Learning Evolution Using Phylogenetic Analysis

Size: px
Start display at page:

Download "Learning Evolution Using Phylogenetic Analysis"

Transcription

1 Learning Evolution Using Phylogenetic Analysis For more information contact Yulia Newton at Pre-requisite skills: Introduction knowledge of evolution. Required equipment: 1. Students will need to use a computer individually or in groups 2. Students will need an internet access The purpose of this hands-on practice is to learn how to utilize Bioinformatics tools to help students learn about Evolution. Students learn through an in-class discussion and completing a hands-on worksheet. The lesson unit includes the following components: 1. This document (teacher s guide) 2. Power point presentation for an in-class discussion 3. Student worksheet to be completed by students in class (we suggest groups of 2 students but individual work is perfectly acceptable as well) There are 5 parts in the student worksheet: 1. Big Picture of the worksheet lists an overview of the steps involved in constructing a phylogenetic tree. It provides students with a big picture of the process. 2. Part A of the worksheet is an exercise of inferring phylogenetic relationship from purely morphological features. 3. Part B is a step-by-step walk through performing a phylogenetic analysis. Beta globin sequences from various specie are used for this part of the worksheet. 4. In part C students work on their own, using what they learned in part B, to analyze SIV and HIV sequences to determine which SIV strand HIV evolved from. GAG protein sequences are used in this part of the worksheet. Page 1 of 10

2 5. In Part D students perform phylogenetic analysis on various placentals and marsupials to determine relationship of platypus and kangaroo rats to other specie. Students should get the following tree as a part of their analysis. Big Picture 1. Gather your characteristics based on which you want to compare the desired species/entities. 2. Perform multiple sequence alignment on the selected sequences. 3. Calculate the distance matrix from the multiple sequence alignment. 4. Build a phylogenetic tree. 5. Visualize the tree in graphical output from the text representation of the tree produced by the previous step. In class discussion and presentation The included power point is optional but is strongly encouraged to be used. Below is a discussion guideline for the following topics: Rooted and un-rooted trees Cladograms vs. Phylograms Page 2 of 10

3 Start this workshop by talking about evolution. 1. What is evolution? Descent with modification. 2. Talk about the time frames (geological time vs. family genealogy) 3. How can we infer relatedness of species (morphology, fossil record, genetic makeup, protein sequence, etc.)? 4. What are the differences for inferring relatedness between species that still exist and species that are now extinct (Neanderthals, Wooly Mammoth, etc.)? 5. Talk about examples of morphological features (bipedalism, shape of limbs, digits vs. hooves, etc.) 6. Give examples of situations when using morphological features makes it hard to determine evolutionary relationship (Quagga) or produces phylogeny that is wrong (Bankisia, Horseshoe crab). 7. Can you think of any reasons when it is adventageous to use genomic over proteomic sequences and visa versa? a. It makes sense to use genomic sequences when there has not been enough evolutionary divergence between the sequences. For example, when looking at fairly young species or recent evolutionary changes. Oherwise, proteomic sequences are best to use. Rooted and un-rooted trees Let s talk about rooted and unrooted trees. This is a very important concept to understand. Computational phylogeny is a discipline that lives in the intersection of Computer Science and Biology. However, there are some concepts that mean different things to a computer scientist and to a biologist. Tree root is one of those concepts. To a computer scientist a root is a special node that sits above other nodes in the tree. To a biologist examining a phylogenetic tree, a root means an evolutionary common ancestor. Below are different examples of drawing a tree: One has to be careful about whether the tree they are working with is rooted or unrooted. Unrooted trees provide information about evolutionary relatedness. Those entities that are more closely grouped are more closely related than those entities that are not as closely grouped. Rooted trees provide information about the evolutionary ancestry in addition to the evolutionary relatedness. The Page 3 of 10

4 same tree could be drawn to look rooted or unrooted. In the example below, A appears to be a root of the left tree and therefore we could infer that A is an evolutionary ancestor of all other nodes. However, if that tree is not truly rooted but only drawn as rooted then our analysis is incorrect. The tree on the right is the same tree as the one on the left, only drawn differently. A is not a root in this tree. When using Bioinformatics tools to produce and draw phylogenetic trees, you have to be extra careful about whether the tree is rooted or unrooted. Usually these details are a part of the manual or the readme file. Remember that evolution is a fluid process? Evolutionary changes are slow and settle, when looking at any short periods of time. Usually when building phylogenetic trees, the common ancestor of two currently existing specie is often extinct and no longer exists. Such common ancestor is indicated in a tree as a junction of two branches. Adding an outlier entity/group to our set of characteristics (in our case sequences) allows creating a tree topology that shows the position of the common ancestor for our group of interest. It causes representing the phylogeny of our entities/specie as a subtree, which indicates a grouping together. The outlier sequence is usually completely unrelated to the other sequences in your analysis and will lie on the outside of all the other groups. It will not group together with any other sequences. This technique allows all the sequences of interest to group together in a subtree, by which separating all of them from the outlier entity. Below is an example of using an outlier group. Eubacteria is used as an outlier in the analysis of eukaryotes based on some enzymes. Without the use of an outgroup it would be impossible to infer an relationship to a common ancestor just from the tree topology. Da-Fei Feng, Glen Cho, and Russell F. Doolittle. Determining divergence times with a protein clock: Update and reevaluation, PNAS, Page 4 of 10

