ISSUES AND ETHICS SURROUNDING GENETIC ENGINEERING OF FOODS

Size: px
Start display at page:

Download "ISSUES AND ETHICS SURROUNDING GENETIC ENGINEERING OF FOODS"

Transcription

1 ISSUES AND ETHICS SURROUNDING GENETIC ENGINEERING OF FOODS BACKGROUND This activity is aimed at increasing student awareness of the issues surrounding the development of biotechnology and the products of genetic engineering, especially in the area of food. Within the next few years literally thousands of genetically modified food products or products with genetically modified components could be put onto the world market. The incentive for pursuing this area of biotechnology comes in four main categories: better health, better products, better for the environment, and better business. There are a number of practical and ethical implications associated with this technology which are not readily understood by the public and often become emotive when publicised through the news media. It is important for people to be able to knowledgeably discuss the possible benefits and costs of this technology along with some of the ethical concerns as public debate heightens in the future. WHAT IS GENETIC ENGINEERING? The process of genetic engineering is known by many different names such as gene, or DNA manipulation, gene splicing, transgenics and many others. However the underlying processes all have the same aim and that is: To isolate single genes of a known function from one organism and transfer a copy of that gene to a new host to introduce a desirable characteristic The structure of every living thing is determined by its genes. A gene is a chemical code which contains an instruction for the body to express a particular attribute such as eye colour, skin pigment or height. Each gene is made up of a segment of DNA (deoxyribonucleic acid). Scientists are able to extract DNA from any organism and can then isolate a specific gene through the use of restriction endonucleases, which cut DNA strands at specific points. The gene is then copied billions fold in readiness for transfer to another organism. METHODS OF GENE TRANSFER There are four primary methods of introducing an isolated gene into the host. These are: 1. Injection. This is used primarily in animals. The new DNA is injected with a very small sharp needle into the nucleus of a single cell. This cell is usually a fertilised egg which can then be placed back in the female uterus where the injected cell is allowed to develop

2 normally. Unfortunately there is a high rate of failure when using this technique as cells infrequently take up and express the desired traits of the introduced DNA. 2. Biolistics. Biolistics is used in the genetic modification of plants and involves shooting new genes into the potential host. Microscopic particles of gold or titanium are coated in the DNA sections which are to be introduced to the host. These are loaded into cartridges, similar to shotgun cartridges, which are then fired at the plant cells. The processrelies on some of the microscopic particles entering this cell nuclei and their DNA coating combining with the plant chromosomes. 3. Vectors. This method has the potential to be used in both plant and animal situations. It involves a bacteria or virus carrying a new gene into a cell. Using a modification of what is already happening in nature. Common vectors in gene transfer between plants are Agrobacterium tumefaciens and Agrobacterium rhizogenes. These bacteria are usually found in the soil and if they infect plants will respectively cause galls or hairy roots through introducing some of their own DNA into the plant. The Agrobacterium transfer the DNA as a plasmid, a small circular piece of DNA, which is separate to the main bacterial chromosome. Genetic engineering makes use of this natural transfer of DNA through replacing a section of the bacteria s own DNA with a gene which scientists would like to introduce to a new host. 4. Protoplast transformation. This is also commonly used in plants. The cellulose in the plant wall is dissolved away using enzymes leaving a protoplast. DNA can then be added to the protoplast which are then cultured on a growth media. This encourages the protoplast to regrow cell walls and eventually grow into a transgenic plant. MARKER GENES When making genetic modifications it is important that the scientist is able to tell if the transformation has been successful. For this reason it is usual to introduce a marker gene to the host so that successful transformations of DNA can be identified. For example in plant transgenics, a gene which confers resistance to the antibiotic kanamycin is often used. The desired gene is transferred along with the kanamycin resistant gene attached. Following this process, the potentially transformed cells are placed in a growth medium containing kanamycin. Those cells which have been transformed (now containing a

3 kanamycin resistance gene) will grow in the media while the other unaltered cells will die. POTENTIAL BENEFITS OF GENE TECHNOLOGY As previously mentioned the incentives for modifying organisms and especially food genetically, come in four main categories: better health, better products and better for the environment. Better Health Genetically modified food has great potential as a relatively cheap source of human therapeutics, especially for the worlds poorer countries. In 1996 US researchers were genetically engineering a banana to produce an antigen found in the outer coat of the hepatitis B virus. If successful this banana could immunise children in developing countries for just a few cents per dose. Currently traditional hepatitis B vaccines cost between $100 and $200 per dose. Researchers say that a banana or any fruit that is eaten raw could be genetically engineered to vaccinate against a wide range of diseases, providing a cheap source of protection. Food is also being modified to increase its nutritional value through altering the vitamin, mineral, carbohydrate, protein and fat profiles. Better Products Aside from health benefits, food can be improved through making the process of producing them easier for the farmer or grower. This improvement comes about through providing the plant with pest and disease resistance or increasing crop tolerance to a wider range of climates, or making the food more attractive to the consumer. Crops are difficult to raise for different reasons, for example strawberries are not very frost hardy which makes them difficult to grow in certain climates. However a few years ago researchers discovered that the Arctic flounder produces an anti freeze to protect itself in Arctic waters. Research is now underway to introduce the anti freeze gene into fruits and vegetables like strawberries and soya beans which can be damaged or destroyed by frost. In the same way a gene from the common soil bacterium Bacillus thuringiensis or Bt for short, which is well known for its insecticidal properties can be incorporated into crops to make them more resistant to an insect attack. From the consumers point of view food can be made more attractive in many ways. Possible examples include apples which don t go brown after a few minutes when you cut or bite into them, or onions that don t make your eyes water. Genetic engineering has also provided the possibility of raising crops with less use of chemical protectants such as herbicides and fungicides. This means less residue on the crops which is also makes this type of product more attractive to the consumer.

