Graphic Pipeline & Lighting

Size: px
Start display at page:

Download "Graphic Pipeline & Lighting"

Transcription

1 Master Computer Science University Paris-Sud Open GL & GLSL Course Graphic Pipeline & Lighting Christian Jacquemin

2 Graphic Pipeline - Lighting (I) Graphic Pipeline

3 Graphic Pipe-line 4 types of shaders: vertex shader (geometry: vertices + attributes) tessellation shader (surface subdivision) geometry shader (geometrical expansion of a primitive) fragment shader (pixel rendering) main operations vertex processing (position, normals...): vertex shader + optional geometry shader tesselation (only if tesselation shader) primitive assembly (eg triangles) clipping and culling rasterization fragment processing: fragment shader

4 Graphic Pipe-line From

5 Shader compiling shaders are dynamically compiled they can be described as in-line code external files each shader is compiled separately they are joined into a single shader program (in and out variables should match to be passed along between shaders) there can only be one shader of each type there must be minimally one vertex shader and one fragment shader

6 Shader compiling // loading and compiling the vertex shader unsigned int vs = glcreateshader(gl_vertex_shader); loadshader( "sphere VS.glsl", vs); glcompileshader (vs); // loading and compiling the geometry shader unsigned int fs = glcreateshader(gl_fragment_shader); loadshader( "sphere FS.glsl", fs); glcompileshader (fs); // attaching them both to a shader program unsigned int shader_programme = glcreateprogram (); glattachshader (shader_programme, fs); glattachshader (shader_programme, vs); gllinkprogram (shader_programme);

7 Vertex shader #version 400 // input varyings layout(location = 0) in vec3 vp; layout(location = 1) in vec3 norm; layout(location = 2) in vec2 texcoord; // uniforms uniform mat4 modelmatrix; uniform mat4 viewmatrix; uniform mat4 projectionmatrix; uniform vec3 light; // outputs out vec3 normalout; out vec2 texcoordout; out vec3 lightout; void main () { normalout = norm; texcoordout = texcoord; lightout = (inverse(modelmatrix) * vec4(light,0.0)).xyz; gl_position = projectionmatrix * viewmatrix * modelmatrix * vec4(vp,1.0); };

8 Vertex Shader inputs varying vertex attributes (has to give their position) these variables must be used to be seen by the compiler inputs uniforms from the C++ program performs transformation of vertex coordinates in projection (clip) space and outputs it in gl_position: here: MVP transformation of vertex coordinates through Model, View, and Projection matrices optionally makes geometrical transformations, per vertex lighting... output variables for the next pipelined shader (here the geometry shader): the output variables are interpolated by the rasterizer

9 Vertex Shader case study in more detail lightout = (inverse(modelmatrix) * vec4(light,0.0)).xyz; outputs the light vector in the object space for the fragment shader (because light is fixed in world space) normalout = norm; texcoordout = texcoord; copies the normal and the texture coordinate to the fragment shader which receives these per-vertex output values interpolated gl_position = projectionmatrix * viewmatrix * modelmatrix * vec4(vp,1.0); computes the position of the vertex in the projection space

10 #version 400 Fragment shader // input varyings in vec3 normalout; in vec2 texcoordout; in vec3 lightout; // uniforms uniform sampler2drect planetesurface; // output color layout(location = 0) out vec4 frag_colour; void main () { // texture lookup frag_colour = texture( planetesurface, texcoordout * vec2(1440,720) ); // color output frag_colour.rgb *= max(0.0,dot(normalout,normalize(lightout))); };

11 Fragment Shader user-defined inputs from the last vertex processing stage (vertex shader if no other shader than vertex & fragment shaders) user-defined inputs are interpolated inputs uniforms from the C++ program system input: in vec4 gl_fragcoord; output variables // location of the fragment // in the window space(z=depth) frame buffer output with single attachment: unique out variable, no need for location. general case: several outputs that are assigned to different fragment colors (the colors are defined through the gldrawbuffers command). Providing the location is necessary to avoid unpredictable results. layout(location = 0) out vec4 diffusecolor; layout(location = 1) out vec4 specularcolor; notion of Mutiple Rendering Targets (MRTs) to be used with Frame Buffer Objects (FBOs)

12 Fragment Shader case study in more detail uniform sampler2drect planetesurface; inputs a rectangular texture ID frag_colour = texture( planetesurface, texcoordout * vec2(1440,720) ); reads texel at texture coordinates ([0,1] coordinates must be multiplied by the size of the texture for rectangular textures) frag_colour.rgb *= max(0.0, dot(normalout,normalize(lightout))); multiplies the texture color by the lighting attenuation due to Lambert law.