5 A subtree with two or more nodes is called a clade. Nodes within the same clade are more closely related than those in two different clades. There are many ways to draw a tree Everything is derived from the common ancestor. Many algorithms do not actually give us the root. Part c: what does evolutionary time means (in cladograms, everything is now Cladograms vs. Phylograms Another important concept we need to tackle is the difference between the cladograms and phylograms. Both of these types of trees can be drawn as rooted and unrooted. However, there is one big difference between cladograms and phylograms. The length of a tree arm (called an edge in computer science and mathematics) in phylograms indicates evolutionary time since the last common ancestor while the length of a tree arm in a cladogram is irrelavant and has no special meaning. In phylogram, the longer the edge is the more time has passed since the last common ancestor and very short edges indicate a very young (in evolutionary time) node. Answers to the worksheet questions: Part A Exercise 1 Quagga and Zebra are more closely related. Exercise 2 Banksia and Hakea are more closely related. Exercise 3 Horseshoe crab and Aquatic spider are more closely related. Exercise 4 Barnacle and Shrimp are more closely related. Exercise 5 Species that are more closely related may have more similar DNA sequences and, therefore, we can use those sequences. When the species we are comparing are more distantly related then the appropriate genomic sequences might not align well while the protein sequences still show conservation. In that case, it is better to use protein sequences. Page 5 of 10

6 Part B Exercise 1 Q11 Exercise 3 Q9 Exercise 4 A Students should see a tree that looks similar to this: Page 6 of 10

7 Q8 Different. Q9 Chimp (displayed as Pan in the tree). Q10 Gorilla. Exercise 4B Students should see trees similar to this: Q9 Rooted. It says so in the Standard output (Report) field. Q13 Salmon (appears as Salmo in the tree). Q14 Logically, this relationship does not make sense. As was discussed in the in-class presentation and class discussion, we should use an outgroup to fix this. Q22 The root should be drawn on the edge leading to Salmo node. Exercise 4C Students should see a tree similar to this: Page 7 of 10

8 Q10 Unrooted. It says so in Standard output (Report) field. Q14 The root should be drawn on the edge leading to Salmo node. Q29 The tree produced in step 8 is a phylogram. It tells you how much evolution occurred from the time of speciation between any two given species. In other words, it tells us how closely two species are related. For example, from this tree we can conclude that there has passed more evolutionary time between Salmo (salmon) and Mus (mouse) than between Rattus (rat) and Mus (mouse). The tree produced in step 26 is a cladogram. It tells us how much time has passed since the speciation between the species in the exercise. For example, we can tell that more evolutionary time passed from the time of speciation between Mus (mouse) and Rattus (Rat) than Mus (mouse) and Otolemur (galago). Exercise 5 Students should see trees similar to this: Q8 Chicken (Gallus) is most related to the mouse and the rat (Mus and Rattus). Part C Exercise 1 Students should see a tree similar to one of these trees: Page 8 of 10

9 Q3 HIV is most closely related to SIV Chimp. Part D Students should see a tree similar to one of these trees: Page 9 of 10

10 Q7 Platypus is most closely related to other marsupials: Opassum, Quokka, Rock wallaby, Nail tail wallaby, Swamp wallaby). Q8 Kangaroo rats don t belong to the same immediate clade. They are more distantly related to platypus than the species listed in Q7. Actually, kangaroo rats are not marsupials at all. Q9 Kangaroo rats are more closely related to other species of rats and mice. Page 10 of 10

AP Biology Essential Knowledge Student Diagnostic

AP Biology Essential Knowledge Student Diagnostic AP Biology Essential Knowledge Student Diagnostic Background The Essential Knowledge statements provided in the AP Biology Curriculum Framework are scientific claims describing phenomenon occurring in

More information

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today.

