Memory attributes CMSC 330: Organization of Programming Languages

Size: px
Start display at page:

Download "Memory attributes CMSC 330: Organization of Programming Languages"

Transcription

1 Memory attributes CMSC 330: Organization of Programming Languages Garbage Collection Memory to store data in programming languages has several attributes: Persistence (or lifetime) How long the memory exists Allocation When the memory is available for use Recovery When the system recovers the memory for reuse Most programming languages are concerned with some subset of the following 4 memory classes: Fixed (or static) memory Automatic memory Programmer allocated memory Persistent memory CMSC Memory classes Static memory Usually a fixed address in memory Persistence Lifetime of execution of program Allocation By compiler for entire execution Recovery By system when program terminates Automatic memory Usually on a Persistence Lifetime of method using that data Allocation When method is invoked Recovery When method terminates Memory classes Allocated memory Usually memory on a heap Persistence As long as memory is needed Allocation Explicitly by programmer Recovery Either by programmer or automatically (when possible and depends upon language) Persistent memory Usually the file system Persistence Multiple execution of a program (e.g., files or databases) Allocation By program or user, often outside of program execution Recovery When data no longer needed This form of memory usually outside of programming language course and part of database area (e.g., CMSC 424) CMSC CMSC 330 4

2 Memory Management in C Local variables live on the Allocated at function invocation time Deallocated when function returns Storage space reused after function returns Space on the heap allocated with malloc() Must be explicitly freed with free() This is called explicit or manual memory management Deletions must be done by the user CMSC Memory Management Mistakes May forget to free memory (memory leak) { int *x = (int *) malloc(sizeof(int)); } May retain ptr to freed memory (dangling pointer) { int *x =...malloc(); free(x); *x = 5; /* oops! */ } May try to free something twice { int *x =...malloc(); free(x); free(x); } This may corrupt the memory management data structures E.g., the memory allocator maintains a free list of space on the heap that s available CMSC Ways to Avoid Mistakes Don t allocate memory on the heap Often impractical Leads to confusing code (e.g., alloca() ) Never free memory OS will reclaim process s memory anyway at exit Memory is cheap; who cares about a little leak? LISP model System halts program and reclaims unused memory when there is no more available Use a garbage collector E.g., conservative Boehm-Weiser collector for C CMSC Memory Management in Ruby Local variables live on the Storage reclaimed when method returns Objects live on the heap Created with calls to Class.new Objects never explicitly freed Ruby uses automatic memory management Uses a garbage collector to reclaim memory CMSC 330 8

3 Memory Management in OCaml Local variables live on the Tuples, closures, and constructed types live on the heap let x = (3, 4) (* heap-allocated *) let f x y = x + y in f 3 (* result heap-allocated *) type a t = None Some of a None (* not on the heap just a primitive *) Some 37 (* heap-allocated *) Garbage collection reclaims memory Memory Management in Java Local variables live on the Allocated at method invocation time Deallocated when method returns Other data lives on the heap Memory is allocated with new But never explicitly deallocated Java uses automatic memory management CMSC CMSC Second Memory Problem: Fragmentation allocate(a); allocate(x); allocate(y); free(a); allocate(z); free(y); allocate(b); No contiguous space for b Garbage collection goal Process to reclaim memory. (Also solve Fragmentation problem.) Algorithm: You can do garbage collection and memory compaction if you know where every pointer is in a program. If you move the allocated storage, simply change the pointer to it. This is true in LISP, OCAML, Java, Prolog Not true in C, C++, Pascal, Ada CMSC 330 CMSC 330 2

4 Garbage Collection (GC) At any point during execution, can divide the objects in the heap into two classes: Live objects will be used later Dead objects will never be used again They are garbage Idea: Can reuse memory from dead objects Goals: Reduce memory leaks, and make dangling pointers impossible Many GC Techniques In most languages we can t know for sure which objects are really live or dead Undecidable, like solving the halting problem Thus we need to make an approximation OK if we decide something is live when it s not But we d better not deallocate an object that will be used later on CMSC CMSC Reachability An object is reachable if it can be accessed by chasing pointers from live data Safe policy: delete unreachable objects An unreachable object can never be accessed again by the program The object is definitely garbage A reachable object may be accessed in the future The object could be garbage but will be retained anyway Could lead to memory leaks CMSC Roots At a given program point, we define liveness as being data reachable from the root set: Global variables What are these in Java? Ruby? OCaml? Local variables of all live method activations (i.e., the ) At the machine level, we also consider the register set (usually stores local or global variables) Next: techniques for pointer chasing CMSC 330 6

5 Reference Counting Reference Counting Example Old technique (960) Each object has count of number of pointers to it from other objects and from the When count reaches 0, object can be deallocated 2 Counts tracked by either compiler or manually To find pointers, need to know layout of objects In particular, need to distinguish pointers from ints Method works mostly for reclaiming memory; doesn t handle fragmentation problem CMSC CMSC Reference Counting Example Reference Counting Example 2 2 CMSC CMSC

6 Reference Counting Example Reference Counting Example CMSC CMSC Reference Counting Example Reference Counting Example 2 0 CMSC CMSC