4 Better For The Environment Growing genetically modified crops resistant to pests or diseases could reduce the eliance of agriculture on chemical sprays. While this makes the crop easier and cheaper to grow for the farmer, it also means that other indirect costs of spraying are eliminated, eg. knocking out all the beneficial insects and vertebrates through the use of chemical pesticides. Such resistance provides a good marketing opportunity whereby Canada may be able to enhance its clean green image. The development of herbicide resistant crops generally involves transferring genes with resistance to environmentally friendly herbicides such as Glyphosate (Round Up). This allows growers to spray such herbicides without damaging the crop plant. Effects On People Nutritional value of food Genetically modifying foods can alter their nutritional value. This can have undesirable as well as beneficial effects. For example, researchers recently inserted a gene from a Brazil nut into soybean to try and improve its nutritional quality. However, in their testing, they found that the protein produced was the one responsible for the allergenicity of Brazil nuts. This allergenicity was also transferred to the soybeans. As a consequence, this soybean has never been marketed. The nutritional value of food could also be diminished by inserted genes interrupting the function of other genes in a genetically modified plant. However, these should normally be detected during the experimental stage and/or testing. Effects of marker genes During genetic transformation not all cells will undergo the desired modification and it is therefore necessary to select those that have been changed. To do this a marker gene may be inserted along with the desired gene into the plant. As previously mentioned a marker gene may confer resistance to specific antibiotics so that when these antibiotics are added to the growth medium, only those cells with the desired modification will grow. Some people worry that live GMF s could transfer antibiotic resistant genes to people. While it is highly unlikely, if it did occur this could have negative effects on the efficiency of some antibiotics currently in use by medical practitioners and limit the number of antibiotics available. To counteract this, regulatory authorities advise that, wherever GMF s are to be consumed live, such as is the case with live yoghurt made using modified starter cultures, the marker genes should be eliminated from the final product. This is only a problem with raw products as DNA, including the antibiotic resistant gene, is altered by the cooking process. There is no public benefit from having antibiotic genes or proteins in GMF. Ethical considerations Given genes can be transferred from any organism to another, some ethical considerations arise. For example when eating a vegetable will a vegetarian be concerned to learn that their broccoli contains DNA copied from a pig gene? If it were to contain

5 copies of a human gene does this mean that the person eating it is a cannibal? While people will be put off or even outraged by such possibilities, technologists point out that although there may be an ethical dilemma which is likely to be debated emotively, the chemical structure of DNA is the same whether you are a human, a tree or an amoeba. It is only the sequence of the nucleotides within the DNA which determines the genetic makeup of the organism. Effects In Agriculture Use of herbicides and pesticide resistant genes Tolerance of crops to herbicides, insects and pests and adverse climatic conditions are the most hotly researched characteristics of crops at present. However potential dangers are seen in a number of areas. 1. Pests and diseases can develop tolerance to the genetically conferred pest and disease resistance factors in the crop as a result of high selection pressure. This may mean that resistance quickly becomes obsolete and other methods may be required to control the pest or disease. Plant breeders point out that these types of selection pressures are already exerted through the use of traditional techniques. Insect and disease resistance in crops has changed regularly over the past 100 years without the creation of a super bug which is resistant to all controls. 2. The genetically modified crop may interbreed with closely related weed type species, thus making these weeds difficult to control with some specific herbicides. 3. It is also thought that the genetically modified crop itself may become a weed in its own right due to its resistance to chemicals and potentially wide range of climate tolerance if it was allowed to escape the confines of the paddock. Where possible biologists are endeavouring to make such crops sterile so the risk of crossing with other species is minimised. Displacement of indigenous flora and fauna Any new organisms may be more competitive than native flora and fauna in the native species own ecological niche. Examples of potential devastation can be seen in the introduction of gorse, rabbits, stoats, possums and even domestic cats which were introduced without full understanding of the impact their release would have on native ecosystems. It is everybody s responsibility to ensure native flora and fauna are sustained for future generations. Disturbance of natural selection A commonly voiced concern in the general community is: Does man have the right to play God? Natural selection also selects over a very long period of time. Whereas

