making in Robotics CS 599 Geoffrey Hollinger and Gaurav Sukhatme (Some slide content from Stuart Russell and HweeTou Ng) Spring,

More information

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 CS91.543 MidTerm Exam 4/1/2004 Name: KEY Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 % INTRODUCTION, AI HISTORY AND AGENTS 1. [4 pts. ea.] Briefly describe the following important AI programs.

More information

Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm

Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm 24 Genetic Algorithm Based on Darwinian Paradigm Reproduction Competition Survive Selection Intrinsically a robust search and optimization mechanism Slide -47 - Conceptual Algorithm Slide -48 - 25 Genetic

More information

An Introduction to The A* Algorithm

An Introduction to The A* Algorithm An Introduction to The A* Algorithm Introduction The A* (A-Star) algorithm depicts one of the most popular AI methods used to identify the shortest path between 2 locations in a mapped area. The A* algorithm

More information

Guessing Game: NP-Complete?

Guessing Game: NP-Complete? Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

Inteligencia Artificial Representación del conocimiento a través de restricciones (continuación)

Inteligencia Artificial Representación del conocimiento a través de restricciones (continuación) Inteligencia Artificial Representación del conocimiento a través de restricciones (continuación) Gloria Inés Alvarez V. Pontifica Universidad Javeriana Cali Periodo 2014-2 Material de David L. Poole and

More information

Smart Graphics: Methoden 3 Suche, Constraints

Smart Graphics: Methoden 3 Suche, Constraints Smart Graphics: Methoden 3 Suche, Constraints Vorlesung Smart Graphics LMU München Medieninformatik Butz/Boring Smart Graphics SS2007 Methoden: Suche 2 Folie 1 Themen heute Suchverfahren Hillclimbing Simulated

More information

Measuring the Performance of an Agent

Measuring the Performance of an Agent 25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational

More information

A Non-Linear Schema Theorem for Genetic Algorithms

A Non-Linear Schema Theorem for Genetic Algorithms A Non-Linear Schema Theorem for Genetic Algorithms William A Greene Computer Science Department University of New Orleans New Orleans, LA 70148 bill@csunoedu 504-280-6755 Abstract We generalize Holland

More information

Near Optimal Solutions

Near Optimal Solutions Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 7, July 23 ISSN: 2277 28X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Greedy Algorithm:

More information

Integer Programming: Algorithms - 3

Integer Programming: Algorithms - 3 Week 9 Integer Programming: Algorithms - 3 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/12 Dantzig-Wolfe Reformulation Example Strength of the Linear Programming

More information

Genetic programming with regular expressions

Genetic programming with regular expressions Genetic programming with regular expressions Børge Svingen Chief Technology Officer, Open AdExchange bsvingen@openadex.com 2009-03-23 Pattern discovery Pattern discovery: Recognizing patterns that characterize

More information

- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time

- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary

More information

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Manal F. Younis Computer Department, College

More information

6 Creating the Animation

6 Creating the Animation 6 Creating the Animation Now that the animation can be represented, stored, and played back, all that is left to do is understand how it is created. This is where we will use genetic algorithms, and this

More information

Holland s GA Schema Theorem

Holland s GA Schema Theorem Holland s GA Schema Theorem v Objective provide a formal model for the effectiveness of the GA search process. v In the following we will first approach the problem through the framework formalized by

More information

Fast Sequential Summation Algorithms Using Augmented Data Structures

Fast Sequential Summation Algorithms Using Augmented Data Structures Fast Sequential Summation Algorithms Using Augmented Data Structures Vadim Stadnik vadim.stadnik@gmail.com Abstract This paper provides an introduction to the design of augmented data structures that offer

More information

Symbol Tables. Introduction

Symbol Tables. Introduction Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The

More information

Search methods motivation 1

Search methods motivation 1 Suppose you are an independent software developer, and your software package Windows Defeater R, widely available on sourceforge under a GNU GPL license, is getting an international attention and acclaim.