7 Tradeoffs Advantage: incremental technique Generally small, constant amount of work per memory write With more effort, can even bound running time Disadvantages: Cascading decrements can be expensive Can t collect cycles, since counts never go to 0 Also requires extra storage for reference counts Mark and Sweep GC Idea: Only objects reachable from could possibly be live Every so often, stop the world and do GC: Mark all objects on as live Until no more reachable objects, Mark object reachable from live object as live Deallocate any non-reachable objects This is a tracing garbage collector Does not handle fragmentation problem CMSC CMSC Mark and Sweep Example Mark and Sweep Example CMSC CMSC

8 Mark and Sweep Example Mark and Sweep Example CMSC CMSC Mark and Sweep Example Mark and Sweep Example CMSC CMSC

9 Mark and Sweep Example CMSC Tradeoffs with Mark and Sweep Pros: No problem with cycles Memory writes have no cost Cons: Fragmentation Available space broken up into many small pieces Thus many mark-and-sweep systems may also have a compaction phase (like defragmenting your disk) Cost proportional to heap size Sweep phase needs to traverse whole heap it touches dead memory to put it back on to the free list Not appropriate for real-time applications You wouldn t like your auto s braking system to stop working for a GC while you are trying to stop at a busy intersection CMSC Stop and Copy GC Like mark and sweep, but only touches live objects Divide heap into two equal parts (semispaces) Only one semispace active at a time At GC time, flip semispaces Trace the live data starting from the Copy live data into other semispace Declare everything in current semispace dead; switch to other semispace Stop and Copy Example CMSC CMSC

10 Stop and Copy Example Stop and Copy Example CMSC CMSC Stop and Copy Example Stop and Copy Tradeoffs CMSC Pros: Only touches live data No fragmentation; automatically compacts Cons: Will probably increase locality Requires twice the memory space Like mark and sweep, need to stop the world Program must stop running to let garbage collector move around data in the heap CMSC

11 The Generational Principle More objects live Object lifetime increases Young objects die quickly; old objects keep living CMSC Generational Collection Long lived objects get copied over and over Idea: Have more than one semispace, divide into generations Older generations collected less often Objects that survive many collections get pushed into older generations Need to track pointers from old to young generations to use as roots for young generation collection One popular setup Generational stop and copy CMSC HotSpot SDK.4.2 Collector Multi-generational, hybrid collector Young gen : stop and copy collector Tenured gen : mark and sweep collector Permanent gen : no collection Why does using a copy collector for the youngest generation make sense? What apps will be penalized by this setup? More Issues in GC (cont d) Stopping is world is a big hit Unpredictable performance Bad for real-time systems Need to stop all threads Without a much more sophisticated GC One-size fits all solution Sometimes, GC just gets in the way But correctness comes first CMSC CMSC

12 What Does GC Mean to You? Ideally, nothing It should make your life easier And shouldn t affect performance too much May even give better performance than you d have with explicit deallocation If GC becomes a problem, hard to solve You can set parameters of the GC You can modify your program But don t optimize too early! Dealing with GC Problems Best idea: Measure where your problems are coming from For HotSpot VM, try running with -verbose:gc Prints out messages with statistics when a GC occurs [GC K->83000K(776768K), secs] [GC 32586K->83372K(776768K), secs] [Full GC K->83769K(776768K), secs] CMSC CMSC GC Parameters Can resize the generations How much to use initially, plus max growth Change the total heap size In terms of an absolute measure In terms of ratio of free/allocated data For server applications, two common tweaks: Make the total heap as big as possible Make the young generation half the total heap Increasing Memory Performance Don t allocate as much memory Less work for your application Less work for the garbage collector Should improve performance (Why only should?) Don t hold on to references Null out pointers in data structures Or use weak references CMSC CMSC

13 Find the Memory Leak class Stack { private Object[] ; private int index; public Stack(int size) { = new Object[size]; } public void push(object o) { [index++] = o; } public void pop() { return [index--]; } } From Haggar, Garbage Collection and the Java Platform Memory Model Answer: pop() leaves item on array; storage not reclaimed. Bad Ideas (Usually) Calling System.gc() This is probably a bad idea You have no idea what the GC will do And it will take a while Managing memory yourself Object pools, free lists, object recycling GC s have been heavily tuned to be efficient CMSC CMSC

Memory Allocation. Static Allocation. Dynamic Allocation. Memory Management. Dynamic Allocation. Dynamic Storage Allocation

Memory Allocation. Static Allocation. Dynamic Allocation. Memory Management. Dynamic Allocation. Dynamic Storage Allocation Dynamic Storage Allocation CS 44 Operating Systems Fall 5 Presented By Vibha Prasad Memory Allocation Static Allocation (fixed in size) Sometimes we create data structures that are fixed and don t need

More information

Java's garbage-collected heap

Java's garbage-collected heap Sponsored by: This story appeared on JavaWorld at http://www.javaworld.com/javaworld/jw-08-1996/jw-08-gc.html Java's garbage-collected heap An introduction to the garbage-collected heap of the Java