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today. Section 1: The Linnaean System of Classification 17.1 Reading Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN IDEA:

More information

Worksheet - COMPARATIVE MAPPING 1

Worksheet - COMPARATIVE MAPPING 1 Worksheet - COMPARATIVE MAPPING 1 The arrangement of genes and other DNA markers is compared between species in Comparative genome mapping. As early as 1915, the geneticist J.B.S Haldane reported that

More information

Protein Sequence Analysis - Overview -

Protein Sequence Analysis - Overview - Protein Sequence Analysis - Overview - UDEL Workshop Raja Mazumder Research Associate Professor, Department of Biochemistry and Molecular Biology Georgetown University Medical Center Topics Why do protein

More information

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 17 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The correct order for the levels of Linnaeus's classification system,

More information

Introduction to Phylogenetic Analysis

Introduction to Phylogenetic Analysis Subjects of this lecture Introduction to Phylogenetic nalysis Irit Orr 1 Introducing some of the terminology of phylogenetics. 2 Introducing some of the most commonly used methods for phylogenetic analysis.

More information

Lab 2/Phylogenetics/September 16, 2002 1 PHYLOGENETICS

Lab 2/Phylogenetics/September 16, 2002 1 PHYLOGENETICS Lab 2/Phylogenetics/September 16, 2002 1 Read: Tudge Chapter 2 PHYLOGENETICS Objective of the Lab: To understand how DNA and protein sequence information can be used to make comparisons and assess evolutionary

More information

Visualization of Phylogenetic Trees and Metadata

Visualization of Phylogenetic Trees and Metadata Visualization of Phylogenetic Trees and Metadata November 27, 2015 Sample to Insight CLC bio, a QIAGEN Company Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.clcbio.com support-clcbio@qiagen.com

More information

Activity IT S ALL RELATIVES The Role of DNA Evidence in Forensic Investigations

Activity IT S ALL RELATIVES The Role of DNA Evidence in Forensic Investigations Activity IT S ALL RELATIVES The Role of DNA Evidence in Forensic Investigations SCENARIO You have responded, as a result of a call from the police to the Coroner s Office, to the scene of the death of

More information

Introduction to Bioinformatics AS 250.265 Laboratory Assignment 6

Introduction to Bioinformatics AS 250.265 Laboratory Assignment 6 Introduction to Bioinformatics AS 250.265 Laboratory Assignment 6 In the last lab, you learned how to perform basic multiple sequence alignments. While useful in themselves for determining conserved residues

More information

Section 3 Comparative Genomics and Phylogenetics

Section 3 Comparative Genomics and Phylogenetics Section 3 Section 3 Comparative enomics and Phylogenetics At the end of this section you should be able to: Describe what is meant by DNA sequencing. Explain what is meant by Bioinformatics and Comparative

More information

Evidence for evolution factsheet

Evidence for evolution factsheet The theory of evolution by natural selection is supported by a great deal of evidence. Fossils Fossils are formed when organisms become buried in sediments, causing little decomposition of the organism.

More information

A Correlation of Miller & Levine Biology 2014

A Correlation of Miller & Levine Biology 2014 A Correlation of Miller & Levine Biology To Ohio s New Learning Standards for Science, 2011 Biology, High School Science Inquiry and Application Course Content A Correlation of, to Introduction This document

More information

Phylogenetic Trees Made Easy

Phylogenetic Trees Made Easy Phylogenetic Trees Made Easy A How-To Manual Fourth Edition Barry G. Hall University of Rochester, Emeritus and Bellingham Research Institute Sinauer Associates, Inc. Publishers Sunderland, Massachusetts

More information

A Step-by-Step Tutorial: Divergence Time Estimation with Approximate Likelihood Calculation Using MCMCTREE in PAML

A Step-by-Step Tutorial: Divergence Time Estimation with Approximate Likelihood Calculation Using MCMCTREE in PAML 9 June 2011 A Step-by-Step Tutorial: Divergence Time Estimation with Approximate Likelihood Calculation Using MCMCTREE in PAML by Jun Inoue, Mario dos Reis, and Ziheng Yang In this tutorial we will analyze

More information

The Story of Human Evolution Part 1: From ape-like ancestors to modern humans

The Story of Human Evolution Part 1: From ape-like ancestors to modern humans The Story of Human Evolution Part 1: From ape-like ancestors to modern humans Slide 1 The Story of Human Evolution This powerpoint presentation tells the story of who we are and where we came from - how

More information

investigation 3 Comparing DNA Sequences to

investigation 3 Comparing DNA Sequences to Big Idea 1 Evolution investigation 3 Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST How can bioinformatics be used as a tool to determine evolutionary relationships and to

More information

Taxonomy and Classification

Taxonomy and Classification Taxonomy and Classification Taxonomy = the science of naming and describing species Wisdom begins with calling things by their right names -Chinese Proverb museums contain ~ 2 Billion specimens worldwide

More information

MAKING AN EVOLUTIONARY TREE

MAKING AN EVOLUTIONARY TREE Student manual MAKING AN EVOLUTIONARY TREE THEORY The relationship between different species can be derived from different information sources. The connection between species may turn out by similarities

More information

Name Class Date WHAT I KNOW. about how organisms have changed. grown in complexity over time.