13 Binding Vertex Attributes Attributes Binding according to their position: glvertexattribpointer index of the vertex attribute size of the vertex attribute (1 to 4) type of the vertex attribute: e.g. GL_FLOAT normalized? stride: offset between two consecutive vertex attributes inside the buffer offset of the pointer to the first attribute C code for vertex attributes // vertex positions are at location 0 glbindbuffer (GL_ARRAY_BUFFER, vbo); glvertexattribpointer (0, 3, GL_FLOAT, GL_FALSE, 0, (Glubyte*)NULL); glenablevertexattribarray (0); corresponding vertex shader input variable layout(location = 0) in vec3 vp;

14 Binding Uniform Variables Uniforms Binding according to their ID in the vertex or fragment shader C code for uniform binding // binding uniform_model = glgetuniformlocation(shader_programme, "modelmatrix"); // assignment gluniformmatrix4fv(uniform_model, 1, GL_FALSE, glm::value_ptr(modelmatrix)); corresponding vertex shader input variable uniform mat4 modelmatrix;

15 Graphic Pipeline - Lighting (II) Lighting

16 Lighting Ingredients we only consider reflected light (and not transmitted light) the minimal ingredients for lighting are: normal vector light vector view vector and they should be all computed in the same coordinate system

17 Lighting Model a simple model of lighting is proposed which does not take in consideration the physical reality of a surface made of 3 components ambient lighting uniform lighting disregarding light sources diffuse lighting omnidirectional reflectivity mat surfaces specular lighting reflected light beam diffuse and specular lighting are associated with each light source and cumulated the reflected lights are functions of light source, surface reflectance & geometrical properties

18 Ambient Lighting constant light intensity that only depends on the surface

19 Ambient Lighting

20 Diffuse Lighting omnidirectional light intensity: does not depend on the viewing direction declines from zenith to horizon according to Lambert's law

21 Lambert's cosine law Diffuse Lighting

22 Ambient + Diffuse Lighting

23 Specular Lighting directionally reflected light: maximal in the reflected direction decreases quickly outside the reflected direction

24 Specular Lighting: Phong Model the intensity of the specular lighting decreases as an exponential of a cosine (angle between view and reflection)

25 Ambient + Diffuse + Specular Lighting

26 Lighting: n Sources Generalization sums the contribution of each source light in the scene for non-point light: sums over the whole surface

27 Lighting Interpolation for smooth shading: values at pixels inside a primitive are interpolated from their values at the vertices

28 Lighting Interpolation Gouraud vs Phong lighting: Gouraud: calculates lighting at the vertices and interpolates inside the triangle (OpenGL old style ) Phong: calculates lighting at the pixels from interpolated values of components (normals)

29 More Accurate Local Lighting Model: BRDF a better lighting models calculates the lighting as a sum over the half sphere of incoming light direction & intensity outgoing light direction + normal, view and surface properties

30 Phong Diffuse Lighting: Vertex Shader implementation Lighting is computed inside the fragment shader from interpolated components passed by vertex shader

31 Phong Diffuse Lighting: Vertex Shader implementation Phong diffuse lighting interpolation (vertex shader) normal is passed to fragment shader (normal interpolation) light is passed to fragment shader (considered as parallel light (eg sun)) normalout = norm; lightout = (inverse(modelmatrix) * vec4(light,0.0)).xyz;

32 Phong Diffuse Lighting: Fragment Shader implementation Phong diffuse lighting interpolation (fragment shader) diffuse lighting is computed from interpolated variables frag_colour.rgb *= max(0.0, dot(normalout,normalize(lightout))); similarly, specular lighting is computed at each pixel from interpolated pixel position, camera position, view and light vector. vec3 VertexToEye = normalize(positionout eyeout); vec3 LightReflect = normalize(reflect(lightout, normalout)); float SpecularFactor = dot(vertextoeye, LightReflect); SpecularFactor = max(0.0,pow(specularfactor, 60))*0.5; frag_colour.rgb += vec3(specularfactor);

33 Animation + Height Coloring

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico 1 Programming

More information

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007 Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

More information

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg Image Processing and Computer Graphics Rendering Pipeline Matthias Teschner Computer Science Department University of Freiburg Outline introduction rendering pipeline vertex processing primitive processing

More information

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering 3. Computer Graphics Sungmin Kim http://latam.jnu.ac.kr Computer Graphics Definition Introduction Research field related to the activities that includes graphics as input and output Importance Interactive

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

OpenGL "Hello, world!"

OpenGL Hello, world! OpenGL "Hello, world!" by Ian Romanick This work is licensed under the Creative Commons Attribution Non-commercial Share Alike (by-nc-sa) License. To view a copy of this license, (a) visit http://creativecommons.org/licenses/by-nc-sa/3.0/;

More information

CSE 564: Visualization. GPU Programming (First Steps) GPU Generations. Klaus Mueller. Computer Science Department Stony Brook University

CSE 564: Visualization. GPU Programming (First Steps) GPU Generations. Klaus Mueller. Computer Science Department Stony Brook University GPU Generations CSE 564: Visualization GPU Programming (First Steps) Klaus Mueller Computer Science Department Stony Brook University For the labs, 4th generation is desirable Graphics Hardware Pipeline

