Clicker Question. A. 5 cm B. 10 cm C cm D. 20 cm E. 40 cm


 Avis Gilbert
 8 months ago
 Views:
Transcription
1
2 A block of mass m slides with speed v on a frictionless surface. It collides with an ideal spring and compresses it 10 cm before momentarily stopping. What is the max compression if the same mass has speed 2v initially? A. 5 cm B. 10 cm C cm D. 20 cm E. 40 cm
3 A block of mass m slides with speed v on a frictionless surface. It collides with an ideal spring and compresses it 10 cm before momentarily stopping. What is the max compression if the same mass has speed 2v initially? A. 5 cm B. 10 cm C cm D. 20 cm E. 40 cm
4 A block of mass m slides with speed v on a frictionless surface. It collides with an ideal spring and compresses it 10 cm before momentarily stopping. What is the max compression if the same mass has speed 2v initially? A. 5 cm B. 10 cm C cm D. 20 cm E. 40 cm
5 A block of mass m slides with speed v on a frictionless surface. It collides with an ideal spring and compresses it 10 cm before momentarily stopping. What is the max compression if a mass of 2m collides at speed v? A. 5 cm B. 10 cm C cm D. 20 cm E. 40 cm
6 You can throw a ball with speed vo. If you stand on the top of a building, in which case would the ball hit the ground with the highest speed vf? (Ignore air resistance.) A) When thrown straight up B) When thrown straight down C) When thrown horizontally D) All give the same speed when hitting the ground
7 You can throw a ball with speed vo. If you stand on the top of a building, in which case would the ball hit the ground with the highest speed vf? (Ignore air resistance.) A) When thrown straight up B) When thrown straight down C) When thrown horizontally D) All give the same speed when hitting the ground
8 Suppose you threw the ball straight up with speed vo. If you next want the ball to go twice as high, what is the new speed you need throw it with (ignore air resistance)? A. twice vo B. four times vo C. half of vo D. 2 times vo E. None of these
9 Suppose you threw the ball straight up with speed vo. If you next want the ball to go twice as high, what is the new speed you need throw it with (ignore air resistance)? A. twice vo B. four times vo C. half of vo D. 2 times vo E. None of these
10 A block of mass m rests on an ramp which makes angle θ with the horizontal. For the block and the ramp, the coefficient of static friction µs is larger than the coefficient of kinetic friction µk. What is the maximum force Fmax, that must be exerted on the block before it begins to move up the ramp? [b] [d] F max = 0 F max = mg( sin! + µ s cos! ) F max = mg( sin! " µ s cos! ) F max = mg sin! + µ k cos! ( ) [e] None of these θ Fmax
11 A block of mass m rests on an ramp which makes angle θ with the horizontal. For the block and the ramp, the coefficient of static friction µs is larger than the coefficient of kinetic friction µk. What is the maximum force Fmax, that must be exerted on the block before it begins to move up the ramp? [b] [d] F max = 0 F max = mg( sin! + µ s cos! ) F max = mg( sin! " µ s cos! ) F max = mg sin! + µ k cos! ( ) [e] None of these θ Fmax
12 An object of mass m is initially at rest at the top of a frictionless hill of height h as shown in the figure. What can be said about the properties of the object will it have when it reaches the bottom of the hill? The kinetic energy will equal the work done by gravity m [b] v = 2hg Potential energy is converted into kinetic energy h [d] a, b, and c are correct [e] None of these
13 An object of mass m is initially at rest at the top of a frictionless hill of height h as shown in the figure. What can be said about the properties of the object will it have when it reaches the bottom of the hill? The kinetic energy will equal the work done by gravity m [b] v = 2hg Potential energy is converted into kinetic energy h [d] a, b, and c are correct [e] None of these
14 In the figure, a block of mass 7.0 kg on a tabletop is attached by strings to vertically hanging masses, 12 kg and 10 kg, as shown. The strings and pulleys are massless, the pulleys are frictionless, but the coefficient of friction µk between the block and the tabletop is The magnitude and direction of the acceleration of the block is best described by: Not one of the listed answers [b] 9.81 m/s 2 to the left 4.40 m/s 2 to the left [d] 0.44 m/s 2 to the right [e] 0.44 m/s 2 to the left
15 In the figure, a block of mass 7.0 kg on a tabletop is attached by strings to vertically hanging masses, 12 kg and 10 kg, as shown. The strings and pulleys are massless, the pulleys are frictionless, but the coefficient of friction µk between the block and the tabletop is The magnitude and direction of the acceleration of the block is best described by: Not one of the listed answers [b] 9.81 m/s 2 to the left 4.40 m/s 2 to the left [d] 0.44 m/s 2 to the right [e] 0.44 m/s 2 to the left
16 In the figure, a 10kg mass is suspended from two spring scales that read in kilograms, each of which has negligible weight. Thus: The top scale will read zero, the lower scale will read 10 kg. [b] Each scale will read 5 kg. The lower scale will read zero, the top scale will read 10 kg. [d] Each scale will read 10 kg. [e] Each scale will show a reading between one and 10 kg, such that the sum of the two is 10 kg. However, exact readings cannot be determined without more information.