Name Class Date WHAT I KNOW. about how organisms have changed. grown in complexity over time. History of Life Evolution Q: How do fossils help biologists understand the history of life on Earth? 19.1 How do scientists use fossils to study Earth s history? WHAT I KNOW SAMPLE ANSWER: Fossils give

More information

Name: DUE: May 2, 2013 Ms. Galaydick. Geologic Time Scale Era Period End date (in millions of years) Cenozoic Quaternary present

Name: DUE: May 2, 2013 Ms. Galaydick. Geologic Time Scale Era Period End date (in millions of years) Cenozoic Quaternary present Name: DUE: May 2, 2013 Ms. Galaydick Objective: Use the diagrams to answer the questions for each set: USING SCIENCE SKILLS PART #1 Geologic Time Scale Era Period End date (in millions of years) Cenozoic

More information

The Central Dogma of Molecular Biology

The Central Dogma of Molecular Biology Vierstraete Andy (version 1.01) 1/02/2000 -Page 1 - The Central Dogma of Molecular Biology Figure 1 : The Central Dogma of molecular biology. DNA contains the complete genetic information that defines

More information

17.1. The Tree of Life CHAPTER 17. Organisms can be classified based on physical similarities. Linnaean taxonomy. names.

17.1. The Tree of Life CHAPTER 17. Organisms can be classified based on physical similarities. Linnaean taxonomy. names. SECTION 17.1 THE LINNAEAN SYSTEM OF CLASSIFICATION Study Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN IDEA: Linnaeus

More information

Building a phylogenetic tree

Building a phylogenetic tree bioscience explained 134567 Wojciech Grajkowski Szkoła Festiwalu Nauki, ul. Ks. Trojdena 4, 02-109 Warszawa Building a phylogenetic tree Aim This activity shows how phylogenetic trees are constructed using

More information

Macroevolution: Change above the species level NABT 2006 Evolution Symposium

Macroevolution: Change above the species level NABT 2006 Evolution Symposium Introduction Macroevolution: Change above the species level NABT 2006 Evolution Symposium The basic concept of evolution change over time can be examined in two different time frames. The first, which

More information

PROC. CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE 2006 1. E-mail: msm_eng@k-space.org

PROC. CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE 2006 1. E-mail: msm_eng@k-space.org BIOINFTool: Bioinformatics and sequence data analysis in molecular biology using Matlab Mai S. Mabrouk 1, Marwa Hamdy 2, Marwa Mamdouh 2, Marwa Aboelfotoh 2,Yasser M. Kadah 2 1 Biomedical Engineering Department,

More information

Protein Protein Interaction Networks

Protein Protein Interaction Networks Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

More information

BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS

BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS NEW YORK CITY COLLEGE OF TECHNOLOGY The City University Of New York School of Arts and Sciences Biological Sciences Department Course title:

More information

1. Over the past century, several scientists around the world have made the following observations:

1. Over the past century, several scientists around the world have made the following observations: Evolution Keystone Review 1. Over the past century, several scientists around the world have made the following observations: New mitochondria and plastids can only be generated by old mitochondria and

More information

Molecular Clocks and Tree Dating with r8s and BEAST

Molecular Clocks and Tree Dating with r8s and BEAST Integrative Biology 200B University of California, Berkeley Principals of Phylogenetics: Ecology and Evolution Spring 2011 Updated by Nick Matzke Molecular Clocks and Tree Dating with r8s and BEAST Today

More information

Amazing DNA facts. Hands-on DNA: A Question of Taste Amazing facts and quiz questions

Amazing DNA facts. Hands-on DNA: A Question of Taste Amazing facts and quiz questions Amazing DNA facts These facts can form the basis of a quiz (for example, how many base pairs are there in the human genome?). Students should be familiar with most of this material, so the quiz could be

More information

Genome Explorer For Comparative Genome Analysis

Genome Explorer For Comparative Genome Analysis Genome Explorer For Comparative Genome Analysis Jenn Conn 1, Jo L. Dicks 1 and Ian N. Roberts 2 Abstract Genome Explorer brings together the tools required to build and compare phylogenies from both sequence

More information

4. Why are common names not good to use when classifying organisms? Give an example.

4. Why are common names not good to use when classifying organisms? Give an example. 1. Define taxonomy. Classification of organisms 2. Who was first to classify organisms? Aristotle 3. Explain Aristotle s taxonomy of organisms. Patterns of nature: looked like 4. Why are common names not