More information

Shader Model 3.0. Ashu Rege. NVIDIA Developer Technology Group

Shader Model 3.0. Ashu Rege. NVIDIA Developer Technology Group Shader Model 3.0 Ashu Rege NVIDIA Developer Technology Group Talk Outline Quick Intro GeForce 6 Series (NV4X family) New Vertex Shader Features Vertex Texture Fetch Longer Programs and Dynamic Flow Control

More information

CS418 GLSL Shader Programming Tutorial (I) Shader Introduction. Presented by : Wei-Wen Feng 3/12/2008

CS418 GLSL Shader Programming Tutorial (I) Shader Introduction. Presented by : Wei-Wen Feng 3/12/2008 CS418 GLSL Shader Programming Tutorial (I) Shader Introduction Presented by : Wei-Wen Feng 3/12/2008 MP3 MP3 will be available around Spring Break Don t worry, you got two more weeks after break. Use shader

More information

NVPRO-PIPELINE A RESEARCH RENDERING PIPELINE MARKUS TAVENRATH MATAVENRATH@NVIDIA.COM SENIOR DEVELOPER TECHNOLOGY ENGINEER, NVIDIA

NVPRO-PIPELINE A RESEARCH RENDERING PIPELINE MARKUS TAVENRATH MATAVENRATH@NVIDIA.COM SENIOR DEVELOPER TECHNOLOGY ENGINEER, NVIDIA NVPRO-PIPELINE A RESEARCH RENDERING PIPELINE MARKUS TAVENRATH MATAVENRATH@NVIDIA.COM SENIOR DEVELOPER TECHNOLOGY ENGINEER, NVIDIA GFLOPS 3500 3000 NVPRO-PIPELINE Peak Double Precision FLOPS GPU perf improved

More information

Tutorial 9: Skeletal Animation

Tutorial 9: Skeletal Animation Tutorial 9: Skeletal Animation Summary In the last couple of tutorials, you ve seen how to create a scene graph, and implemented a simple animating cube robot using them. You re probably wondering how

More information

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis Toby.Howard@manchester.ac.uk 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

More information

Color correction in 3D environments Nicholas Blackhawk

Color correction in 3D environments Nicholas Blackhawk Color correction in 3D environments Nicholas Blackhawk Abstract In 3D display technologies, as reviewers will say, color quality is often a factor. Depending on the type of display, either professional

More information

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and

More information

INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

More information

How To Teach Computer Graphics

How To Teach Computer Graphics Computer Graphics Thilo Kielmann Lecture 1: 1 Introduction (basic administrative information) Course Overview + Examples (a.o. Pixar, Blender, ) Graphics Systems Hands-on Session General Introduction http://www.cs.vu.nl/~graphics/

More information

Shadows. Shadows. Thanks to: Frédo Durand and Seth Teller MIT. Realism Depth cue

Shadows. Shadows. Thanks to: Frédo Durand and Seth Teller MIT. Realism Depth cue Shadows Thanks to: Frédo Durand and Seth Teller MIT 1 Shadows Realism Depth cue 2 1 Shadows as depth cue 3 Spatial relationship between objects Michael McCool Univ of Waterloo 4 2 Spatial relationship

More information

Vertex and fragment programs

Vertex and fragment programs Vertex and fragment programs Jon Hjelmervik email: jonmi@ifi.uio.no 1 Fixed function transform and lighting Each vertex is treated separately Affine transformation transforms the vertex by matrix multiplication

More information

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang Introduction Computer Graphics Instructor: Yung-Yu Chuang ( 莊 永 裕 ) E-mail: c@csie.ntu.edu.tw Office: CSIE 527 Grading: a MatchMove project Computer Science ce & Information o Technolog og Yung-Yu Chuang

More information

Recent Advances and Future Trends in Graphics Hardware. Michael Doggett Architect November 23, 2005

Recent Advances and Future Trends in Graphics Hardware. Michael Doggett Architect November 23, 2005 Recent Advances and Future Trends in Graphics Hardware Michael Doggett Architect November 23, 2005 Overview XBOX360 GPU : Xenos Rendering performance GPU architecture Unified shader Memory Export Texture/Vertex

More information

GUI GRAPHICS AND USER INTERFACES. Welcome to GUI! Mechanics. Mihail Gaianu 26/02/2014 1

GUI GRAPHICS AND USER INTERFACES. Welcome to GUI! Mechanics. Mihail Gaianu 26/02/2014 1 Welcome to GUI! Mechanics 26/02/2014 1 Requirements Info If you don t know C++, you CAN take this class additional time investment required early on GUI Java to C++ transition tutorial on course website

More information

OpenGL Performance Tuning

OpenGL Performance Tuning OpenGL Performance Tuning Evan Hart ATI Pipeline slides courtesy John Spitzer - NVIDIA Overview What to look for in tuning How it relates to the graphics pipeline Modern areas of interest Vertex Buffer

More information

OpenGL & Delphi. Max Kleiner. http://max.kleiner.com/download/openssl_opengl.pdf 1/22