More information

Angelika Langer www.angelikalanger.com. The Art of Garbage Collection Tuning

Angelika Langer www.angelikalanger.com. The Art of Garbage Collection Tuning Angelika Langer www.angelikalanger.com The Art of Garbage Collection Tuning objective discuss garbage collection algorithms in Sun/Oracle's JVM give brief overview of GC tuning strategies GC tuning (2)

More information

Garbage Collection in the Java HotSpot Virtual Machine

Garbage Collection in the Java HotSpot Virtual Machine http://www.devx.com Printed from http://www.devx.com/java/article/21977/1954 Garbage Collection in the Java HotSpot Virtual Machine Gain a better understanding of how garbage collection in the Java HotSpot

More information

Jonathan Worthington Scarborough Linux User Group

Jonathan Worthington Scarborough Linux User Group Jonathan Worthington Scarborough Linux User Group Introduction What does a Virtual Machine do? Hides away the details of the hardware platform and operating system. Defines a common set of instructions.

More information

Memory Management in the Java HotSpot Virtual Machine

Memory Management in the Java HotSpot Virtual Machine Memory Management in the Java HotSpot Virtual Machine Sun Microsystems April 2006 2 Table of Contents Table of Contents 1 Introduction.....................................................................

More information

Understanding Java Garbage Collection

Understanding Java Garbage Collection TECHNOLOGY WHITE PAPER Understanding Java Garbage Collection And What You Can Do About It Table of Contents Executive Summary... 3 Introduction.... 4 Why Care About the Java Garbage Collector?.... 5 Classifying

More information

General Introduction

General Introduction Managed Runtime Technology: General Introduction Xiao-Feng Li (xiaofeng.li@gmail.com) 2012-10-10 Agenda Virtual machines Managed runtime systems EE and MM (JIT and GC) Summary 10/10/2012 Managed Runtime

More information

Garbage Collection in NonStop Server for Java

Garbage Collection in NonStop Server for Java Garbage Collection in NonStop Server for Java Technical white paper Table of contents 1. Introduction... 2 2. Garbage Collection Concepts... 2 3. Garbage Collection in NSJ... 3 4. NSJ Garbage Collection

More information

The Advantages of Dan Grossman CSE303 Spring 2005, Lecture 25

The Advantages of Dan Grossman CSE303 Spring 2005, Lecture 25 CSE 303: Concepts and Tools for Software Development Dan Grossman Spring 2005 Lecture 25 Memory-Management Idioms Dan Grossman CSE303 Spring 2005, Lecture 25 1 No tools or rule today Review: Java and C

More information

Lecture 10: Dynamic Memory Allocation 1: Into the jaws of malloc()

Lecture 10: Dynamic Memory Allocation 1: Into the jaws of malloc() CS61: Systems Programming and Machine Organization Harvard University, Fall 2009 Lecture 10: Dynamic Memory Allocation 1: Into the jaws of malloc() Prof. Matt Welsh October 6, 2009 Topics for today Dynamic

More information

Organization of Programming Languages CS320/520N. Lecture 05. Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.

Organization of Programming Languages CS320/520N. Lecture 05. Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio. Organization of Programming Languages CS320/520N Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Names, Bindings, and Scopes A name is a symbolic identifier used

More information

CSCI E 98: Managed Environments for the Execution of Programs

CSCI E 98: Managed Environments for the Execution of Programs CSCI E 98: Managed Environments for the Execution of Programs Draft Syllabus Instructor Phil McGachey, PhD Class Time: Mondays beginning Sept. 8, 5:30-7:30 pm Location: 1 Story Street, Room 304. Office

More information

Memory management. Announcements. Safe user input. Function pointers. Uses of function pointers. Function pointer example

Memory management. Announcements. Safe user input. Function pointers. Uses of function pointers. Function pointer example Announcements Memory management Assignment 2 posted, due Friday Do two of the three problems Assignment 1 graded see grades on CMS Lecture 7 CS 113 Spring 2008 2 Safe user input If you use scanf(), include

More information

Chapter 5 Names, Bindings, Type Checking, and Scopes

Chapter 5 Names, Bindings, Type Checking, and Scopes Chapter 5 Names, Bindings, Type Checking, and Scopes Chapter 5 Topics Introduction Names Variables The Concept of Binding Type Checking Strong Typing Scope Scope and Lifetime Referencing Environments Named

More information

Advanced compiler construction. General course information. Teacher & assistant. Course goals. Evaluation. Grading scheme. Michel Schinz 2007 03 16

Advanced compiler construction. General course information. Teacher & assistant. Course goals. Evaluation. Grading scheme. Michel Schinz 2007 03 16 Advanced compiler construction Michel Schinz 2007 03 16 General course information Teacher & assistant Course goals Teacher: Michel Schinz Michel.Schinz@epfl.ch Assistant: Iulian Dragos INR 321, 368 64

More information

Trace-Based and Sample-Based Profiling in Rational Application Developer

Trace-Based and Sample-Based Profiling in Rational Application Developer Trace-Based and Sample-Based Profiling in Rational Application Developer This document is aimed at highlighting the importance of profiling in software development and talks about the profiling tools offered