6 genetic modification can make large changes quickly. Biologists point out that through the use of traditional breeding technologies man has been playing God in the same way for hundreds of years. Long term risks Long term consequences cannot be completely predicted. While risk assessment can be a relatively comprehensive process, commercial needs also push towards GMO s available being released as quickly as possible. Opponents of gene modification point to the example of nuclear technology as reasons to leave gene technology alone. Nuclear technology has had some ghastly health consequences for those working with it, with problems ranging from development of cancer to birth defects. Those problems arose due to a lack of knowledge at the time of the long term effects these technologies could have on the people and the environment. BIODIVERSITY Biodiversity is vital as it represents the genetic pool that will enable living things to cope with future change Opponents of biotechnology commonly promote the theory that the use of genetic modification technologies will lead to a decrease in biodiversity thus reducing the sustainability of the planet. Initially this is incorrect as inserting a new gene into an existing genome can be regarded as increasing biodiversity. However, if such a change is proved superior to the parent plant, adoption of the new strain may lead to one or more older plants not being grown any more and this does reduce biodiversity and possibly sustainability. During the 1950 s and 60 s famine was common in India and China. However, with development of new varieties of wheat and rice in the Green Revolution India and China are now self sufficient in these staple crops. The Green Revolution was brought about by the use of traditional breeding to reduce stem length (which later proved to be controlled by a single gene) in wheat and rice. The new varieties gave very high yields when fertiliser was used without lodging (falling over) and consequent losses of grain. The new cultivars were so superior farmers stopped growing any traditional varieties which leads to a decrease in biodiversity. As a result the FAO has established the International Plant Genetic Resource Institute to conserve such obsolete cultivars and maintain the potential biodiversity of the planet.

7 Questions: 1. In your own words, what is genetic engineering? 2. Define the term vector. How is a vector used to make a gene transfer? 3. What is a marker gene and why is it introduced during gene transfers? 4. How might the insertion of a marker gene such as antibiotic resistance be a problem? 5. How does inserting a gene that codes for a specific antigen (like the hepatitis B virus) impart immunity to this disease? 6. Describe two ways that use of genetic engineering used with crops can improve crop yields or quality. 7. How does DNA differ from one organism to another? 8. What is selection pressure and how does it allow a pest to become resistant to a measure used to control it? 9. How might an introduced species be detrimental to native species in an area? 10. Explain how a decrease in biodiversity could reduce the sustainability of the planet.

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY GENE CLONING AND RECOMBINANT DNA TECHNOLOGY What is recombinant DNA? DNA from 2 different sources (often from 2 different species) are combined together in vitro. Recombinant DNA forms the basis of cloning.

More information

Recombinant DNA and Biotechnology

Recombinant DNA and Biotechnology Recombinant DNA and Biotechnology Chapter 18 Lecture Objectives What Is Recombinant DNA? How Are New Genes Inserted into Cells? What Sources of DNA Are Used in Cloning? What Other Tools Are Used to Study

More information

Lesson 13 Genetic modification

Lesson 13 Genetic modification 77 Lesson 13 modification 78 modification Suitable for: 14 16 years Curriculum and learning links: modification Learning objectives: Describe the process of genetic modification. Explain some of the ethical

More information

Genetic Engineering and Biotechnology

Genetic Engineering and Biotechnology 1 So, what is biotechnology?? The use of living organisms to carry out defined chemical processes for industrial or commercial application. The office of Technology Assessment of the U.S. Congress defines

More information

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Genetic Technology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An application of using DNA technology to help environmental scientists

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

FAQs: Gene drives - - What is a gene drive?

FAQs: Gene drives - - What is a gene drive? FAQs: Gene drives - - What is a gene drive? During normal sexual reproduction, each of the two versions of a given gene has a 50 percent chance of being inherited by a particular offspring (Fig 1A). Gene

More information

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA INTRODUCTION DNA : DNA is deoxyribose nucleic acid. It is made up of a base consisting of sugar, phosphate and one nitrogen base.the

More information

Statement of ethical principles for biotechnology in Victoria

Statement of ethical principles for biotechnology in Victoria Statement of ethical principles for biotechnology in Victoria Statement of ethical principles for biotechnology in Victoria Acknowledgments Published by the Public Health Group, Rural & Regional Health

More information

Chapter 23 Definitions of GMO/LMO and modern biotechnology. Three different definitions but the same legal interpretation?

Chapter 23 Definitions of GMO/LMO and modern biotechnology. Three different definitions but the same legal interpretation? Chapter 23 Definitions of GMO/LMO and modern biotechnology JAN HUSBY NORWEGIAN INSTITUTE OF GENE ECOLOGY (GENØK), TROMSØ, NORWAY Three different definitions but the same legal interpretation? There are

More information

Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2

Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2 Name Date lass Master 19 Basic oncepts Recombinant DN Use with hapter, Section.2 Formation of Recombinant DN ut leavage Splicing opyright lencoe/mcraw-hill, a division of he Mcraw-Hill ompanies, Inc. Bacterial

More information

Lesson Overview. Biodiversity. Lesson Overview. 6.3 Biodiversity

Lesson Overview. Biodiversity. Lesson Overview. 6.3 Biodiversity Lesson Overview 6.3 6.3 Objectives Define biodiversity and explain its value. Identify current threats to biodiversity. Describe how biodiversity can be preserved. THINK ABOUT IT From multicolored coral

More information

The use of genetically modified crops in developing countries

The use of genetically modified crops in developing countries The use of genetically modified crops in developing countries a guide to the Discussion Paper Introduction The Nuffield Council on Bioethics provoked vigorous debate with the publication of its Report,

More information

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,

More information

a mutation that occurs during meiosis results in a chromosomal abnormality B.

a mutation that occurs during meiosis results in a chromosomal abnormality B. Biotechnology 1. Which of the following is an example of gene splicing? a segment of human DNA is inserted into the DNA sequence of a bacterium a mutation that occurs during meiosis results in a chromosomal

More information

What s wrong with GM?