More information

Theory of Evolution. A. the beginning of life B. the evolution of eukaryotes C. the evolution of archaebacteria D. the beginning of terrestrial life

Theory of Evolution. A. the beginning of life B. the evolution of eukaryotes C. the evolution of archaebacteria D. the beginning of terrestrial life Theory of Evolution 1. In 1966, American biologist Lynn Margulis proposed the theory of endosymbiosis, or the idea that mitochondria are the descendents of symbiotic, aerobic eubacteria. What does the

More information

Bioinformatics Grid - Enabled Tools For Biologists.

Bioinformatics Grid - Enabled Tools For Biologists. Bioinformatics Grid - Enabled Tools For Biologists. What is Grid-Enabled Tools (GET)? As number of data from the genomics and proteomics experiment increases. Problems arise for the current sequence analysis

More information

Sequence Analysis 15: lecture 5. Substitution matrices Multiple sequence alignment

Sequence Analysis 15: lecture 5. Substitution matrices Multiple sequence alignment Sequence Analysis 15: lecture 5 Substitution matrices Multiple sequence alignment A teacher's dilemma To understand... Multiple sequence alignment Substitution matrices Phylogenetic trees You first need

More information

Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns

Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns NSF GK-12 Fellow: Tommy Detmer Grade Level: 4 th and 5 th grade Type of Lesson: STEM Objectives: The

More information

Bayesian coalescent inference of population size history

Bayesian coalescent inference of population size history Bayesian coalescent inference of population size history Alexei Drummond University of Auckland Workshop on Population and Speciation Genomics, 2016 1st February 2016 1 / 39 BEAST tutorials Population

More information

Practice Questions 1: Evolution

Practice Questions 1: Evolution Practice Questions 1: Evolution 1. Which concept is best illustrated in the flowchart below? A. natural selection B. genetic manipulation C. dynamic equilibrium D. material cycles 2. The diagram below

More information

Bio-Informatics Lectures. A Short Introduction

Bio-Informatics Lectures. A Short Introduction Bio-Informatics Lectures A Short Introduction The History of Bioinformatics Sanger Sequencing PCR in presence of fluorescent, chain-terminating dideoxynucleotides Massively Parallel Sequencing Massively

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

Biology & Big Data. Debasis Mitra Professor, Computer Science, FIT

Biology & Big Data. Debasis Mitra Professor, Computer Science, FIT Biology & Big Data Debasis Mitra Professor, Computer Science, FIT Cloud? Debasis Mitra, Florida Tech Data as Service Transparent to user Multiple locations Robustness Software as Service Software location

More information

Modulhandbuch / Program Catalog. Master s degree Evolution, Ecology and Systematics. (Master of Science, M.Sc.)

Modulhandbuch / Program Catalog. Master s degree Evolution, Ecology and Systematics. (Master of Science, M.Sc.) Modulhandbuch / Program Catalog Master s degree Evolution, Ecology and Systematics (Master of Science, M.Sc.) (120 ECTS points) Based on the Examination Regulations from March 28, 2012 88/434/---/M0/H/2012

More information

Introduction to Bioinformatics 3. DNA editing and contig assembly

Introduction to Bioinformatics 3. DNA editing and contig assembly Introduction to Bioinformatics 3. DNA editing and contig assembly Benjamin F. Matthews United States Department of Agriculture Soybean Genomics and Improvement Laboratory Beltsville, MD 20708 matthewb@ba.ars.usda.gov

More information

Evolution of Retroviruses: Fossils in our DNA 1

Evolution of Retroviruses: Fossils in our DNA 1 Evolution of Retroviruses: Fossils in our DNA 1 JOHN M. COFFIN Professor of Molecular Biology and Microbiology Tufts University UNIQUE AMONG INFECTIOUS AGENTS, retroviruses provide the opportunity for

More information

Analyzing A DNA Sequence Chromatogram

Analyzing A DNA Sequence Chromatogram LESSON 9 HANDOUT Analyzing A DNA Sequence Chromatogram Student Researcher Background: DNA Analysis and FinchTV DNA sequence data can be used to answer many types of questions. Because DNA sequences differ

More information

CCR Biology - Chapter 10 Practice Test - Summer 2012

CCR Biology - Chapter 10 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 10 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the term for a feature

More information

Biological kinds and the causal theory of reference

Biological kinds and the causal theory of reference Biological kinds and the causal theory of reference Ingo Brigandt Department of History and Philosophy of Science 1017 Cathedral of Learning University of Pittsburgh Pittsburgh, PA 15260 E-mail: inb1@pitt.edu

More information

11, Olomouc, 783 71, Czech Republic. Version of record first published: 24 Sep 2012.

