# Slide 2 / 31 2 block of mass m is moving over a distance d. n applied force F is directed perpendicularly to the block's displacement. How much work i

Save this PDF as:

Size: px
Start display at page:

Download "Slide 2 / 31 2 block of mass m is moving over a distance d. n applied force F is directed perpendicularly to the block's displacement. How much work i"

## Transcription

1 Slide 1 / 31 1 block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement. How much work is done on the block by the force F? mfd zero Fd -Fd

2 Slide 2 / 31 2 block of mass m is moving over a distance d. n applied force F is directed perpendicularly to the block's displacement. How much work is done on the block by the force F? mfd zero Fd -Fd

3 Slide 3 / 31 3 block of mass m is moved over a distance d. n applied force F is opposite to the block's displacement. How much work is done on the block by the force F? mfd zero F M isplacement Fd -Fd

4 Slide 4 / 31 4 truck driver is trying to push a loaded truck with an applied force. Unfortunately, his attempt was unsuccessful and the truck stays stationary no matter how hard the driver pushes. How much work is done by the driver? F -Fd Zero

5 Slide 5 / 31 5 spacecraft moves around arth in a circular orbit with a constant radius. How much work is done by the gravitational force on the spacecraft during one revolution? FGd - FGd mgh ½ mv2 zero

6 Slide 6 / 31 6 construction worker holds a heavy tool box. How much work is done by the worker? FGd - FGd mgh ½ mv2 zero

7 Slide 7 / 31 7 container with a mass of 5 kg is lifted to a height of 8 m. How much work is done by the gravitational force? 400 J -400 J zero 50 J -50J

8 Slide 8 / 31 8 container with a mass of 5 kg is lifted to a height of 8 m. How much work is done by the external force? 400 J -400 J zero 50 J -50J

9 Slide 9 / 31 9 container with a mass of 5 kg is lifted to a height of 8 m and then returned back to the ground level. How much work is done by the gravitational force? 400 J -400 J zero 50 J -50J

10 Slide 10 / n object is thrown straight up. Which of the following is true about the sign of work done by the gravitational force while the object moves up and then down? Work is positive on the way up, work is positive on the way down Work is negative on the way up, work is negative on the way down Work is negative on the way up, work is positive on the way down Work is positive on the way up, work is negative on the way down Work is zero the way up, work is zero on the way down

11 Slide 11 / The force as a function of displacement of a moving object is presented by the graph. How much work is done when the object moves from 0 m to 8 m? 40 J 20 J 0 J 10 J 5 J

12 Slide 12 / The force as a function of displacement of a moving object is presented by the graph. How much work is done when the object moves from 0 m to 5 m? 30 J 12.5 J 18 J 9 J 24 J

13 Slide 13 / The force as a function of displacement of a moving object is presented by the graph. How much work is done when the object moves from 5 m to 8 m? 30 J 15 J 18 J 7.5 J 24 J

14 Slide 14 / The force as a function of displacement of a moving object is presented by the graph. How much work is done when the object moves from 0 m to 8 m? 30 J 15 J 18 J 9 J 20 J

15 Slide 15 / n applied force F accelerates an object from rest to a velocity v. How much work is done by the applied force F? ½ mv 2 mgh ½ kx 2 mfd Zero

16 Slide 16 / What happens to the kinetic energy of a moving object if the net work done is positive? The kinetic energy increases The kinetic energy decreases The kinetic energy remains the same The kinetic energy is zero The kinetic energy becomes negative

17 Slide 17 / block of mass m = 50 kg moves on a rough horizontal surface with a coefficient of kinetic friction µ = 0.5. The traveled distance is 20 m. How much work is done by the friction force? 1000 J 2000 J 3000 J 4000 J 5000 J

18 Slide 18 / What happens to the gravitational potential energy of a moving object if the work done by the gravitational force is negative? The potential energy increases The potential energy decreases The potential energy remains the same The potential energy is zero The potential energy becomes negative

19 Slide 19 / n object I with a mass of 4 kg is lifted vertically 3 m from the ground level; another object II with a mass of 2 kg is lifted 6 m up. Which of the following statements is true? I. Object I has greater potential energy since it is heavier. II. Object II has greater potential energy since it is lifted to a higher position III. Two objects have the same potential energy I II III I and II II and III