What s wrong with GM? CIIR environmental action leaflet What s wrong with GM? Why genetically modified crops are bad for people and bad for the environment Why should we care? Genetic engineering of crops is a complex and controversial

More information

Public Perceptions of Labeling Genetically Modified Foods

Public Perceptions of Labeling Genetically Modified Foods Public Perceptions of Labeling Genetically Modified Foods Working Paper 2013-01 William K. Hallman, Ph.D. Cara L. Cuite, Ph.D. Xenia K. Morin, Ph.D. Release date: November 1, 2013 For more information:

More information

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells.

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells. Transfection Key words: Transient transfection, Stable transfection, transfection methods, vector, plasmid, origin of replication, reporter gene/ protein, cloning site, promoter and enhancer, signal peptide,

More information

Section 5.1 Food chains and food webs

Section 5.1 Food chains and food webs Section 5.1 Food chains and food webs The ultimate source of energy in an ecosystem comes from sunlight This energy is converted to an organic form using photosynthesis which is then passed between organisms

More information

"Fingerprinting" Vegetables DNA-based Marker Assisted Selection

Fingerprinting Vegetables DNA-based Marker Assisted Selection "Fingerprinting" Vegetables DNA-based Marker Assisted Selection Faster, Cheaper, More Reliable; These are some of the goals that vegetable breeders at seed companies and public institutions desire for

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology

More information

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein INTRODUCTION Green Fluorescent Protein (GFP) is a novel protein produced by the bioluminescent

More information

THE BENEFITS AND ETHICAL ISSUES BEHIND USING GENETICALLY MODIFIED ORGANISMS IN AGRICULTURE by Miriam Elizabeth Marx

THE BENEFITS AND ETHICAL ISSUES BEHIND USING GENETICALLY MODIFIED ORGANISMS IN AGRICULTURE by Miriam Elizabeth Marx THE BENEFITS AND ETHICAL ISSUES BEHIND USING GENETICALLY MODIFIED ORGANISMS IN AGRICULTURE by Miriam Elizabeth Marx 1.0 Introduction 1.1 Purpose The use of genetically modified organisms (GMOs) in agriculture

More information

Use of Biotechnology in Agriculture Benefits and Risks

Use of Biotechnology in Agriculture Benefits and Risks Biotechnology May 2003 (revised) BIO-3 Use of Biotechnology in Agriculture Benefits and Risks Ania Wieczorek Department of Tropical Plant and Soil Sciences What is biotechnology, and how is it used in

More information

DNA Technology Mapping a plasmid digesting How do restriction enzymes work?

DNA Technology Mapping a plasmid digesting How do restriction enzymes work? DNA Technology Mapping a plasmid A first step in working with DNA is mapping the DNA molecule. One way to do this is to use restriction enzymes (restriction endonucleases) that are naturally found in bacteria

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

Life-Science Economics and Policy

Life-Science Economics and Policy Life-Science Economics and Policy Winter Term 2011/12 Dr. Maarten J. Punt Technische Universität München - Weihenstephan maarten.punt@tum.de http://www.wzw.tum.de/aew/ GMO adoption by countries What is

More information

Integrated Pest Management

Integrated Pest Management Chapter 2 Integrated Pest Management In This Chapter Keywords After learning the information in this chapter, you will be able to: 1. Define Integrated Pest Management (IPM). 2. List and describe the 5

More information

CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL IDENTIFICATION OF DNA DNA AND HEREDITY DNA CAN GENETICALLY TRANSFORM CELLS

CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL IDENTIFICATION OF DNA DNA AND HEREDITY DNA CAN GENETICALLY TRANSFORM CELLS CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL In 1928, Frederick Griffith was able to transform harmless bacteria into virulent pathogens with an extract that Oswald Avery proved, in 1944,

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

INTRODUCTION. The 3-year upper primary syllabus development was guided by the RNPE, 1994, which called for the review of the Primary curriculum.