OpenGL & Delphi. Max Kleiner. http://max.kleiner.com/download/openssl_opengl.pdf 1/22 OpenGL & Delphi Max Kleiner http://max.kleiner.com/download/openssl_opengl.pdf 1/22 OpenGL http://www.opengl.org Evolution of Graphics Assembler (demo pascalspeed.exe) 2D 3D Animation, Simulation (Terrain_delphi.exe)

More information

A.R.I.S.E. Architectural Real-time Interactive Showing Environment. Supervisor: Scott Chase

A.R.I.S.E. Architectural Real-time Interactive Showing Environment. Supervisor: Scott Chase A.R.I.S.E Architectural Real-time Interactive Showing Environment Supervisor: Scott Chase Kasper Grande, Nina T. Hansen Kasper J. Knutzen, Anders Kokholm Long T. Truong Contents A Unity 2 A.1 Unity in

More information

Computer Graphics on Mobile Devices VL SS2010 3.0 ECTS

Computer Graphics on Mobile Devices VL SS2010 3.0 ECTS Computer Graphics on Mobile Devices VL SS2010 3.0 ECTS Peter Rautek Rückblick Motivation Vorbesprechung Spiel VL Framework Ablauf Android Basics Android Specifics Activity, Layouts, Service, Intent, Permission,

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

Graphics Pipeline in a Nutshell

Graphics Pipeline in a Nutshell Graphics Pipeline in a Nutshell How do we create a rendering such as this? CS334 Spring 2008 Design the scene (technical drawing in wireframe ) Apply perspective transformations to the scene geometry for

More information

Procedural Shaders: A Feature Animation Perspective

Procedural Shaders: A Feature Animation Perspective Procedural Shaders: A Feature Animation Perspective Hector Yee, Rendering Specialist, PDI/DreamWorks David Hart, Senior FX Developer, PDI/DreamWorks Arcot J. Preetham, Senior Engineer, ATI Research Motivation

More information

Interactive visualization of multi-dimensional data in R using OpenGL

Interactive visualization of multi-dimensional data in R using OpenGL Interactive visualization of multi-dimensional data in R using OpenGL 6-Monats-Arbeit im Rahmen der Prüfung für Diplom-Wirtschaftsinformatiker an der Universität Göttingen vorgelegt am 09.10.2002 von Daniel

More information

Radeon HD 2900 and Geometry Generation. Michael Doggett

Radeon HD 2900 and Geometry Generation. Michael Doggett Radeon HD 2900 and Geometry Generation Michael Doggett September 11, 2007 Overview Introduction to 3D Graphics Radeon 2900 Starting Point Requirements Top level Pipeline Blocks from top to bottom Command

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device

More information

GPUs Under the Hood. Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology

GPUs Under the Hood. Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology GPUs Under the Hood Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology Bandwidth Gravity of modern computer systems The bandwidth between key components

More information

A Short Introduction to Computer Graphics

A Short Introduction to Computer Graphics A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics A Top-Down Approach Using OpenGL FIFTH EDITION EDWARD ANGEL UNIVERSITY OF NEW MEXICO PEARSON Addison Wesley Boston San Francisco New York London Toronto Sydney Tokyo Singapore

More information

A Pipeline From COLLADA to WebGL for Skeletal Animation

A Pipeline From COLLADA to WebGL for Skeletal Animation A Pipeline From COLLADA to WebGL for Skeletal Animation Jeffery McRiffey, Ralph M. Butler, and Chrisila C. Pettey Computer Science Department, Middle Tennessee State University, Murfreesboro, TN, USA Abstract

More information

Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include

More information

GPU Architecture. Michael Doggett ATI

GPU Architecture. Michael Doggett ATI GPU Architecture Michael Doggett ATI GPU Architecture RADEON X1800/X1900 Microsoft s XBOX360 Xenos GPU GPU research areas ATI - Driving the Visual Experience Everywhere Products from cell phones to super

More information

Programmable Graphics Hardware

Programmable Graphics Hardware Programmable Graphics Hardware Alessandro Martinelli alessandro.martinelli@unipv.it 6 November 2011 Rendering Pipeline (6): Programmable Graphics Hardware Rendering Architecture First Rendering Pipeline

More information

DATA VISUALIZATION OF THE GRAPHICS PIPELINE: TRACKING STATE WITH THE STATEVIEWER

DATA VISUALIZATION OF THE GRAPHICS PIPELINE: TRACKING STATE WITH THE STATEVIEWER DATA VISUALIZATION OF THE GRAPHICS PIPELINE: TRACKING STATE WITH THE STATEVIEWER RAMA HOETZLEIN, DEVELOPER TECHNOLOGY, NVIDIA Data Visualizations assist humans with data analysis by representing information

More information

Masters of Science in Software & Information Systems

Masters of Science in Software & Information Systems Masters of Science in Software & Information Systems To be developed and delivered in conjunction with Regis University, School for Professional Studies Graphics Programming December, 2005 1 Table of Contents

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Version 1.1, January 2016 David J. Eck Hobart and William Smith Colleges This is a PDF version of a free, on-line book that is available at http://math.hws.edu/graphicsbook/.