More information

How to create/avoid memory leak in Java and.net? Venkat Subramaniam venkats@durasoftcorp.com http://www.durasoftcorp.com

How to create/avoid memory leak in Java and.net? Venkat Subramaniam venkats@durasoftcorp.com http://www.durasoftcorp.com How to create/avoid memory leak in Java and.net? Venkat Subramaniam venkats@durasoftcorp.com http://www.durasoftcorp.com Abstract Java and.net provide run time environment for managed code, and Automatic

More information

The Design of the Inferno Virtual Machine. Introduction

The Design of the Inferno Virtual Machine. Introduction The Design of the Inferno Virtual Machine Phil Winterbottom Rob Pike Bell Labs, Lucent Technologies {philw, rob}@plan9.bell-labs.com http://www.lucent.com/inferno Introduction Virtual Machine are topical

More information

Linked Lists, Stacks, Queues, Deques. It s time for a chainge!

Linked Lists, Stacks, Queues, Deques. It s time for a chainge! Linked Lists, Stacks, Queues, Deques It s time for a chainge! Learning Goals After this unit, you should be able to... Differentiate an abstraction from an implementation. Define and give examples of problems

More information

Recent Advances in Financial Planning and Product Development

Recent Advances in Financial Planning and Product Development Memory Management in Java and Ada Language for safety software development SARA HOSSEINI-DINANI, MICHAEL SCHWARZ & JOSEF BÖRCSÖK Computer Architecture & System Programming University Kassel Wilhelmshöher

More information

2 2011 Oracle Corporation Proprietary and Confidential

2 2011 Oracle Corporation Proprietary and Confidential The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material,

More information

Java Performance Tuning

Java Performance Tuning Summer 08 Java Performance Tuning Michael Finocchiaro This white paper presents the basics of Java Performance Tuning for large Application Servers. h t t p : / / m f i n o c c h i a r o. w o r d p r e

More information

Using jvmstat and visualgc to Solve Memory Management Problems

Using jvmstat and visualgc to Solve Memory Management Problems Using jvmstat and visualgc to Solve Memory Management Problems java.sun.com/javaone/sf 1 Wally Wedel Sun Software Services Brian Doherty Sun Microsystems, Inc. Analyze JVM Machine Memory Management Problems

More information

Object Oriented Software Design II

Object Oriented Software Design II Object Oriented Software Design II Introduction to C++ Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa February 20, 2012 G. Lipari (Scuola Superiore Sant Anna) C++ Intro February

More information

Java Garbage Collection Basics

Java Garbage Collection Basics Java Garbage Collection Basics Overview Purpose This tutorial covers the basics of how Garbage Collection works with the Hotspot JVM. Once you have learned how the garbage collector functions, learn how

More information

Practical Performance Understanding the Performance of Your Application

Practical Performance Understanding the Performance of Your Application Neil Masson IBM Java Service Technical Lead 25 th September 2012 Practical Performance Understanding the Performance of Your Application 1 WebSphere User Group: Practical Performance Understand the Performance

More information

COMP 356 Programming Language Structures Notes for Chapter 10 of Concepts of Programming Languages Implementing Subprograms.

COMP 356 Programming Language Structures Notes for Chapter 10 of Concepts of Programming Languages Implementing Subprograms. COMP 356 Programming Language Structures Notes for Chapter 10 of Concepts of Programming Languages Implementing Subprograms 1 Activation Records activation declaration location Recall that an activation

More information

Lecture 11 Doubly Linked Lists & Array of Linked Lists. Doubly Linked Lists

Lecture 11 Doubly Linked Lists & Array of Linked Lists. Doubly Linked Lists Lecture 11 Doubly Linked Lists & Array of Linked Lists In this lecture Doubly linked lists Array of Linked Lists Creating an Array of Linked Lists Representing a Sparse Matrix Defining a Node for a Sparse

More information

The V8 JavaScript Engine

The V8 JavaScript Engine The V8 JavaScript Engine Design, Implementation, Testing and Benchmarking Mads Ager, Software Engineer Agenda Part 1: What is JavaScript? Part 2: V8 internals Part 3: V8 testing and benchmarking What is

More information

Java Garbage Collection Best Practices for Sizing and Tuning the Java Heap

Java Garbage Collection Best Practices for Sizing and Tuning the Java Heap IBM Software Group Java Garbage Collection Best Practices for Sizing and Tuning the Java Heap Chris Bailey WebSphere Support Technical Exchange Objectives Overview Selecting the Correct GC Policy Sizing

More information

CS2210: Compiler Construction. Runtime Environment

CS2210: Compiler Construction. Runtime Environment Compiler s Role in Program Execution When a program is invoked 0x8000000 The OS allocates memory for the program The code is loaded into the main memory Program initializes runtime environment Program

More information

Arun Kejariwal. CS229 Project Report

Arun Kejariwal. CS229 Project Report Arun Kejariwal CS229 Project Report Abstract Elasticity of cloud assists in achieving availability of web applicatis by scaling up a cluster as incoming traffic increases and keep operatial costs under