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Mahyar Shahsavari, Zaid Al-Ars, Koen Bertels,1, Computer Engineering Group, Software & Computer Technology

More information

A Review And Evaluations Of Shortest Path Algorithms

A Review And Evaluations Of Shortest Path Algorithms A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing

More information

6.080/6.089 GITCS Feb 12, 2008. Lecture 3

6.080/6.089 GITCS Feb 12, 2008. Lecture 3 6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R

Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R Binary Search Trees A Generic Tree Nodes in a binary search tree ( B-S-T) are of the form P parent Key A Satellite data L R B C D E F G H I J The B-S-T has a root node which is the only node whose parent

More information

Data Structures Fibonacci Heaps, Amortized Analysis

Data Structures Fibonacci Heaps, Amortized Analysis Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:

More information

Lesson 33: Example 1 (5 minutes)

Lesson 33: Example 1 (5 minutes) Student Outcomes Students understand that the Law of Sines can be used to find missing side lengths in a triangle when you know the measures of the angles and one side length. Students understand that

More information

Chapter 6: Graph Theory

Chapter 6: Graph Theory Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information

Optimized Software Component Allocation On Clustered Application Servers. by Hsiauh-Tsyr Clara Chang, B.B., M.S., M.S.

Optimized Software Component Allocation On Clustered Application Servers. by Hsiauh-Tsyr Clara Chang, B.B., M.S., M.S. Optimized Software Component Allocation On Clustered Application Servers by Hsiauh-Tsyr Clara Chang, B.B., M.S., M.S. Submitted in partial fulfillment of the requirements for the degree of Doctor of Professional

More information

Genetic Algorithms and Sudoku

Genetic Algorithms and Sudoku Genetic Algorithms and Sudoku Dr. John M. Weiss Department of Mathematics and Computer Science South Dakota School of Mines and Technology (SDSM&T) Rapid City, SD 57701-3995 john.weiss@sdsmt.edu MICS 2009

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 eminders ssignment 0 due 5pm today ssignment 1 posted, due 2/9 ection 105 will move to 9-10am starting next week hapter 3 2 Outline Problem-solving agents

More information

3 Some Integer Functions

3 Some Integer Functions 3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple

More information

2 SYSTEM DESCRIPTION TECHNIQUES

2 SYSTEM DESCRIPTION TECHNIQUES 2 SYSTEM DESCRIPTION TECHNIQUES 2.1 INTRODUCTION Graphical representation of any process is always better and more meaningful than its representation in words. Moreover, it is very difficult to arrange

More information

SOLVING PROBLEMS BY SEARCHING

SOLVING PROBLEMS BY SEARCHING 3 SOLVING PROBLEMS BY SEARCHING In which we see how an agent can find a sequence of actions that achieves its goals, when no single action will do. PROBLEM SOLVING AGENT The simplest agents discussed in

More information

Solving the Vehicle Routing Problem with Genetic Algorithms

Solving the Vehicle Routing Problem with Genetic Algorithms Solving the Vehicle Routing Problem with Genetic Algorithms Áslaug Sóley Bjarnadóttir April 2004 Informatics and Mathematical Modelling, IMM Technical University of Denmark, DTU Printed by IMM, DTU 3 Preface

More information

The Halting Problem is Undecidable

The Halting Problem is Undecidable 185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine

More information

PROCESS OF LOAD BALANCING IN CLOUD COMPUTING USING GENETIC ALGORITHM

PROCESS OF LOAD BALANCING IN CLOUD COMPUTING USING GENETIC ALGORITHM PROCESS OF LOAD BALANCING IN CLOUD COMPUTING USING GENETIC ALGORITHM Md. Shahjahan Kabir 1, Kh. Mohaimenul Kabir 2 and Dr. Rabiul Islam 3 1 Dept. of CSE, Dhaka International University, Dhaka, Bangladesh

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

The Problem of Scheduling Technicians and Interventions in a Telecommunications Company

The Problem of Scheduling Technicians and Interventions in a Telecommunications Company The Problem of Scheduling Technicians and Interventions in a Telecommunications Company Sérgio Garcia Panzo Dongala November 2008 Abstract In 2007 the challenge organized by the French Society of Operational

More information

Example Problems. Channel Routing. Lots of Chip Real-estate. Same connectivity, much less space. Slide 1. Slide 2