INTRODUCTION. The 3-year upper primary syllabus development was guided by the RNPE, 1994, which called for the review of the Primary curriculum. INTRODUCTION The 3-year upper primary syllabus development was guided by the RNPE, 1994, which called for the review of the Primary curriculum. It followed the introduction of lower primary Environmental

More information

Worksheet: The theory of natural selection

Worksheet: The theory of natural selection Worksheet: The theory of natural selection Senior Phase Grade 7-9 Learning area: Natural Science Strand: Life and living Theme: Biodiversity, change and continuity Specific Aim 1: Acquiring knowledge of

More information

Bacteria: The good, the bad, and the ugly. SEPA BioScience Montana Module 2

Bacteria: The good, the bad, and the ugly. SEPA BioScience Montana Module 2 Bacteria: The good, the bad, and the ugly. SEPA BioScience Montana Module 2 Introduction: The following reading will give you a basic introduction to bacteria and their role in illness. It will explore

More information

GCSE BITESIZE Examinations

GCSE BITESIZE Examinations GCSE BITESIZE Examinations General Certificate of Secondary Education AQA SCIENCE A BLY1B Unit Biology B1b (Evolution and Environment) AQA BIOLOGY Unit Biology B1b (Evolution and Environment) FOUNDATION

More information

14.3 Studying the Human Genome

14.3 Studying the Human Genome 14.3 Studying the Human Genome Lesson Objectives Summarize the methods of DNA analysis. State the goals of the Human Genome Project and explain what we have learned so far. Lesson Summary Manipulating

More information

APES ~ BIOENGINEERED FOODS and IRRADIATED FOODS

APES ~ BIOENGINEERED FOODS and IRRADIATED FOODS APES ~ BIOENGINEERED FOODS and IRRADIATED FOODS WHAT TO TURN IN (paper-clip them together): BIOENGINEERED FOOD BOOKLET IRRADIATED FOODS TRUE-FALSE QUIZ, GRADED IRRADIATED FOODS SIGN/MINI-POSTER PART 1:

More information

Adoption of GE Crops by U.S. Farmers Increases Steadily

Adoption of GE Crops by U.S. Farmers Increases Steadily Adoption of GE Crops by U.S. Farmers Increases Steadily Farmers are more likely to adopt new practices and technologies if they expect to benefit from them. Benefits are usually thought of in monetary

More information

The E. coli Insulin Factory

The E. coli Insulin Factory The E. coli Insulin Factory BACKGROUND Bacteria have not only their normal DNA, they also have pieces of circular DNA called plasmids. Plasmids are a wonderfully ally for biologists who desire to get bacteria

More information

Biotechnology. Biology. Grade 10-12 LEARNING OUTCOMES DESCRIPTION READINESS ACTIVITIES MATERIALS. Science

Biotechnology. Biology. Grade 10-12 LEARNING OUTCOMES DESCRIPTION READINESS ACTIVITIES MATERIALS. Science Biotechnology Science Grade 10-12 Classroom Individual reading DESCRIPTION Biotechnology is a relatively new science with direct applications to the Agriculture industry. This article describes some of

More information

Answer Key. Vocabulary Practice

Answer Key. Vocabulary Practice Answer Key Vocabulary Practice Copyright by McDougal Littell, a division of Houghton Mifflin Company A. Categorize Words 1. organism, L; cell, L; species, L; transgenic, B; biotechnology, T; molecular

More information

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature Section 17.1: The Linnaean System of Classification Unit 9 Study Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN

More information

1. Biodiversity & Distribution of Life

1. Biodiversity & Distribution of Life National 5 Biology Unit 3 Life on Earth Summary notes 1. Biodiversity & Distribution of Life Perhaps the best place to start in this topic is with Biomes. Biomes are regions of our planet which have a

More information

Basic Farming Questions What did you grow on the farm when you first started? Are you a first generation farm owner or has your family been in

Basic Farming Questions What did you grow on the farm when you first started? Are you a first generation farm owner or has your family been in MASTER LIST OF POSSIBLE QUESTIONS FOR FARMER INTERVIEWS: Choose a subset of 15-20 of these questions and have them ready in case the conversation hits a slow spot. Personal History When did you start farming?

More information

Cotton Situation in the World 1 M. Rafiq Chaudhry Technical Information Section

Cotton Situation in the World 1 M. Rafiq Chaudhry Technical Information Section 1 Cotton Situation in the World 1 M. Rafiq Chaudhry Technical Information Section Abstract The world cotton production for the year 1996/97 is currently placed by the ICAC at about 19 million metric tons

More information

Biotech Foods Community Snapshot

Biotech Foods Community Snapshot Biotech Foods Community Snapshot Introduction Lesson Introduction Biotechnology is becoming a commonly used term in today s society. Recent surveys conducted on consumer attitudes toward biotech foods,

More information

Genetic Engineering: A Question of Ethics

Genetic Engineering: A Question of Ethics Genetic Engineering: A Question of Ethics Teresa Carlson CD 5590 tcn03002@student.mdh.se Abstract In today s society, genetic engineering is an increasingly important issue. Many genetically modified organisms

More information

Outline. What is IPM Principles of IPM Methods of Pest Management Economic Principles The Place of Pesticides in IPM

Outline. What is IPM Principles of IPM Methods of Pest Management Economic Principles The Place of Pesticides in IPM Improving Control Systems in Thailand for Plant and Plants Products Intended for Export to the European Union co-funded by the European Union and Thai Department of Agriculture Preharvest Use of Pesticides

More information

Determining the Use of Technology in World Food and Fiber Production

Determining the Use of Technology in World Food and Fiber Production Lesson A8 1 Determining the Use of Technology in World Food and Fiber Production Unit A. Mechanical Systems and Technology Problem Area 8. Technology Systems Lesson 1. Determining the Use of Technology

More information

BREEDING CANOLA IN CANADA FOR A CHANGING MARKET

BREEDING CANOLA IN CANADA FOR A CHANGING MARKET BREEDING CANOLA IN CANADA FOR A CHANGING MARKET Greg Buzza Advanta Seeds, Winnipeg, Canada. The plant breeders aim is to produce a variety, a cultivar, a hybrid, or in other words a product. This product

More information

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells.