More information

System Software Prof. Dr. H. Mössenböck

System Software Prof. Dr. H. Mössenböck System Software Prof. Dr. H. Mössenböck 1. Memory Management 2. Garbage Collection 3. Linkers and Loaders 4. Debuggers 5. Text Editors Marks obtained by end-term exam http://ssw.jku.at/misc/ssw/ 1. Memory

More information

Programming Language Features (cont.) CMSC 330: Organization of Programming Languages. Parameter Passing in OCaml. Call-by-Value

Programming Language Features (cont.) CMSC 330: Organization of Programming Languages. Parameter Passing in OCaml. Call-by-Value CMSC 33: Organization of Programming Languages Programming Language Features (cont.) Names & binding Namespaces Static (lexical) scopes Dynamic scopes Polymorphism Parametric Subtype Ad-hoc Parameter Passing

More information

Monitoring Java enviroment / applications

Monitoring Java enviroment / applications Monitoring Java enviroment / applications Uroš Majcen uros@quest-slo.com Java is Everywhere You Can Expect More. Java in Mars Rover With the help of Java Technology, and the Jet Propulsion Laboratory (JPL),

More information

language 1 (source) compiler language 2 (target) Figure 1: Compiling a program

language 1 (source) compiler language 2 (target) Figure 1: Compiling a program CS 2112 Lecture 27 Interpreters, compilers, and the Java Virtual Machine 1 May 2012 Lecturer: Andrew Myers 1 Interpreters vs. compilers There are two strategies for obtaining runnable code from a program

More information

C++ INTERVIEW QUESTIONS

C++ INTERVIEW QUESTIONS C++ INTERVIEW QUESTIONS http://www.tutorialspoint.com/cplusplus/cpp_interview_questions.htm Copyright tutorialspoint.com Dear readers, these C++ Interview Questions have been designed specially to get

More information

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture Last Class: OS and Computer Architecture System bus Network card CPU, memory, I/O devices, network card, system bus Lecture 3, page 1 Last Class: OS and Computer Architecture OS Service Protection Interrupts

More information

NetBeans Profiler is an

NetBeans Profiler is an NetBeans Profiler Exploring the NetBeans Profiler From Installation to a Practical Profiling Example* Gregg Sporar* NetBeans Profiler is an optional feature of the NetBeans IDE. It is a powerful tool that

More information

Restraining Execution Environments

Restraining Execution Environments Restraining Execution Environments Segurança em Sistemas Informáticos André Gonçalves Contents Overview Java Virtual Machine: Overview The Basic Parts Security Sandbox Mechanisms Sandbox Memory Native

More information

Performance Improvement In Java Application

Performance Improvement In Java Application Performance Improvement In Java Application Megha Fulfagar Accenture Delivery Center for Technology in India Accenture, its logo, and High Performance Delivered are trademarks of Accenture. Agenda Performance

More information

Garbage Collection: Automatic Memory Management in the Microsoft.NET Framework

Garbage Collection: Automatic Memory Management in the Microsoft.NET Framework Garbage Collection: Automatic Memory Management in the Microsoft.NET Framework Jeffrey Richter This article assumes you re familiar with C and C++ Level of Difficulty 1 2 3 SUMMARY Garbage collection in

More information

PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design

PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions Slide 1 Outline Principles for performance oriented design Performance testing Performance tuning General

More information

CSCI 253. Object Oriented Programming (OOP) Overview. George Blankenship 1. Object Oriented Design: Java Review OOP George Blankenship.

CSCI 253. Object Oriented Programming (OOP) Overview. George Blankenship 1. Object Oriented Design: Java Review OOP George Blankenship. CSCI 253 Object Oriented Design: Java Review OOP George Blankenship George Blankenship 1 Object Oriented Programming (OOP) OO Principles Abstraction Encapsulation Abstract Data Type (ADT) Implementation

More information

Lecture 18-19 Data Types and Types of a Language

Lecture 18-19 Data Types and Types of a Language Lecture 18-19 Data Types and Types of a Language April 29, 2014 Data Types and Types of a Language Data, Data Types and Types Type: Generalities Type Systems and Type Safety Type Equivalence, Coercion

More information

Programming Embedded Systems

Programming Embedded Systems Programming Embedded Systems Lecture 13 Overview of memory management Monday Feb 27, 2012 Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se 1/32 Lecture outline Memory architecture of microcontrollers,

More information

Common Data Structures

Common Data Structures Data Structures 1 Common Data Structures Arrays (single and multiple dimensional) Linked Lists Stacks Queues Trees Graphs You should already be familiar with arrays, so they will not be discussed. Trees

More information

Leak Check Version 2.1 for Linux TM

Leak Check Version 2.1 for Linux TM Leak Check Version 2.1 for Linux TM User s Guide Including Leak Analyzer For x86 Servers Document Number DLC20-L-021-1 Copyright 2003-2009 Dynamic Memory Solutions LLC www.dynamic-memory.com Notices Information