Example Problems. Channel Routing. Lots of Chip Real-estate. Same connectivity, much less space. Slide 1. Slide 2 Iterative Improvement Search Hill Climbing, Simulated Annealing, WALKSAT, and Genetic Algorithms Andrew W. Moore Professor School of Computer Science Carnegie Mellon University www.cs.cmu.edu/~awm awm@cs.cmu.edu

More information

Lecture. Simulation and optimization

Lecture. Simulation and optimization Course Simulation Lecture Simulation and optimization 1 4/3/2015 Simulation and optimization Platform busses at Schiphol Optimization: Find a feasible assignment of bus trips to bus shifts (driver and

More information

A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy Optimization

A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy Optimization A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy Optimization Chun Chen, Jacqueline Chame, Mary Hall, and Kristina Lerman University of Southern California/Information Sciences

More information

Binary Search Trees CMPSC 122

Binary Search Trees CMPSC 122 Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than

More information

Optimal Tuning of PID Controller Using Meta Heuristic Approach

Optimal Tuning of PID Controller Using Meta Heuristic Approach International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 2 (2014), pp. 171-176 International Research Publication House http://www.irphouse.com Optimal Tuning of

More information

APP INVENTOR. Test Review

APP INVENTOR. Test Review APP INVENTOR Test Review Main Concepts App Inventor Lists Creating Random Numbers Variables Searching and Sorting Data Linear Search Binary Search Selection Sort Quick Sort Abstraction Modulus Division

More information

DEVELOPMENT OF A VULNERABILITY ASSESSMENT CODE FOR A PHYSICAL PROTECTION SYSTEM: SYSTEMATIC ANALYSIS OF PHYSICAL PROTECTION EFFECTIVENESS (SAPE)

DEVELOPMENT OF A VULNERABILITY ASSESSMENT CODE FOR A PHYSICAL PROTECTION SYSTEM: SYSTEMATIC ANALYSIS OF PHYSICAL PROTECTION EFFECTIVENESS (SAPE) DEVELOPMENT OF A VULNERABILITY ASSESSMENT CODE FOR A PHYSICAL PROTECTION SYSTEM: SYSTEMATIC ANALYSIS OF PHYSICAL PROTECTION EFFECTIVENESS (SAPE) SUNG SOON JANG *, SUNG-WOO KWAK, HOSIK YOO, JUNG-SOO KIM

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES 66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

(Refer Slide Time: 2:03)

(Refer Slide Time: 2:03) Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 11 Models of Industrial Control Devices and Systems (Contd.) Last time we were

More information

Chapter 6. Decoding. Statistical Machine Translation

Chapter 6. Decoding. Statistical Machine Translation Chapter 6 Decoding Statistical Machine Translation Decoding We have a mathematical model for translation p(e f) Task of decoding: find the translation e best with highest probability Two types of error

More information

Competitive Analysis of On line Randomized Call Control in Cellular Networks

Competitive Analysis of On line Randomized Call Control in Cellular Networks Competitive Analysis of On line Randomized Call Control in Cellular Networks Ioannis Caragiannis Christos Kaklamanis Evi Papaioannou Abstract In this paper we address an important communication issue arising

More information

Analysis of Algorithms I: Binary Search Trees

Analysis of Algorithms I: Binary Search Trees Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary

More information

A Robust Method for Solving Transcendental Equations

A Robust Method for Solving Transcendental Equations www.ijcsi.org 413 A Robust Method for Solving Transcendental Equations Md. Golam Moazzam, Amita Chakraborty and Md. Al-Amin Bhuiyan Department of Computer Science and Engineering, Jahangirnagar University,

More information

Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:

Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation: CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm

More information

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

More information

An Improved ACO Algorithm for Multicast Routing

An Improved ACO Algorithm for Multicast Routing An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China wzqagent@xinhuanet.com

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Dmitri Krioukov CAIDA/UCSD

Dmitri Krioukov CAIDA/UCSD Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD dima@caida.org F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

2. Length and distance in hyperbolic geometry

2. Length and distance in hyperbolic geometry 2. Length and distance in hyperbolic geometry 2.1 The upper half-plane There are several different ways of constructing hyperbolic geometry. These different constructions are called models. In this lecture