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells. Virus and Immune System Review Directions: Write your answers on a separate piece of paper. 1. Why does a cut in the skin threaten the body s nonspecific defenses against disease? a. If a cut bleeds, disease-fighting

More information

GCSE BITESIZE Examinations

GCSE BITESIZE Examinations GCSE BITESIZE Examinations General Certificate of Secondary Education AQA SCIENCE A BLY1B Unit Biology B1b (Evolution and Environment) AQA BIOLOGY Unit Biology B1b (Evolution and Environment) HIGHER TIER

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Respiration occurs in the mitochondria in cells.

Respiration occurs in the mitochondria in cells. B3 Question Which process occurs in the mitochondria in cells? Why do the liver and muscle cells have large number of mitochondria? What is the function of the ribosomes? Answer Respiration occurs in the

More information

THE SCIENCE THE FUTURE OF CANADIAN CANOLA: APPLY THE SCIENCE OF AGRONOMICS TO MAXIMIZE GENETIC POTENTIAL.

THE SCIENCE THE FUTURE OF CANADIAN CANOLA: APPLY THE SCIENCE OF AGRONOMICS TO MAXIMIZE GENETIC POTENTIAL. THE SCIENCE THE FUTURE OF CANADIAN CANOLA: APPLY THE SCIENCE OF AGRONOMICS TO MAXIMIZE GENETIC POTENTIAL. WHERE WE HAVE BEEN CANOLA PRODUCTION HAS SURPASSED THE INDUSTRY TARGET OF 15 MMT. This was achieved

More information

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE QUALITY OF BIOTECHNOLOGICAL PRODUCTS: ANALYSIS

More information

PIONEER HI-BRED INTERNATIONAL, INC.

PIONEER HI-BRED INTERNATIONAL, INC. D E V E L O P I N G A S U P E R I O R M A I Z E H Y B R I D PIONEER HI-BRED INTERNATIONAL, INC. A HISTORY OF INNOVATION When commercial hybrid maize was first introduced, few people realized its potential

More information

Animal Pharming: The Industrialization of Transgenic Animals December 1999

Animal Pharming: The Industrialization of Transgenic Animals December 1999 Animal Pharming: The Industrialization of Transgenic Animals December 1999 Animal pharming, the process of using transgenic animals to produce human drugs, is staking its claim in a lucrative world market.

More information

Pests and Pest Control

Pests and Pest Control Pests and Pest Control The need for pest control Philosophies of control Development of Chemical Pesticides Promises and problems of the chemical approach Some of the more commonly used icides Alternative

More information

Patent issues in Industrial Biotech:

Patent issues in Industrial Biotech: Patent issues in Industrial Biotech: Nucleic Acids, Life Forms & Natural Products Konrad Sechley PhD, Vancouver, Canada 18 April, 2016 OVERVIEW Gene patenting Life Forms & Natural Products Conclusions

More information

Human Genome and Human Genome Project. Louxin Zhang

Human Genome and Human Genome Project. Louxin Zhang Human Genome and Human Genome Project Louxin Zhang A Primer to Genomics Cells are the fundamental working units of every living systems. DNA is made of 4 nucleotide bases. The DNA sequence is the particular

More information

Multiple Choice Questions

Multiple Choice Questions Chapter 5 THE FUNDAMENTAL UNIT OF LIFE Multiple Choice Questions 1. Which of the following can be made into crystal? (a) A Bacterium (b) An Amoeba (c) A Virus (d) A Sperm 2. A cell will swell up if (a)

More information

Biotechnology: DNA Technology & Genomics

Biotechnology: DNA Technology & Genomics Chapter 20. Biotechnology: DNA Technology & Genomics 2003-2004 The BIG Questions How can we use our knowledge of DNA to: diagnose disease or defect? cure disease or defect? change/improve organisms? What

More information

FACT SHEET. Production Risk

FACT SHEET. Production Risk ALABAMA AGRICULTURAL & MECHANICAL UNIVERSITY SMALL FARMERS RESEARCH CENTER FACT SHEET Production Risk Any production related activity or event that is uncertain is a production risk. Agricultural production

More information

Nutrients: Carbohydrates, Proteins, and Fats. Chapter 5 Lesson 2

Nutrients: Carbohydrates, Proteins, and Fats. Chapter 5 Lesson 2 Nutrients: Carbohydrates, Proteins, and Fats Chapter 5 Lesson 2 Carbohydrates Definition- the starches and sugars found in foods. Carbohydrates are the body s preferred source of energy providing four

More information

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources 1 of 8 11/7/2004 11:00 AM National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools

More information

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA DNA Fingerprinting Unless they are identical twins, individuals have unique DNA DNA fingerprinting The name used for the unambiguous identifying technique that takes advantage of differences in DNA sequence

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

Cells, tissues and organs

Cells, tissues and organs Chapter 8: Cells, tissues and organs Cells: building blocks of life Living things are made of cells. Many of the chemical reactions that keep organisms alive (metabolic functions) take place in cells.