More information

COS 318: Operating Systems

COS 318: Operating Systems COS 318: Operating Systems File Performance and Reliability Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Topics File buffer cache

More information

Language Based Virtual Machines... or why speed matters. by Lars Bak, Google Inc

Language Based Virtual Machines... or why speed matters. by Lars Bak, Google Inc Language Based Virtual Machines... or why speed matters by Lars Bak, Google Inc Agenda Motivation for virtual machines HotSpot V8 Dart What I ve learned Background 25+ years optimizing implementations

More information

Fachbereich Informatik und Elektrotechnik SunSPOT. Ubiquitous Computing. Ubiquitous Computing, Helmut Dispert

Fachbereich Informatik und Elektrotechnik SunSPOT. Ubiquitous Computing. Ubiquitous Computing, Helmut Dispert Ubiquitous Computing Ubiquitous Computing The Sensor Network System Sun SPOT: The Sun Small Programmable Object Technology Technology-Based Wireless Sensor Networks a Java Platform for Developing Applications

More information

Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters

Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters Interpreters and virtual machines Michel Schinz 2007 03 23 Interpreters Interpreters Why interpreters? An interpreter is a program that executes another program, represented as some kind of data-structure.

More information

A Practical Method to Diagnose Memory Leaks in Java Application Alan Yu

A Practical Method to Diagnose Memory Leaks in Java Application Alan Yu A Practical Method to Diagnose Memory Leaks in Java Application Alan Yu 1. Introduction The Java virtual machine s heap stores all objects created by a running Java application. Objects are created by

More information

2 Introduction to Java. Introduction to Programming 1 1

2 Introduction to Java. Introduction to Programming 1 1 2 Introduction to Java Introduction to Programming 1 1 Objectives At the end of the lesson, the student should be able to: Describe the features of Java technology such as the Java virtual machine, garbage

More information

Garbage Collection Curriculum

Garbage Collection Curriculum Garbage Collection Curriculum Distributed Systems Group http://www.gsd.inesc-id.pt Paulo Ferreira Luís Veiga Contents Introduction Motivation Terminology Basic Uniprocessor GC Algorithms reference counting

More information

Lecture 1 Introduction to Android

Lecture 1 Introduction to Android These slides are by Dr. Jaerock Kwon at. The original URL is http://kettering.jrkwon.com/sites/default/files/2011-2/ce-491/lecture/alecture-01.pdf so please use that instead of pointing to this local copy

More information

Java Garbage Collection Characteristics and Tuning Guidelines for Apache Hadoop TeraSort Workload

Java Garbage Collection Characteristics and Tuning Guidelines for Apache Hadoop TeraSort Workload Java Garbage Collection Characteristics and Tuning Guidelines for Apache Hadoop TeraSort Workload Shrinivas Joshi, Software Performance Engineer Vasileios Liaskovitis, Performance Engineer 1. Introduction

More information

Application Performance in the Cloud

Application Performance in the Cloud Application Performance in the Cloud Understanding and ensuring application performance in highly elastic environments Albert Mavashev, CTO Nastel Technologies, Inc. amavashev@nastel.com What is Cloud?

More information

JVM Tool Interface. Michal Pokorný

JVM Tool Interface. Michal Pokorný JVM Tool Interface Michal Pokorný JVM TI Inspect & control execution on JVM (profiling, debugging, monitoring, thread analysis, coverage, ) Higher-level interface: Java Platform Debugger Architecture JVM

More information

Agenda. Tomcat Versions Troubleshooting management Tomcat Connectors HTTP Protocal and Performance Log Tuning JVM Tuning Load balancing Tomcat

Agenda. Tomcat Versions Troubleshooting management Tomcat Connectors HTTP Protocal and Performance Log Tuning JVM Tuning Load balancing Tomcat Agenda Tomcat Versions Troubleshooting management Tomcat Connectors HTTP Protocal and Performance Log Tuning JVM Tuning Load balancing Tomcat Tomcat Performance Tuning Tomcat Versions Application/System

More information

M 3 : High-Performance Memory Management from Off-the-Shelf Components

M 3 : High-Performance Memory Management from Off-the-Shelf Components M 3 : High-Performance Memory Management from Off-the-Shelf Components David Terei Stanford University dterei@cs.stanford.edu Alex Aiken Stanford University aiken@cs.stanford.edu Jan Vitek Purdue University

More information

MID-TIER DEPLOYMENT KB

MID-TIER DEPLOYMENT KB MID-TIER DEPLOYMENT KB Author: BMC Software, Inc. Date: 23 Dec 2011 PAGE 1 OF 16 23/12/2011 Table of Contents 1. Overview 3 2. Sizing guidelines 3 3. Virtual Environment Notes 4 4. Physical Environment

More information

DATA STRUCTURES USING C

DATA STRUCTURES USING C DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give

More information

6. Storage and File Structures

6. Storage and File Structures ECS-165A WQ 11 110 6. Storage and File Structures Goals Understand the basic concepts underlying different storage media, buffer management, files structures, and organization of records in files. Contents