17 In the figure, a 10kg mass is suspended from two spring scales that read in kilograms, each of which has negligible weight. Thus: The top scale will read zero, the lower scale will read 10 kg. [b] Each scale will read 5 kg. The lower scale will read zero, the top scale will read 10 kg. [d] Each scale will read 10 kg. [e] Each scale will show a reading between one and 10 kg, such that the sum of the two is 10 kg. However, exact readings cannot be determined without more information.
18 In the figure, a constant external force P = 130 N is applied to a 20kg box, which is on a rough horizontal surface. The force pushes the box a distance of 8.0 m, in a time interval of 4.0 s, and the speed changes from v1 = 0.5 m/s to v2 = 2.6 m/s. The work done by the external force P is closest to: +900 J [b] +810 J +720 J [d] 900 J [e] 810 J
19 In the figure, a constant external force P = 130 N is applied to a 20kg box, which is on a rough horizontal surface. The force pushes the box a distance of 8.0 m, in a time interval of 4.0 s, and the speed changes from v1 = 0.5 m/s to v2 = 2.6 m/s. The work done by the external force P is closest to: +900 J [b] +810 J +720 J [d] 900 J [e] 810 J
20 The State Fair Midway Barrel of Fun must rotate with a certain minimum period in order for a rider of mass m1 to stick to the wall. How does this minimum rotation period change for a rider of mass m2 > m1? [b] [d] It must rotate faster with a shorter period It is the same It can rotate slower with a longer period Not enough information
21 The State Fair Midway Barrel of Fun must rotate with a certain minimum period in order for a rider of mass m1 to stick to the wall. How does this minimum rotation period change for a rider of mass m2 > m1? [b] [d] It must rotate faster with a shorter period It is the same It can rotate slower with a longer period Not enough information
22 A 12 N horizontal force is applied to a 40 N block on a rough horizontal surface. The block is initially at rest. If static friction coefficient is 0.5 and kinetic friction coefficient is 0.4, the frictional force on the block is (draw a diagram!): [b] [d] [e] 8 N 12 N 16 N 20 N 40 N
23 A 12 N horizontal force is applied to a 40 N block on a rough horizontal surface. The block is initially at rest. If static friction coefficient is 0.5 and kinetic friction coefficient is 0.4, the frictional force on the block is (draw a diagram!): [b] [d] [e] 8 N 12 N 16 N 20 N 40 N
24 An object of mass 1 kg is whirled in a horizontal circle of radius 0.5 m at a constant speed of 2 m/s. The work done on the object during one revolution is: [b] [d] [e] 0 J 1 J 2 J 4 J 16 J
25 An object of mass 1 kg is whirled in a horizontal circle of radius 0.5 m at a constant speed of 2 m/s. The work done on the object during one revolution is: [b] [d] [e] 0 J 1 J 2 J 4 J 16 J
26 Consider an object released at time initialcomponent of velocity, v x,o = 0 according to: t = 0 with an and accelerating a x = dv x = c 0 c 1 v x dt After a very long time, the xcomponent of the velocity is [b] v x = 0 v x = c 0 c 1 v = c c x 0 1 [d] v = c + c x 0 1 [e] None of these
27 Consider an object released at time initialcomponent of velocity, v x,o = 0 according to: t = 0 with an and accelerating a x = dv x = c 0 c 1 v x dt After a very long time, the xcomponent of the velocity is [b] v x = 0 v x = c 0 c 1 v = c c x 0 1 [d] v = c + c x 0 1 [e] None of these
28 An escalator is used to move 20 people (60 kg each) per minute from the first floor of a department store to the second floor, 5.0 m above. Neglect friction. The power required is approximately: [b] [d] [e] 100 W 200 W 1000 W 2000 W 60,000 W
29 An escalator is used to move 20 people (60 kg each) per minute from the first floor of a department store to the second floor, 5.0 m above. Neglect friction. The power required is approximately: [b] [d] [e] 100 W 200 W 1000 W 2000 W 60,000 W
30 A skier of mass M slides down a ski jump ramp shaped as a circle of radius R. At the end point of the ramp just before the skier is in the air, the magnitude of the normal force exerted by the ramp on the skier is n. Which of the following is true? top of ramp R end of ramp The magnitude of the normal force n is greater than gm. [b] The magnitude of the normal force n is equal to gm. The magnitude of the normal force n is less than gm. [d] The magnitude of the normal force n can be greater than, equal to, or less than gm depending on the speed. [e] None of the above statements are true.