More information

Pediatrics. Specialty Courses for Medical Assistants

Pediatrics. Specialty Courses for Medical Assistants Pediatrics Specialty Courses for Medical Assistants 7007 College Boulevard, Suite 385 Overland Park, Kansas 66211 www.ncctinc.com t: 800.875.4404 f: 913.498.1243 Pediatrics Specialty Certificate Course

More information

Bacteria vs. Virus: What s the Difference? Grade 11-12

Bacteria vs. Virus: What s the Difference? Grade 11-12 Bacteria vs. Virus: What s the Difference? Grade 11-12 Subject: Biology Topic: Bacteria, viruses, and the differences between them. The role that water plays in spreading bacteria and viruses, and the

More information

What is Organic Food? Organic Foods. The Purpose: Organic Farming

What is Organic Food? Organic Foods. The Purpose: Organic Farming Organic Foods By: Kaelen Shay Trinh Tran Caroline Mockridge What is Organic Food? No preservatives No added chemicals/pesticides/fertilizers No anti-biotics or growth hormones The Purpose: Organic Farming

More information

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers Research to improve the use and conservation of agricultural biodiversity for smallholder farmers Agricultural biodiversity the variability of crops and their wild relatives, trees, animals, arthropods,

More information

Discover Entomology. Discover Entomology. A Science, a Career, a Lifetime. A Science, a Career, a Lifetime

Discover Entomology. Discover Entomology. A Science, a Career, a Lifetime. A Science, a Career, a Lifetime Discover Entomology A Science, a Career, a Lifetime Discover Entomology A Science, a Career, a Lifetime What is Entomology? Entomology is the study of insects. Entomologists study bees, ants, beetles,

More information

What are biofuels? Pocket K No. 24. Biotechnology for Green Energy: Biofuels

What are biofuels? Pocket K No. 24. Biotechnology for Green Energy: Biofuels Pocket K No. 24 Biotechnology for Green Energy: Biofuels What are biofuels? Biofuels are alternative fuels made from plant and plant-derived resources. Biofuels are used mainly for transportation. There

More information

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan ENVIRONMENTAL IMPACT OF FOOD PRODUCTION AND CONSUMPTION Palaniappa Krishnan Bioresources Engineering Department, University of Delaware, USA Keywords: Soil organisms, soil fertility, water quality, solar

More information

Stem Cell Quick Guide: Stem Cell Basics

Stem Cell Quick Guide: Stem Cell Basics Stem Cell Quick Guide: Stem Cell Basics What is a Stem Cell? Stem cells are the starting point from which the rest of the body grows. The adult human body is made up of hundreds of millions of different

More information

Farming. In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed.

Farming. In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed. Types of Farming In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed. Arable farms are ones where the main way of making money is by

More information

DOE Office of Biological & Environmental Research: Biofuels Strategic Plan

DOE Office of Biological & Environmental Research: Biofuels Strategic Plan DOE Office of Biological & Environmental Research: Biofuels Strategic Plan I. Current Situation The vast majority of liquid transportation fuel used in the United States is derived from fossil fuels. In

More information

Speaker Summary Note

Speaker Summary Note 2020 CONFERENCE MAY 2014 Session: Speaker: Speaker Summary Note Building Resilience by Innovating and Investing in Agricultural Systems Mark Rosegrant Director, Environment and Production Technology Division

More information

Introduction to Integrated Pest Management. John C. Wise, Ph.D. Michigan State University MSU Trevor Nichols Research Complex

Introduction to Integrated Pest Management. John C. Wise, Ph.D. Michigan State University MSU Trevor Nichols Research Complex Introduction to Integrated Pest Management John C. Wise, Ph.D. Michigan State University MSU Trevor Nichols Research Complex What is Integrated Pest Management? Integrated Pest Management (IPM) New concept;

More information

GENETICALLY MODIFIED ORGANISMS: THE FACTS

GENETICALLY MODIFIED ORGANISMS: THE FACTS GENETICALLY MODIFIED ORGANISMS: THE FACTS Sydney Hayter February 28, 2015 What is today about? Clearly define genetic modification Public perception State facts on genetically modified organisms Unbiased

More information

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope Viruses Chapter 10: Viruses Lecture Exam #3 Wednesday, November 22 nd (This lecture WILL be on Exam #3) Dr. Amy Rogers Office Hours: MW 9-10 AM Too small to see with a light microscope Visible with electron