More information

QCD as a Video Game?

QCD as a Video Game? QCD as a Video Game? Sándor D. Katz Eötvös University Budapest in collaboration with Győző Egri, Zoltán Fodor, Christian Hoelbling Dániel Nógrádi, Kálmán Szabó Outline 1. Introduction 2. GPU architecture

More information

Rally Sport Racing Game: CodeName Space Racer

Rally Sport Racing Game: CodeName Space Racer Rally Sport Racing Game: CodeName Space Racer - An evaluation of techniques used when developing a marketable 3D game Sebastian Almlöf (Chalmers) Ludvig Gjälby (Chalmers) Markus Pettersson (Chalmers) Gustav

More information

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su (sarasu@cs.tufts.edu) TA: Matt Menke

More information

IT 386: 3D Modeling and Animation. Review Sheet. Notes from Professor Nersesian s IT 386: 3D Modeling and Animation course

IT 386: 3D Modeling and Animation. Review Sheet. Notes from Professor Nersesian s IT 386: 3D Modeling and Animation course IT 386: 3D Modeling and Animation Review Sheet Sources: Notes from Professor Nersesian s IT 386: 3D Modeling and Animation course Notes from CannedMushrooms on YouTube Notes from Digital Tutors tutorial

More information

Lecture Notes, CEng 477

Lecture Notes, CEng 477 Computer Graphics Hardware and Software Lecture Notes, CEng 477 What is Computer Graphics? Different things in different contexts: pictures, scenes that are generated by a computer. tools used to make

More information

Computer Graphics. Anders Hast

Computer Graphics. Anders Hast Computer Graphics Anders Hast Who am I?! 5 years in Industry after graduation, 2 years as high school teacher.! 1996 Teacher, University of Gävle! 2004 PhD, Computerised Image Processing " Computer Graphics!

More information

CSE168 Computer Graphics II, Rendering. Spring 2006 Matthias Zwicker

CSE168 Computer Graphics II, Rendering. Spring 2006 Matthias Zwicker CSE168 Computer Graphics II, Rendering Spring 2006 Matthias Zwicker Last time Global illumination Light transport notation Path tracing Sampling patterns Reflection vs. rendering equation Reflection equation

More information

OpenGL Shading Language Course. Chapter 5 Appendix. By Jacobo Rodriguez Villar jacobo.rodriguez@typhoonlabs.com

OpenGL Shading Language Course. Chapter 5 Appendix. By Jacobo Rodriguez Villar jacobo.rodriguez@typhoonlabs.com OpenGL Shading Language Course Chapter 5 Appendix By Jacobo Rodriguez Villar jacobo.rodriguez@typhoonlabs.com TyphoonLabs GLSL Course 1/1 APPENDIX INDEX Using GLSL Shaders Within OpenGL Applications 2

More information

Optimizing AAA Games for Mobile Platforms

Optimizing AAA Games for Mobile Platforms Optimizing AAA Games for Mobile Platforms Niklas Smedberg Senior Engine Programmer, Epic Games Who Am I A.k.a. Smedis Epic Games, Unreal Engine 15 years in the industry 30 years of programming C64 demo

More information

Last lecture... Computer Graphics:

Last lecture... Computer Graphics: Last lecture... Computer Graphics: Visualisation can be greatly enhanced through the Introduction to the Visualisation use of 3D computer graphics Toolkit Visualisation Lecture 2 toby.breckon@ed.ac.uk

More information

A Crash Course on Programmable Graphics Hardware

A Crash Course on Programmable Graphics Hardware A Crash Course on Programmable Graphics Hardware Li-Yi Wei Abstract Recent years have witnessed tremendous growth for programmable graphics hardware (GPU), both in terms of performance and functionality.

More information

3D Graphics and Cameras

3D Graphics and Cameras 3D Graphics and Cameras Kari Pulli Senior Director Overview OpenGL ES 1.x OpenGL ES 2.0 WebGL OpenCV FCam All examples on this session on Android OpenGL: Project vertices to camera connect them to triangles

More information

Parallel Web Programming

Parallel Web Programming Parallel Web Programming Tobias Groß, Björn Meier Hardware/Software Co-Design, University of Erlangen-Nuremberg May 23, 2013 Outline WebGL OpenGL Rendering Pipeline Shader WebCL Motivation Development

More information

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC Cork Education and Training Board Programme Module for 3 Dimensional Computer Graphics Leading to Level 5 FETAC 3 Dimensional Computer Graphics 5N5029 3 Dimensional Computer Graphics 5N5029 1 Version 3

More information

High Dynamic Range and other Fun Shader Tricks. Simon Green

High Dynamic Range and other Fun Shader Tricks. Simon Green High Dynamic Range and other Fun Shader Tricks Simon Green Demo Group Motto If you can t make it good, make it big. If you can t make it big, make it shiny. Overview The OpenGL vertex program and texture

More information

3D Augmented Reality Mobile Application Prototype for Visual Planning Support

3D Augmented Reality Mobile Application Prototype for Visual Planning Support 3D Augmented Reality Mobile Application Prototype for Visual Planning Support Arnau Fombuena Valero Master s of Science Thesis in Geoinformatics TRITA-GIT EX 11-010 School of Architecture and the Built

More information

Writing Applications for the GPU Using the RapidMind Development Platform

Writing Applications for the GPU Using the RapidMind Development Platform Writing Applications for the GPU Using the RapidMind Development Platform Contents Introduction... 1 Graphics Processing Units... 1 RapidMind Development Platform... 2 Writing RapidMind Enabled Applications...