11, Olomouc, 783 71, Czech Republic. Version of record first published: 24 Sep 2012. This article was downloaded by: [Knihovna Univerzity Palackeho], [Vladan Ondrej] On: 24 September 2012, At: 05:24 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954

More information

REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOINFORMATICS (BSc[BioInf])

REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOINFORMATICS (BSc[BioInf]) 820 REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOINFORMATICS (BSc[BioInf]) (See also General Regulations) BMS1 Admission to the Degree To be eligible for admission to the degree of Bachelor

More information

Systematics - BIO 615

Systematics - BIO 615 Outline - and introduction to phylogenetic inference 1. Pre Lamarck, Pre Darwin Classification without phylogeny 2. Lamarck & Darwin to Hennig (et al.) Classification with phylogeny but without a reproducible

More information

Scaling the gene duplication problem towards the Tree of Life: Accelerating the rspr heuristic search

Scaling the gene duplication problem towards the Tree of Life: Accelerating the rspr heuristic search Scaling the gene duplication problem towards the Tree of Life: Accelerating the rspr heuristic search André Wehe 1 and J. Gordon Burleigh 2 1 Department of Computer Science, Iowa State University, Ames,

More information

Teacher Development Workshop LIFE SCIENCES GRADE 11

Teacher Development Workshop LIFE SCIENCES GRADE 11 Teacher Development Workshop LIFE SCIENCES GRADE 11 CONTENTS PAGE CONTENTS PAGE... 2 PROGRAMME OF ASSESSMENT FOR GRADE 11... 4 TEACHING LIFE SCIENCES GRADE 11... 5 ACTIVITY A: THE URINARY SYSTEM... 5 ACTIVITY

More information

COMPARING DNA SEQUENCES TO DETERMINE EVOLUTIONARY RELATIONSHIPS AMONG MOLLUSKS

COMPARING DNA SEQUENCES TO DETERMINE EVOLUTIONARY RELATIONSHIPS AMONG MOLLUSKS COMPARING DNA SEQUENCES TO DETERMINE EVOLUTIONARY RELATIONSHIPS AMONG MOLLUSKS OVERVIEW In the online activity Biodiversity and Evolutionary Trees: An Activity on Biological Classification, you generated

More information

DnaSP, DNA polymorphism analyses by the coalescent and other methods.

DnaSP, DNA polymorphism analyses by the coalescent and other methods. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Author affiliation: Julio Rozas 1, *, Juan C. Sánchez-DelBarrio 2,3, Xavier Messeguer 2 and Ricardo Rozas 1 1 Departament de Genètica,

More information

Extensive Cryptic Diversity in Indo-Australian Rainbowfishes Revealed by DNA Barcoding

Extensive Cryptic Diversity in Indo-Australian Rainbowfishes Revealed by DNA Barcoding Extensive Cryptic Diversity in Indo-Australian Rainbowfishes Revealed by DNA Barcoding Kadarusman, Hubert N, Hadiaty R.K #, Sudarto, Paradis E., Pouyaud L. Akademi Perikanan Sorong, Papua Barat, Indonesia

More information

Evolutionary Evidence

Evolutionary Evidence Evolutionary Evidence 7th Grade, Science and English/Language Arts: Age of Mammals Make the most of your Museum field trip by integrating it into your classroom curriculum. These lesson plans provide a

More information

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office

More information

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison RETRIEVING SEQUENCE INFORMATION Nucleotide sequence databases Database search Sequence alignment and comparison Biological sequence databases Originally just a storage place for sequences. Currently the

More information

WJEC AS Biology Biodiversity & Classification (2.1 All Organisms are related through their Evolutionary History)

WJEC AS Biology Biodiversity & Classification (2.1 All Organisms are related through their Evolutionary History) Name:.. Set:. Specification Points: WJEC AS Biology Biodiversity & Classification (2.1 All Organisms are related through their Evolutionary History) (a) Biodiversity is the number of different organisms

More information

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature Section 17.1: The Linnaean System of Classification Unit 9 Study Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN

More information

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s):

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s): Understanding by Design Title: BIOLOGY/LAB Standard: EVOLUTION and BIODIVERSITY Grade(s):9/10/11/12 Established Goal(s) / Content Standard(s): 5. Evolution and Biodiversity Central Concepts: Evolution

More information

High Throughput Network Analysis

High Throughput Network Analysis High Throughput Network Analysis Sumeet Agarwal 1,2, Gabriel Villar 1,2,3, and Nick S Jones 2,4,5 1 Systems Biology Doctoral Training Centre, University of Oxford, Oxford OX1 3QD, United Kingdom 2 Department