20 Slide 20 / kg block is attached to a vertical spring with a spring constant 800 N/m. The spring stretches 5 cm down. How much elastic potential energy is stored in the system? 1.0 J 0.5 J 1.5 J 2.0 J 2.5 J

21 Slide 21 / heavy block is suspended from a vertical spring. The elastic potential energy is stored in the spring is 2 J. What is the spring constant if the elongation of the spring is 10 cm? 400 N/m 300 N/m 200 N/m 100 N/m 50 N/m

22 Slide 22 / heavy block is suspended from a vertical spring. The elastic potential energy is stored in the spring is 0.8 J. What is the elongation of the spring if the spring constant is 100 N/m? 2 cm 4 cm 8 cm 11 cm 13 cm

23 Slide 23 / The elastic force as a function of displacement presented by the graph. How much elastic potential energy is stored in the spring when it is stretched by 10 cm? 0.1 J 0.2 J 0.3 J 0.4 J 0.5 J

24 Slide 24 / bullet penetrates a wooden block and loses its velocity by a half. What is the ratio between the initial kinetic energy of the bullet and kinetic energy when the bullet leaves the block?

25 Slide 25 / truck drives slams on the brakes of a moving truck with a constant velocity v, as a result of his action the truck stops after traveling a distance d. If the driver had been traveling with twice the velocity, what would be the stopping distance compared to the distance in the first trial? Two times greater Four times greater The same Half as much One-quarter as much

26 Slide 26 / What happens to the total energy of a moving object if all the applied forces are conserved? It increases It decreases It remains constant The velocity is required to answer this question The altitude is required to answer this question

27 Slide 27 / machine does 2500 J of work in 1 min. What is the power developed by the machine? 21 W 42 W 150 W 2500 W W

28 Slide 28 / car travels with a constant speed of 15 m/s. The car s engine produces a 4000 N pushing force in order to keep the speed constant. How much power is developed by the engine? 60 W 600 W 6000 W W W

29 Slide 29 / block with a mass of m crosses a rough horizontal surface at a constant speed of v. The coefficient of kinetic friction between the block and the surface is µ. How much power must be produced in order to overcome the friction force? mg µmg zero µg µmgv

30 Slide 30 / motorbike engine can develop a power of W in order to keep a constant velocity of 30 m/s. What is the pushing force? 3000 N N N 300 N 30 N

31 Slide 31 / 31

### Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

### Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

### Chapter 8: Conservation of Energy

Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I

### PHYSICS 111 HOMEWORK#6 SOLUTION. February 22, 2013

PHYSICS 111 HOMEWORK#6 SOLUTION February 22, 2013 0.1 A block of mass m = 3.20 kg is pushed a distance d = 4.60 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion.

Work-Energy Part 2 Springs Spring can be used to apply forces Springs can store energy These can be done by either compression, stretching, or torsion. Springs Ideal, or linear springs follow a rule called:

### Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

### 1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Concept Review. Physics 1

Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

### Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

### Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

### Experiment P-6 Friction Force

1 Experiment P-6 Friction Force Objectives To learn about the relationship between force, normal force and coefficient. To observe changes in the force within different surfaces and different masses. To

### 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

### Version 001 Quest 3 Forces tubman (20131) 1

Version 001 Quest 3 Forces tubman (20131) 1 This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. l B Conceptual

### Physics 201 Homework 5

Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

### Work and Kinetic Energy

Chapter 6 Work and Kinetic Energy PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 6 To understand and calculate

### Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

### PHYSICS 149: Lecture 15

PHYSICS 149: Lecture 15 Chapter 6: Conservation of Energy 6.3 Kinetic Energy 6.4 Gravitational Potential Energy Lecture 15 Purdue University, Physics 149 1 ILQ 1 Mimas orbits Saturn at a distance D. Enceladus

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### 10.1 Quantitative. Answer: A Var: 50+

Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### Center of Mass/Momentum

Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

### AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### 7. Kinetic Energy and Work

Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

### Unit 3 Practice Test: Dynamics

Unit 3 Practice Test: Dynamics Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the common formula for work? a. W = F x c. W = Fd

### WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

### Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

### Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### Lesson 39: Kinetic Energy & Potential Energy

Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy

### Work, Energy and Power

Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

### Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

### KE =? v o. Page 1 of 12

Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

### Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

### PHYS 100 Introductory Physics Sample Exam 2

PHYS 00 Introductory Physics Sample Exam Formulas: Acceleration due to Gravity = 0 m/s Weight = Mass x Acceleration due to Gravity Work = Force x Distance Gravitational Potential Energy = Weight x Height

### Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### Chapter 6. Work and Energy

Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Lesson 40: Conservation of Energy

Lesson 40: Conservation of Energy A large number of questions you will do involve the total mechanical energy. As pointed out earlier, the mechanical energy is just the total of all types of energy. In

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

### Mechanics 1. Revision Notes

Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

### Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

### Take Home Quiz - Energy and Society

SPH 3U Name: Take Home Quiz - Energy and Society Matching Match each item with the correct statement below. a. electrical e. kinetic b. nuclear potential f. elastic potential c. thermal g. radiant d. gravitational

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.

A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the

### Work. Work = Force x parallel distance (parallel component of displacement) F v

Work Work = orce x parallel distance (parallel component of displacement) W k = d parallel d parallel Units: N m= J = " joules" = ( kg m2/ s2) = average force computed over the distance r r When is not

### How to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation

Chapter 6: Work and Kinetic Energy What is work done by a force What is kinetic energy work-energy theorem How to calculate work done by a varying force along a curved path The meaning and calculation

### Chapter 6. Work and Energy

Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

### Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

### KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### 2. (b). The newton is a unit of weight, and the quantity (or mass) of gold that weighs 1 newton is m 1 N

QUICK QUIZZS 1. Newton s second law says that the acceleration of an object is directly proportional to the resultant (or net) force acting on. Recognizing this, consider the given statements one at a

### F mg (10.1 kg)(9.80 m/s ) m

Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### The car is pulled up a long hill. 2. Does the roller coaster ever get higher than the first hill? No.

Roller Coaster Physics Answer Key Vocabulary: friction, gravitational potential energy, kinetic energy, momentum, velocity Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose

### BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

### Work, Kinetic Energy and Potential Energy

Chapter 6 Work, Kinetic Energy and Potential Energy 6.1 The Important Stuff 6.1.1 Kinetic Energy For an object with mass m and speed v, the kinetic energy is defined as K = 1 2 mv2 (6.1) Kinetic energy

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### physics 111N work & energy

physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

### Conservation of Energy Workshop. Academic Resource Center

Conservation of Energy Workshop Academic Resource Center Presentation Outline Understanding Concepts Kinetic Energy Gravitational Potential Energy Elastic Potential Energy Example Conceptual Situations

### 2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

### ACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS

1 PURPOSE ACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS For this experiment, the Motion Visualizer (MV) is used to capture the motion of two frictionless carts moving along a flat, horizontal

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

### P211 Midterm 2 Spring 2004 Form D

1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

### Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

### Physics 201 Fall 2009 Exam 2 October 27, 2009

Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### = Ps cos 0 = (150 N)(7.0 m) = J F N. s cos 180 = µ k

Week 5 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions o these problems, various details have been changed, so that the answers will come out dierently. The method to ind the solution

### f max s = µ s N (5.1)

Chapter 5 Forces and Motion II 5.1 The Important Stuff 5.1.1 Friction Forces Forces which are known collectively as friction forces are all around us in daily life. In elementary physics we discuss the

### 3) a 1 = a 2. 5) a 1 = 2 a 2

ConcepTest Pulley Two masses are connected by a light rope as shown below. What is the 1) a 1 = 1/3 a 2 2) a 1 = ½ a 2 relationship between the magnitude of 3) a 1 = a 2 the acceleration of m 1 to that

### University Physics 226N/231N Old Dominion University. Newton s Laws and Forces Examples

University Physics 226N/231N Old Dominion University Newton s Laws and Forces Examples Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Wednesday, September

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000

M31 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000 APPLIED MATHEMATICS - ORDINARY LEVEL FRIDAY, 23 JUNE - AFTERNOON, 2.00 to 4.30 Six questions to be answered. All questions

### HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

### Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As