31 A skier of mass M slides down a ski jump ramp shaped as a circle of radius R. At the end point of the ramp just before the skier is in the air, the magnitude of the normal force exerted by the ramp on the skier is n. Which of the following is true? top of ramp R end of ramp The magnitude of the normal force n is greater than gm. [b] The magnitude of the normal force n is equal to gm. The magnitude of the normal force n is less than gm. [d] The magnitude of the normal force n can be greater than, equal to, or less than gm depending on the speed. [e] None of the above statements are true.
32 Two circus clowns are launched from the same springloaded circus cannon, with the spring compressed the same distance each time. Clown A has a 40 kg mass and clown B has a 60 kg mass. The relation between their speeds at the instant of launch is v A = 3 2 v B [b] [d] [e]
33 Two circus clowns are launched from the same springloaded circus cannon, with the spring compressed the same distance each time. Clown A has a 40 kg mass and clown B has a 60 kg mass. The relation between their speeds at the instant of launch is v A = 3 2 v B [b] [d] [e]
Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.
A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the
More informationAP Physics Newton's Laws Practice Test
AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a
More informationAP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More informationP211 Midterm 2 Spring 2004 Form D
1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m
More informationB) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B
Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationPhysics1 Recitation3
Physics1 Recitation3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationChapter 8: Conservation of Energy
Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationPHYS101 The Laws of Motion Spring 2014
The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More informationAP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationPhysics 201 Fall 2009 Exam 2 October 27, 2009
Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is
More informationPhysics 201 Homework 5
Physics 201 Homework 5 Feb 6, 2013 1. The (nonconservative) force propelling a 1500kilogram car up a mountain 1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More information1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationPhysics Midterm Review. MultipleChoice Questions
Physics Midterm Review MultipleChoice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves
More information3) a 1 = a 2. 5) a 1 = 2 a 2
ConcepTest Pulley Two masses are connected by a light rope as shown below. What is the 1) a 1 = 1/3 a 2 2) a 1 = ½ a 2 relationship between the magnitude of 3) a 1 = a 2 the acceleration of m 1 to that
More information1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationPHYSICS MIDTERM REVIEW
1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If
More information1. Newton s Laws of Motion and their Applications Tutorial 1
1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0
More informationExam #1 PHYSICS 211 Monday June 29 th, 2009 Please write down your name also on the back page of this exam
Exam #1 PHYSICS 211 Monday June 29 th, 2009 NME Please write down your name also on the back page of this exam 1. particle moves along a circular path in the counterclockwise direction, as indicated in
More information1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2
1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than
More informationPhysics term 1 reviewsheet
Name: ate: 1. The length of line shown is closest to one. millimeter. centimeter. meter. kilometer 5. The diagram shown represents a rectangle composed of squares with sides one meter long. What is the
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationNewton s Laws PreTest
Newton s Laws PreTest 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)
More informationThis week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.
This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More information8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationExam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
More informationMechanics 1. Revision Notes
Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....
More informationANSWER KEY. Reviewing Physics: The Physical Setting THIRD EDITION. Amsco School Publications, Inc. 315 Hudson Street / New York, N.Y.