More information

S1. Training to sustain evolutionary biology

S1. Training to sustain evolutionary biology S1. Training to sustain evolutionary biology Contemporary evolutionary biology integrates fields as diverse as genomics, informatics, systematics, evolutionary genetics, paleontology, and developmental

More information

Network Protocol Analysis using Bioinformatics Algorithms

Network Protocol Analysis using Bioinformatics Algorithms Network Protocol Analysis using Bioinformatics Algorithms Marshall A. Beddoe Marshall_Beddoe@McAfee.com ABSTRACT Network protocol analysis is currently performed by hand using only intuition and a protocol

More information

6 Creating the Animation

6 Creating the Animation 6 Creating the Animation Now that the animation can be represented, stored, and played back, all that is left to do is understand how it is created. This is where we will use genetic algorithms, and this

More information

Final Project Report

Final Project Report CPSC545 by Introduction to Data Mining Prof. Martin Schultz & Prof. Mark Gerstein Student Name: Yu Kor Hugo Lam Student ID : 904907866 Due Date : May 7, 2007 Introduction Final Project Report Pseudogenes

More information

Conley, D. T. (2005). College Knowledge: What it Really Takes for Students to Succeed and What We Can Do to Get Them Ready

Conley, D. T. (2005). College Knowledge: What it Really Takes for Students to Succeed and What We Can Do to Get Them Ready 1 Conley, D. T. (2005). College Knowledge: What it Really Takes for Students to Succeed and What We Can Do to Get Them Ready. San Francisco: Jossey-Bass. College Knowledge is based on research conducted

More information

Campbell Biology in Focus Correlation for AP Biology Curriculum Framework

Campbell Biology in Focus Correlation for AP Biology Curriculum Framework Campbell Biology in Focus Correlation for AP Biology Curriculum Framework Chapters/ Graphical analysis of allele frequencies in a population 5 Application of the Hardy-Weinberg equilibrium equation 1,

More information

Core Bioinformatics. Degree Type Year Semester. 4313473 Bioinformàtica/Bioinformatics OB 0 1

Core Bioinformatics. Degree Type Year Semester. 4313473 Bioinformàtica/Bioinformatics OB 0 1 Core Bioinformatics 2014/2015 Code: 42397 ECTS Credits: 12 Degree Type Year Semester 4313473 Bioinformàtica/Bioinformatics OB 0 1 Contact Name: Sònia Casillas Viladerrams Email: Sonia.Casillas@uab.cat

More information

MATCH Commun. Math. Comput. Chem. 61 (2009) 781-788

MATCH Commun. Math. Comput. Chem. 61 (2009) 781-788 MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 61 (2009) 781-788 ISSN 0340-6253 Three distances for rapid similarity analysis of DNA sequences Wei Chen,

More information

Principles of Evolution - Origin of Species

Principles of Evolution - Origin of Species Theories of Organic Evolution X Multiple Centers of Creation (de Buffon) developed the concept of "centers of creation throughout the world organisms had arisen, which other species had evolved from X

More information

Background Biology and Biochemistry Notes A

Background Biology and Biochemistry Notes A Background Biology and Biochemistry Notes A Vocabulary dependent variable evidence experiment hypothesis independent variable model observation prediction science scientific investigation scientific law

More information

Geological Timeline Challenge

Geological Timeline Challenge Geological Timeline Challenge Suggested Grade Levels: 8-12 Description: Students will create a timeline of Earth history in the classroom and learn about major changes to the Earth and life through time.

More information

A data management framework for the Fungal Tree of Life

A data management framework for the Fungal Tree of Life Web Accessible Sequence Analysis for Biological Inference A data management framework for the Fungal Tree of Life Kauff F, Cox CJ, Lutzoni F. 2007. WASABI: An automated sequence processing system for multi-gene

More information

Name: Date: Problem How do amino acid sequences provide evidence for evolution? Procedure Part A: Comparing Amino Acid Sequences

Name: Date: Problem How do amino acid sequences provide evidence for evolution? Procedure Part A: Comparing Amino Acid Sequences Name: Date: Amino Acid Sequences and Evolutionary Relationships Introduction Homologous structures those structures thought to have a common origin but not necessarily a common function provide some of

More information

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems?