More information

Profiling Java Applications. Kostis Kapelonis - Agilis SA

Profiling Java Applications. Kostis Kapelonis - Agilis SA Profiling Java Applications Kostis Kapelonis - Agilis SA The need for speed Topics Software Quality with FindBugs Using Jconsole Monitoring with Netbeans 6 Profiling CPU with Netbeans 6 Profiling Memory

More information

Cisco Unified Contact Center Express and Cisco Unified IP IVR - Best Practices

Cisco Unified Contact Center Express and Cisco Unified IP IVR - Best Practices Cisco Unified Contact Center Express and Cisco Unified IP IVR - Best Practices Cisco Unified Contact Center Express product is a fairly open product which is programmed by the customer or partner to run

More information

Chapter 13 Storage classes

Chapter 13 Storage classes Chapter 13 Storage classes 1. Storage classes 2. Storage Class auto 3. Storage Class extern 4. Storage Class static 5. Storage Class register 6. Global and Local Variables 7. Nested Blocks with the Same

More information

Zing Vision. Answering your toughest production Java performance questions

Zing Vision. Answering your toughest production Java performance questions Zing Vision Answering your toughest production Java performance questions Outline What is Zing Vision? Where does Zing Vision fit in your Java environment? Key features How it works Using ZVRobot Q & A

More information

Introduction to Spark and Garbage Collection

Introduction to Spark and Garbage Collection Tuning Java Garbage Collection for Spark Applications May 28, 2015 by Daoyuan Wang and Jie Huang This is a guest post from our friends in the SSG STO Big Data Technology group at Intel. Join us at the

More information

enterprise professional expertise distilled

enterprise professional expertise distilled Oracle JRockit The Definitive Guide Develop and manage robust Java applications with Oracle's high-performance Java Virtual Machine Marcus Hirt Marcus Lagergren PUBLISHING enterprise professional expertise

More information

Real Time Cloud Computing

Real Time Cloud Computing Real Time Cloud Computing Nitesh Kumar Jangid Amity Institute of Information Technology, Amity University Rajasthan, Jaipur, Rajasthan, India njangid@jpr.amity.edu Proceedings of the 1 st National Conference;

More information

Segmentation and Fragmentation

Segmentation and Fragmentation Segmentation and Fragmentation Operating System Design MOSIG 1 Instructor: Arnaud Legrand Class Assistants: Benjamin Negrevergne, Sascha Hunold September 16, 2010 A. Legrand Segmentation and Fragmentation

More information

Virtual Machine Learning: Thinking Like a Computer Architect

Virtual Machine Learning: Thinking Like a Computer Architect Virtual Machine Learning: Thinking Like a Computer Architect Michael Hind IBM T.J. Watson Research Center March 21, 2005 CGO 05 Keynote 2005 IBM Corporation What is this talk about? Virtual Machines? 2

More information

Storage Classes CS 110B - Rule Storage Classes Page 18-1 \handouts\storclas

Storage Classes CS 110B - Rule Storage Classes Page 18-1 \handouts\storclas CS 110B - Rule Storage Classes Page 18-1 Attributes are distinctive features of a variable. Data type, int or double for example, is an attribute. Storage class is another attribute. There are four storage

More information

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The

More information

7.1 Our Current Model

7.1 Our Current Model Chapter 7 The Stack In this chapter we examine what is arguably the most important abstract data type in computer science, the stack. We will see that the stack ADT and its implementation are very simple.

More information

Instrumentation Software Profiling

Instrumentation Software Profiling Instrumentation Software Profiling Software Profiling Instrumentation of a program so that data related to runtime performance (e.g execution time, memory usage) is gathered for one or more pieces of the

More information

Tuning WebSphere Application Server ND 7.0. Royal Cyber Inc.

Tuning WebSphere Application Server ND 7.0. Royal Cyber Inc. Tuning WebSphere Application Server ND 7.0 Royal Cyber Inc. JVM related problems Application server stops responding Server crash Hung process Out of memory condition Performance degradation Check if the

More information

recursion, O(n), linked lists 6/14

recursion, O(n), linked lists 6/14 recursion, O(n), linked lists 6/14 recursion reducing the amount of data to process and processing a smaller amount of data example: process one item in a list, recursively process the rest of the list

More information

WINDOWS AZURE EXECUTION MODELS

WINDOWS AZURE EXECUTION MODELS WINDOWS AZURE EXECUTION MODELS Windows Azure provides three different execution models for running applications: Virtual Machines, Web Sites, and Cloud Services. Each one provides a different set of services,

More information

Kernel Types System Calls. Operating Systems. Autumn 2013 CS4023

Kernel Types System Calls. Operating Systems. Autumn 2013 CS4023 Operating Systems Autumn 2013 Outline 1 2 Types of 2.4, SGG The OS Kernel The kernel is the central component of an OS It has complete control over everything that occurs in the system Kernel overview

More information

Software Engineering Techniques

Software Engineering Techniques Software Engineering Techniques Low level design issues for programming-in-the-large. Software Quality Design by contract Pre- and post conditions Class invariants Ten do Ten do nots Another type of summary