More information

European Medicines Agency

European Medicines Agency European Medicines Agency July 1996 CPMP/ICH/139/95 ICH Topic Q 5 B Quality of Biotechnological Products: Analysis of the Expression Construct in Cell Lines Used for Production of r-dna Derived Protein

More information

DNA Scissors: Introduction to Restriction Enzymes

DNA Scissors: Introduction to Restriction Enzymes DNA Scissors: Introduction to Restriction Enzymes Objectives At the end of this activity, students should be able to 1. Describe a typical restriction site as a 4- or 6-base- pair palindrome; 2. Describe

More information

Page 1 Bayer CropScience Increase of productivity in Agriculture

Page 1 Bayer CropScience Increase of productivity in Agriculture Bayer CropScience Increase of productivity in Agriculture Dr. F. Zurmühlen Frankfurt 16.7.2014 Page 1 Bayer CropScience Increase of productivity in Agriculture 114,928 employees Full year sales: 40.2 billion

More information

This lesson is part of a larger, comprehensive school garden guide called Minnesota School Gardens: A Guide to Gardening and Plant Science developed

This lesson is part of a larger, comprehensive school garden guide called Minnesota School Gardens: A Guide to Gardening and Plant Science developed This lesson is part of a larger, comprehensive school garden guide called Minnesota School Gardens: A Guide to Gardening and Plant Science developed by Minnesota Agriculture in the Classroom in 2013. The

More information

ENDANGERED AND THREATENED

ENDANGERED AND THREATENED ENDANGERED AND THREATENED Understand how species in the Sonoran Desert Region may become endangered or threatened and what is being done to protect them. ARIZONA SCIENCE STANDARDS SC03-S4C3-03&04, SC08-S1C3-07,

More information

This material is based on work supported by the U.S. Department of Agriculture, Extension Service & the U.S. EPA

This material is based on work supported by the U.S. Department of Agriculture, Extension Service & the U.S. EPA Revised April 1992 (reformatted May 2000) A Workbook for Certified Pesticide Applicators To accompany the VHS tape "Pesticides in the Environment" Based on materials developed by: Colorado State University

More information

Frequently Asked Questions about FAO and Agricultural Biotechnology. 5. What is FAO s position on release of GMOs in any specific country?

Frequently Asked Questions about FAO and Agricultural Biotechnology. 5. What is FAO s position on release of GMOs in any specific country? Frequently Asked Questions about FAO and Agricultural Biotechnology 1. What is agricultural biotechnology? 2. What are GMOs? 3. Are GMOs widely used in food and agriculture today? 4. What is FAO s position

More information

Comparing Plant and Animal Cells

Comparing Plant and Animal Cells 1.2 Comparing Plant and Animal Cells Here is a summary of what you will learn in this section: Plant and animal cell structures are called organelles. Plant and animal cells perform some similar functions,

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Mutations: 2 general ways to alter DNA. Mutations. What is a mutation? Mutations are rare. Changes in a single DNA base. Change a single DNA base

Mutations: 2 general ways to alter DNA. Mutations. What is a mutation? Mutations are rare. Changes in a single DNA base. Change a single DNA base Mutations Mutations: 2 general ways to alter DNA Change a single DNA base Or entire sections of DNA can move from one place to another What is a mutation? Any change in the nucleotide sequence of DNA Here

More information

Tuesday 14 May 2013 Morning

Tuesday 14 May 2013 Morning THIS IS A NEW SPECIFICATION H Tuesday 14 May 2013 Morning GCSE TWENTY FIRST CENTURY SCIENCE BIOLOGY A A161/02 Modules B1 B2 B3 (Higher Tier) *A137150613* Candidates answer on the Question Paper. A calculator

More information

Upscaling of locally proven IPM technologies for control of pest of economic importance i

Upscaling of locally proven IPM technologies for control of pest of economic importance i Technology Fact Sheet for Adaptation Upscaling of locally proven IPM technologies for control of pest of economic importance i Technology: Upscaling of locally proven IPM technologies for control of pest

More information

Nitrogen Fixing Bacteria in Agriculture Now a Real Option Guy Webb B.Sc. REM Agricultural Consultant

Nitrogen Fixing Bacteria in Agriculture Now a Real Option Guy Webb B.Sc. REM Agricultural Consultant Nitrogen Fixing Bacteria in Agriculture Now a Real Option Guy Webb B.Sc. REM Agricultural Consultant The Pursuit of Protein and Profit All agricultural enterprises, in essence, are based on the pursuit

More information

BIOLOGY HIGHER LEVEL

BIOLOGY HIGHER LEVEL 2008. M44 Write your Examination Number here Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2008 BIOLOGY HIGHER LEVEL THURSDAY, 12 JUNE MORNING, 9.30 TO 12.30

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

Multiple Choice Questions

Multiple Choice Questions C hapter 13 WHY DO WE FALL ILL Multiple Choice Questions 1. Which one of the following is not a viral disease? (a) Dengue (b) AIDS (c) Typhoid (d) Influenza 2. Which one of the following is not a bacterial

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information