More information

Advanced Visual Effects with Direct3D

Advanced Visual Effects with Direct3D Advanced Visual Effects with Direct3D Presenters: Mike Burrows, Sim Dietrich, David Gosselin, Kev Gee, Jeff Grills, Shawn Hargreaves, Richard Huddy, Gary McTaggart, Jason Mitchell, Ashutosh Rege and Matthias

More information

Instructor. Goals. Image Synthesis Examples. Applications. Computer Graphics. Why Study 3D Computer Graphics?

Instructor. Goals. Image Synthesis Examples. Applications. Computer Graphics. Why Study 3D Computer Graphics? Computer Graphics Motivation: Why do we study 3D Graphics? http://www.cs.ucsd.edu/~ravir Instructor http://www.cs.ucsd.edu/~ravir PhD Stanford, 2002. PhD thesis developed Spherical Harmonic Lighting widely

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject

More information

GPGPU Computing. Yong Cao

GPGPU Computing. Yong Cao GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power

More information

Developer Tools. Tim Purcell NVIDIA

Developer Tools. Tim Purcell NVIDIA Developer Tools Tim Purcell NVIDIA Programming Soap Box Successful programming systems require at least three tools High level language compiler Cg, HLSL, GLSL, RTSL, Brook Debugger Profiler Debugging

More information

Overview Motivation and applications Challenges. Dynamic Volume Computation and Visualization on the GPU. GPU feature requests Conclusions

Overview Motivation and applications Challenges. Dynamic Volume Computation and Visualization on the GPU. GPU feature requests Conclusions Module 4: Beyond Static Scalar Fields Dynamic Volume Computation and Visualization on the GPU Visualization and Computer Graphics Group University of California, Davis Overview Motivation and applications

More information

REAL-TIME IMAGE BASED LIGHTING FOR OUTDOOR AUGMENTED REALITY UNDER DYNAMICALLY CHANGING ILLUMINATION CONDITIONS

REAL-TIME IMAGE BASED LIGHTING FOR OUTDOOR AUGMENTED REALITY UNDER DYNAMICALLY CHANGING ILLUMINATION CONDITIONS REAL-TIME IMAGE BASED LIGHTING FOR OUTDOOR AUGMENTED REALITY UNDER DYNAMICALLY CHANGING ILLUMINATION CONDITIONS Tommy Jensen, Mikkel S. Andersen, Claus B. Madsen Laboratory for Computer Vision and Media

More information

Android and OpenGL. Android Smartphone Programming. Matthias Keil. University of Freiburg

Android and OpenGL. Android Smartphone Programming. Matthias Keil. University of Freiburg Android and OpenGL Android Smartphone Programming Matthias Keil Institute for Computer Science Faculty of Engineering 16. Dezember 2013 Outline 1 OpenGL Introduction 2 Displaying Graphics 3 Interaction

More information

CUBE-MAP DATA STRUCTURE FOR INTERACTIVE GLOBAL ILLUMINATION COMPUTATION IN DYNAMIC DIFFUSE ENVIRONMENTS

CUBE-MAP DATA STRUCTURE FOR INTERACTIVE GLOBAL ILLUMINATION COMPUTATION IN DYNAMIC DIFFUSE ENVIRONMENTS ICCVG 2002 Zakopane, 25-29 Sept. 2002 Rafal Mantiuk (1,2), Sumanta Pattanaik (1), Karol Myszkowski (3) (1) University of Central Florida, USA, (2) Technical University of Szczecin, Poland, (3) Max- Planck-Institut

More information

Introduction Week 1, Lecture 1

Introduction Week 1, Lecture 1 CS 430/536 Computer Graphics I Introduction Week 1, Lecture 1 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

Performance Optimization and Debug Tools for mobile games with PlayCanvas

Performance Optimization and Debug Tools for mobile games with PlayCanvas Performance Optimization and Debug Tools for mobile games with PlayCanvas Jonathan Kirkham, Senior Software Engineer, ARM Will Eastcott, CEO, PlayCanvas 1 Introduction Jonathan Kirkham, ARM Worked with

More information

3D Math Overview and 3D Graphics Foundations

3D Math Overview and 3D Graphics Foundations Freescale Semiconductor Application Note Document Number: AN4132 Rev. 0, 05/2010 3D Math Overview and 3D Graphics Foundations by Multimedia Applications Division Freescale Semiconductor, Inc. Austin, TX

More information

GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series. By: Binesh Tuladhar Clay Smith

GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series. By: Binesh Tuladhar Clay Smith GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series By: Binesh Tuladhar Clay Smith Overview History of GPU s GPU Definition Classical Graphics Pipeline Geforce 6 Series Architecture Vertex

More information

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline Windows Embedded Compact 7 Technical Article Writers: David Franklin,

More information

Blender addons ESRI Shapefile import/export and georeferenced raster import

Blender addons ESRI Shapefile import/export and georeferenced raster import Blender addons ESRI Shapefile import/export and georeferenced raster import This blender addon is a collection of 4 tools: ESRI Shapefile importer - Import point, pointz, polyline, polylinez, polygon,

More information

Lecture 15: Hardware Rendering

Lecture 15: Hardware Rendering Lecture 15: Hardware Rendering Fall 2004 Kavita Bala Computer Science Cornell University Announcements Project discussion this week Proposals: Oct 26 Exam moved to Nov 18 (Thursday) Bounding Volume vs.

More information

How To Use An Amd Graphics Card In Greece 2.5.1 And 2.4.1 (Amd) With Greege 2.3.5 (Greege) With An Amd Greeper 2.2.

How To Use An Amd Graphics Card In Greece 2.5.1 And 2.4.1 (Amd) With Greege 2.3.5 (Greege) With An Amd Greeper 2.2. AMD GPU Association Targeting GPUs for Load Balancing in OpenGL The contents of this document are provided in connection with Advanced Micro Devices, Inc. ( AMD ) products. THE INFORMATION IN THIS PUBLICATION

More information

Game Development in Android Disgruntled Rats LLC. Sean Godinez Brian Morgan Michael Boldischar

Game Development in Android Disgruntled Rats LLC. Sean Godinez Brian Morgan Michael Boldischar Game Development in Android Disgruntled Rats LLC Sean Godinez Brian Morgan Michael Boldischar Overview Introduction Android Tools Game Development OpenGL ES Marketing Summary Questions Introduction Disgruntled

More information

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch.

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch. CSCI 480 Computer Graphics Lecture 1 Course Overview January 14, 2013 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s13/ Administrative Issues Modeling Animation

More information

Water Flow in. Alex Vlachos, Valve July 28, 2010

Water Flow in. Alex Vlachos, Valve July 28, 2010 Water Flow in Alex Vlachos, Valve July 28, 2010 Outline Goals & Technical Constraints How Artists Create Flow Maps Flowing Normal Maps in Left 4 Dead 2 Flowing Color Maps in Portal 2 Left 4 Dead 2 Goals

More information

Programming 3D Applications with HTML5 and WebGL

Programming 3D Applications with HTML5 and WebGL Programming 3D Applications with HTML5 and WebGL Tony Parisi Beijing Cambridge Farnham Köln Sebastopol Tokyo Table of Contents Preface ix Part I. Foundations 1. Introduction 3 HTML5: A New Visual Medium

More information

How To Draw A 3D Virtual World In 3D Space (Computer Graphics)

How To Draw A 3D Virtual World In 3D Space (Computer Graphics) 2 Computer Graphics What You Will Learn: The objectives of this chapter are quite ambitious; you should refer to the references cited in each Section to get a deeper explanation of the topics presented.

More information

Touchstone -A Fresh Approach to Multimedia for the PC

Touchstone -A Fresh Approach to Multimedia for the PC Touchstone -A Fresh Approach to Multimedia for the PC Emmett Kilgariff Martin Randall Silicon Engineering, Inc Presentation Outline Touchstone Background Chipset Overview Sprite Chip Tiler Chip Compressed

More information

NVIDIA Corporation 2701 San Tomas Expressway Santa Clara, CA 95050 www.nvidia.com

NVIDIA Corporation 2701 San Tomas Expressway Santa Clara, CA 95050 www.nvidia.com Release 1.1 February 2003 Cg Language Toolkit ALL DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED

More information

The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA

The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA The Evolution of Computer Graphics Tony Tamasi SVP, Content & Technology, NVIDIA Graphics Make great images intricate shapes complex optical effects seamless motion Make them fast invent clever techniques

More information

Jan Köhnlein and Helmut Weberpals 01.12.99

Jan Köhnlein and Helmut Weberpals 01.12.99 1 Graphics Primitives Graphics Primitives 3-dimensional point class Point3d 3-dimensional (directional) vector class Vector3d Class of 3-dimensional line segments LineArray 2 Modeling of 3D Objects Modeling

More information

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

More information

Hi everyone, my name is Michał Iwanicki. I m an engine programmer at Naughty Dog and this talk is entitled: Lighting technology of The Last of Us,

Hi everyone, my name is Michał Iwanicki. I m an engine programmer at Naughty Dog and this talk is entitled: Lighting technology of The Last of Us, Hi everyone, my name is Michał Iwanicki. I m an engine programmer at Naughty Dog and this talk is entitled: Lighting technology of The Last of Us, but I should have called it old lightmaps new tricks 1