More information

PC Based Escape Analysis in the Java Virtual Machine

PC Based Escape Analysis in the Java Virtual Machine PC Based Escape Analysis in the Java Virtual Machine Manfred Jendrosch, Gerhard W. Dueck, Charlie Gracie, and AndréHinkenjann Abstract Current computer architectures are multi-threaded and make use of

More information

Validating Java for Safety-Critical Applications

Validating Java for Safety-Critical Applications Validating Java for Safety-Critical Applications Jean-Marie Dautelle * Raytheon Company, Marlborough, MA, 01752 With the real-time extensions, Java can now be used for safety critical systems. It is therefore

More information

Web Performance, Inc. Testing Services Sample Performance Analysis

Web Performance, Inc. Testing Services Sample Performance Analysis Web Performance, Inc. Testing Services Sample Performance Analysis Overview This document contains two performance analysis reports created for actual web testing clients, and are a good example of the

More information

Cloud Computing. Up until now

Cloud Computing. Up until now Cloud Computing Lecture 11 Virtualization 2011-2012 Up until now Introduction. Definition of Cloud Computing Grid Computing Content Distribution Networks Map Reduce Cycle-Sharing 1 Process Virtual Machines

More information

Storage Allocation in Typed Languages

Storage Allocation in Typed Languages Storage Allocation in Typed Languages Butler W. Lampson Xerox Corporation Palo Alto Research Center Appeared in Proc. 5th Ann. III Conf: Implementation and Design of Algorithmic Languages, Guidel, France,

More information

Azul Pauseless Garbage Collection

Azul Pauseless Garbage Collection TECHNOLOGY WHITE PAPER Azul Pauseless Garbage Collection Providing continuous, pauseless operation for Java applications Executive Summary Conventional garbage collection approaches limit the scalability

More information

Real Time Programming: Concepts

Real Time Programming: Concepts Real Time Programming: Concepts Radek Pelánek Plan at first we will study basic concepts related to real time programming then we will have a look at specific programming languages and study how they realize

More information

Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface

Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface File Management Two Parts Filesystem Interface Interface the user sees Organization of the files as seen by the user Operations defined on files Properties that can be read/modified Filesystem design Implementing

More information

Squashing the Bugs: Tools for Building Better Software

Squashing the Bugs: Tools for Building Better Software Squashing the Bugs: Tools for Building Better Software Stephen Freund Williams College The Blue Screen of Death (BSOD) USS Yorktown Smart Ship 27 Pentium-based PCs Windows NT 4.0 September 21, 1997: data

More information

Cyber Security: Guidelines for Backing Up Information. A Non-Technical Guide

Cyber Security: Guidelines for Backing Up Information. A Non-Technical Guide Cyber Security: Guidelines for Backing Up Information A Non-Technical Guide Essential for Executives, Business Managers Administrative & Operations Managers This appendix is a supplement to the Cyber Security:

More information

ECS 165B: Database System Implementa6on Lecture 2

ECS 165B: Database System Implementa6on Lecture 2 ECS 165B: Database System Implementa6on Lecture 2 UC Davis, Spring 2011 Por6ons of slides based on earlier ones by Raghu Ramakrishnan, Johannes Gehrke, Jennifer Widom, Bertram Ludaescher, and Michael Gertz.

More information

Data Structures and Data Manipulation

Data Structures and Data Manipulation Data Structures and Data Manipulation What the Specification Says: Explain how static data structures may be used to implement dynamic data structures; Describe algorithms for the insertion, retrieval

More information

Holly Cummins IBM Hursley Labs. Java performance not so scary after all

Holly Cummins IBM Hursley Labs. Java performance not so scary after all Holly Cummins IBM Hursley Labs Java performance not so scary after all So... You have a performance problem. What next? Goals After this talk you will: Not feel abject terror when confronted with a performance

More information

Stack Allocation. Run-Time Data Structures. Static Structures

Stack Allocation. Run-Time Data Structures. Static Structures Run-Time Data Structures Stack Allocation Static Structures For static structures, a fixed address is used throughout execution. This is the oldest and simplest memory organization. In current compilers,

More information

University of Southern California Shibboleth High Availability with Terracotta

University of Southern California Shibboleth High Availability with Terracotta University of Southern California Shibboleth High Availability with Terracotta Overview Intro to HA architecture with Terracotta Benefits Drawbacks Shibboleth and Terracotta at USC Monitoring Issues Resolved

More information

CSE 403. Performance Profiling Marty Stepp

CSE 403. Performance Profiling Marty Stepp CSE 403 Performance Profiling Marty Stepp 1 How can we optimize it? public static String makestring() { String str = ""; for (int n = 0; n < REPS; n++) { str += "more"; } return str; } 2 How can we optimize

More information

Real-world Java 4 beginners. Dima, Superfish github.com/dimafrid

Real-world Java 4 beginners. Dima, Superfish github.com/dimafrid Real-world Java 4 beginners Dima, Superfish github.com/dimafrid Real world Hundreds of computations per second Each computation of sub-second latency Massive IO Lots of data In Web/Trading/Monitoring/Cellular/etc./etc.

More information