NSWER KEY Reviewing Physics: The Physical Setting THIRD EDITION msco School Publications, Inc. 315 Hudson Street / New York, N.Y. 10013 N 7310 CD Manufactured in the United States of merica 1345678910
More informationAP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.
1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. (Use g = 9.8 m/s2.) 1) A 21 kg box must be slid across the floor. If
More informationAP Physics 1 Midterm Exam Review
AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement
More informationPhysics Honors Page 1
1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12ounce
More informationVectors; 2D Motion. Part I. Multiple Choice. 1. v
This test covers vectors using both polar coordinates and ij notation, radial and tangential acceleration, and twodimensional motion including projectiles. Part I. Multiple Choice 1. v h x In a lab experiment,
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationSOLUTIONS TO PROBLEM SET 4
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.
More informationPHYSICS 218 EXAM 2 Thursday, October 22, 2009
PHYSICS 218 EXAM 2 Thursday, October 22, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:1010:00 526 Recitation Wed 11:3012:20 527 Recitation Wed 1:502:40 528 Recitation Mon 11:3012:20
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north
More informationOur next test will be on Monday, July 13!
Physics 2211M Test form Name Summer 2015 Test 2 Recitation Section (see back of test): 1) Print your name, test form number (above), and ninedigit student number in the section of the answer card labeled
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More information1. When the terminal velocity is reached, what is the acceleration of mass m 2?
N3) Masses m 1 and m 2 are connected by a massless rope slun over a massless, frictionless pulley. Assume m 2 >m 1. The pulley and the masses are inside a vat containin water, and each of the masses experiences
More informationRotational Mechanics  1
Rotational Mechanics  1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360
More informationP113 University of Rochester NAME S. Manly Fall 2013
Final Exam (December 19, 2013) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given unless
More information7. Kinetic Energy and Work
Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic
More informationConceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationCenter of Mass/Momentum
Center of Mass/Momentum 1. 2. An Lshaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the Lshaped
More informationKE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
More informationPhysics 211 Week 12. Simple Harmonic Motion: Equation of Motion
Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical
More informationB Answer: neither of these. Mass A is accelerating, so the net force on A must be nonzero Likewise for mass B.
CTA1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More informationThe quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:
Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of
More informationMotion in OneDimension
This test covers onedimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released
More informationAN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000
M31 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000 APPLIED MATHEMATICS  ORDINARY LEVEL FRIDAY, 23 JUNE  AFTERNOON, 2.00 to 4.30 Six questions to be answered. All questions
More information56 Chapter 5: FORCE AND MOTION I
Chapter 5: FORCE AND MOTION I 1 An example of an inertial reference frame is: A any reference frame that is not accelerating B a frame attached to a particle on which there are no forces C any reference
More informationf max s = µ s N (5.1)
Chapter 5 Forces and Motion II 5.1 The Important Stuff 5.1.1 Friction Forces Forces which are known collectively as friction forces are all around us in daily life. In elementary physics we discuss the
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More informationWork, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More information10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More informationAP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
More informationProblem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationSummary Notes. to avoid confusion it is better to write this formula in words. time
National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)
More informationPhysics Exam 1 Review  Chapter 1,2
Physics 1401  Exam 1 Review  Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental
More informationPhysics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath
Physics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationFriction and Newton s 3rd law
Lecture 4 Friction and Newton s 3rd law Prereading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both
More informationCurso20122013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationA Review of Vector Addition
Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine
More informationFundamental Mechanics: Supplementary Exercises
Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of
More information2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?
Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140
More informationF13HPhysQ5 Practice
Name: Class: Date: ID: A F13HPhysQ5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.
More informationReview Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A lawn roller in the form of a uniform solid cylinder is being pulled horizontally by a horizontal
More informationVersion 001 Quest 3 Forces tubman (20131) 1
Version 001 Quest 3 Forces tubman (20131) 1 This printout should have 19 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. l B Conceptual
More informationssignment Previewer of 24 6/1/2016 11:17 AM Summer Practice Test 2 (Ungraded) (7293503) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Description This will not be graded, but it
More informationphysics 111N forces & Newton s laws of motion
physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the
More information