More information

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

More information

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

LOAD BALANCING IN CLOUD COMPUTING

LOAD BALANCING IN CLOUD COMPUTING LOAD BALANCING IN CLOUD COMPUTING Neethu M.S 1 PG Student, Dept. of Computer Science and Engineering, LBSITW (India) ABSTRACT Cloud computing is emerging as a new paradigm for manipulating, configuring,

More information

Mathematical Induction. Lecture 10-11

Mathematical Induction. Lecture 10-11 Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

More information

Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes

Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes International Archive of Applied Sciences and Technology Volume 3 [2] June 2012: 47-57 ISSN: 0976-4828 Society of Education, India Website: www.soeagra.com/iaast/iaast.htm Original Article Efficient Genetic

More information

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014 Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li Advised by: Dave Mount May 22, 2014 1 INTRODUCTION In this report we consider the implementation of an efficient

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

Properties of Stabilizing Computations

Properties of Stabilizing Computations Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71 93 Properties of Stabilizing Computations Mark Burgin a a University of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA

More information

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set. Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

More information

D A T A M I N I N G C L A S S I F I C A T I O N

D A T A M I N I N G C L A S S I F I C A T I O N D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.

More information

Optimizing Testing Efficiency with Error-Prone Path Identification and Genetic Algorithms

Optimizing Testing Efficiency with Error-Prone Path Identification and Genetic Algorithms Optimizing Testing Efficiency with Error-Prone Path Identification and Genetic Algorithms James R. Birt Renate Sitte Griffith University, School of Information Technology Gold Coast Campus PBM 50 Gold

More information

Performance Optimization of I-4 I 4 Gasoline Engine with Variable Valve Timing Using WAVE/iSIGHT

Performance Optimization of I-4 I 4 Gasoline Engine with Variable Valve Timing Using WAVE/iSIGHT Performance Optimization of I-4 I 4 Gasoline Engine with Variable Valve Timing Using WAVE/iSIGHT Sean Li, DaimlerChrysler (sl60@dcx dcx.com) Charles Yuan, Engineous Software, Inc (yuan@engineous.com) Background!

More information

Moving Target Search. 204 Automated Reasoning

Moving Target Search. 204 Automated Reasoning Moving Target Search Toru Ishida NTT Communications and Information Processing Laboratories 1-2356, Take, Yokosuka, 238-03, JAPAN ishida%nttkb.ntt.jp@relay.cs.net Richard E. Korf Computer Science Department

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

Regular Expressions and Automata using Haskell

Regular Expressions and Automata using Haskell Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions

More information

I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s

I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s Author: Sarah Roberts Interacting - Making Ellipticals - Teacher Notes Making Ellipticals Making Ellipticals - Changing

More information

Introduction To Genetic Algorithms

Introduction To Genetic Algorithms 1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: rkbc@iitg.ernet.in References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization

More information

Asexual Versus Sexual Reproduction in Genetic Algorithms 1

Asexual Versus Sexual Reproduction in Genetic Algorithms 1 Asexual Versus Sexual Reproduction in Genetic Algorithms Wendy Ann Deslauriers (wendyd@alumni.princeton.edu) Institute of Cognitive Science,Room 22, Dunton Tower Carleton University, 25 Colonel By Drive

More information

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province

Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province Ran Cao 1,1, Yushu Yang 1, Wei Guo 1, 1 Engineering college of Northeast Agricultural University, Haerbin, China

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Ordered Lists and Binary Trees

Ordered Lists and Binary Trees Data Structures and Algorithms Ordered Lists and Binary Trees Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/62 6-0:

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called heap-order property

A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called heap-order property CmSc 250 Intro to Algorithms Chapter 6. Transform and Conquer Binary Heaps 1. Definition A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called

More information

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Outline Selection methods Replacement methods Variation operators Selection Methods

More information

College of information technology Department of software

College of information technology Department of software University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/2011-2012 ***************************************************************************

More information

Load balancing Static Load Balancing

Load balancing Static Load Balancing Chapter 7 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection

More information

Computational Models Lecture 8, Spring 2009

Computational Models Lecture 8, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

More information