More information

NVFX : A NEW SCENE AND MATERIAL EFFECT FRAMEWORK FOR OPENGL AND DIRECTX. TRISTAN LORACH Senior Devtech Engineer SIGGRAPH 2013

NVFX : A NEW SCENE AND MATERIAL EFFECT FRAMEWORK FOR OPENGL AND DIRECTX. TRISTAN LORACH Senior Devtech Engineer SIGGRAPH 2013 NVFX : A NEW SCENE AND MATERIAL EFFECT FRAMEWORK FOR OPENGL AND DIRECTX TRISTAN LORACH Senior Devtech Engineer SIGGRAPH 2013 nvfx : Plan What is an Effect New Approach and new ideas of nvfx Examples Walkthrough

More information

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Cyrus Jam cjam@sdsc.edu Mike Bailey mjb@sdsc.edu San Diego Supercomputer Center University of California San Diego Abstract With

More information

Image Synthesis. Transparency. computer graphics & visualization

Image Synthesis. Transparency. computer graphics & visualization Image Synthesis Transparency Inter-Object realism Covers different kinds of interactions between objects Increasing realism in the scene Relationships between objects easier to understand Shadows, Reflections,

More information

Web Based 3D Visualization for COMSOL Multiphysics

Web Based 3D Visualization for COMSOL Multiphysics Web Based 3D Visualization for COMSOL Multiphysics M. Jüttner* 1, S. Grabmaier 1, W. M. Rucker 1 1 University of Stuttgart Institute for Theory of Electrical Engineering *Corresponding author: Pfaffenwaldring

More information

glga: an OpenGL Geometric Application framework for a modern, shader-based computer graphics curriculum

glga: an OpenGL Geometric Application framework for a modern, shader-based computer graphics curriculum EUROGRAPHICS 2014/ J.- J. Bourdin, J. Jorge, and E. Anderson Education Paper glga: an OpenGL Geometric Application framework for a modern, shader-based computer graphics curriculum G. Papagiannakis 1,2,

More information

Advanced Computer Graphics. Rendering Equation. Matthias Teschner. Computer Science Department University of Freiburg

Advanced Computer Graphics. Rendering Equation. Matthias Teschner. Computer Science Department University of Freiburg Advanced Computer Graphics Rendering Equation Matthias Teschner Computer Science Department University of Freiburg Outline rendering equation Monte Carlo integration sampling of random variables University

More information

Two Research Schools become ONE

Two Research Schools become ONE www.cb.uu.se/~aht Anders.Hast@it.uu.se Two Research Schools become ONE 1996 213 27 1 www.cb.uu.se/~aht Anders.Hast@it.uu.se Collaboration between Two Research Initiatives 2 www.cb.uu.se/~aht Anders.Hast@it.uu.se

More information

Optimization for DirectX9 Graphics. Ashu Rege

Optimization for DirectX9 Graphics. Ashu Rege Optimization for DirectX9 Graphics Ashu Rege Last Year: Batch, Batch, Batch Moral of the story: Small batches BAD What is a batch Every DrawIndexedPrimitive call is a batch All render, texture, shader,...

More information

Nicolas P. Rougier PyConFr Conference 2014 Lyon, October 24 25

Nicolas P. Rougier PyConFr Conference 2014 Lyon, October 24 25 GRAPHICS AND ANIMATIONS IN PYTHON USING MATPLOTLIB AND OPENGL Nicolas P. Rougier PyConFr Conference 2014 Lyon, October 24 25 Graphics and Animations in Python Where do we start? A Bit of Context The Python

More information

Modern Graphics Engine Design. Sim Dietrich NVIDIA Corporation sim.dietrich@nvidia.com

Modern Graphics Engine Design. Sim Dietrich NVIDIA Corporation sim.dietrich@nvidia.com Modern Graphics Engine Design Sim Dietrich NVIDIA Corporation sim.dietrich@nvidia.com Overview Modern Engine Features Modern Engine Challenges Scene Management Culling & Batching Geometry Management Collision

More information

3D Computer Games History and Technology

3D Computer Games History and Technology 3D Computer Games History and Technology VRVis Research Center http://www.vrvis.at Lecture Outline Overview of the last 10-15 15 years A look at seminal 3D computer games Most important techniques employed

More information

First, let me do a super fast introduction,

First, let me do a super fast introduction, 1 (Trailer) Today, I would like to talk about the art style of our latest title GuiltyGear Xrd. Why did we choose this art style? What made it so hard to fake 2d in 3d? How did we accomplish it? What made

More information

Computer Animation: Art, Science and Criticism

Computer Animation: Art, Science and Criticism Computer Animation: Art, Science and Criticism Tom Ellman Harry Roseman Lecture 12 Ambient Light Emits two types of light: Directional light, coming from a single point Contributes to diffuse shading.

More information

CMSC 427 Computer Graphics 1

CMSC 427 Computer Graphics 1 CMSC 427 Computer Graphics 1 David M. Mount Department of Computer Science University of Maryland Fall 2010 1 Copyright, David M. Mount, 2010, Dept. of Computer Science, University of Maryland, College

More information