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems? The Origin of Life I. Introduction: What is life? II. The Primitive Earth III. Evidence of Life s Beginning on Earth A. Fossil Record: a point in time B. Requirements for Chemical and Cellular Evolution:

More information

Usability in bioinformatics mobile applications

Usability in bioinformatics mobile applications Usability in bioinformatics mobile applications what we are working on Noura Chelbah, Sergio Díaz, Óscar Torreño, and myself Juan Falgueras App name Performs Advantajes Dissatvantajes Link The problem

More information

PHYLOGENY AND EVOLUTION OF NEWCASTLE DISEASE VIRUS GENOTYPES

PHYLOGENY AND EVOLUTION OF NEWCASTLE DISEASE VIRUS GENOTYPES Eötvös Lóránd University Biology Doctorate School Classical and molecular genetics program Project leader: Dr. László Orosz, corresponding member of HAS PHYLOGENY AND EVOLUTION OF NEWCASTLE DISEASE VIRUS

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Unity and Diversity of Life Q: What characteristics and traits define animals? 25.1 What is an animal? WHAT I KNOW SAMPLE ANSWER: Animals are different from other living things

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

What mathematical optimization can, and cannot, do for biologists. Steven Kelk Department of Knowledge Engineering (DKE) Maastricht University, NL

What mathematical optimization can, and cannot, do for biologists. Steven Kelk Department of Knowledge Engineering (DKE) Maastricht University, NL What mathematical optimization can, and cannot, do for biologists Steven Kelk Department of Knowledge Engineering (DKE) Maastricht University, NL Introduction There is no shortage of literature about the

More information

Preparation. Educator s Section: pp. 1 3 Unit 1 instructions: pp. 4 5 Unit 2 instructions: pp. 6 7 Masters/worksheets: pp. 8-17

Preparation. Educator s Section: pp. 1 3 Unit 1 instructions: pp. 4 5 Unit 2 instructions: pp. 6 7 Masters/worksheets: pp. 8-17 ActionBioscience.org lesson To accompany the article by Lawrence M. Page, Ph.D.: "Planetary Biodiversity Inventories: A Response to the Taxonomic Crisis" (May 2006) http://www.actionbioscience.org/biodiversity/page.html

More information

Maximum-Likelihood Estimation of Phylogeny from DNA Sequences When Substitution Rates Differ over Sites1

Maximum-Likelihood Estimation of Phylogeny from DNA Sequences When Substitution Rates Differ over Sites1 Maximum-Likelihood Estimation of Phylogeny from DNA Sequences When Substitution Rates Differ over Sites1 Ziheng Yang Department of Animal Science, Beijing Agricultural University Felsenstein s maximum-likelihood

More information

CPO Science and the NGSS

CPO Science and the NGSS CPO Science and the NGSS It is no coincidence that the performance expectations in the Next Generation Science Standards (NGSS) are all action-based. The NGSS champion the idea that science content cannot

More information

READERS of this publication understand the

READERS of this publication understand the The Classification & Evolution of Caminalcules Robert P. Gendron READERS of this publication understand the importance, and difficulty, of teaching evolution in an introductory biology course. The difficulty

More information

Pairwise Sequence Alignment

Pairwise Sequence Alignment Pairwise Sequence Alignment carolin.kosiol@vetmeduni.ac.at SS 2013 Outline Pairwise sequence alignment global - Needleman Wunsch Gotoh algorithm local - Smith Waterman algorithm BLAST - heuristics What

More information

HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

More information

SuperViz: An Interactive Visualization of Super-Peer P2P Network

SuperViz: An Interactive Visualization of Super-Peer P2P Network SuperViz: An Interactive Visualization of Super-Peer P2P Network Anthony (Peiqun) Yu pqyu@cs.ubc.ca Abstract: The Efficient Clustered Super-Peer P2P network is a novel P2P architecture, which overcomes

More information

Chapter 25: The History of Life on Earth

Chapter 25: The History of Life on Earth Overview Name Period 1. In the last chapter, you were asked about macroevolution. To begin this chapter, give some examples of macroevolution. Include at least one novel example not in your text. Concept

More information

User Manual for SplitsTree4 V4.14.2

User Manual for SplitsTree4 V4.14.2 User Manual for SplitsTree4 V4.14.2 Daniel H. Huson and David Bryant November 4, 2015 Contents Contents 1 1 Introduction 4 2 Getting Started 5 3 Obtaining and Installing the Program 5 4 Program Overview

More information

History of the Earth/Geologic Time 5E Unit

History of the Earth/Geologic Time 5E Unit History of the Earth/Geologic Time 5E Unit Description: Students will create a timeline of Earth history in the classroom and learn about major changes to the Earth and life through time. Standards Targeted:

More information

Utah State Office of Education Elementary STEM Endorsement Course Framework Nature of Science and Engineering

Utah State Office of Education Elementary STEM Endorsement Course Framework Nature of Science and Engineering Course Description: Utah State Office of Education Elementary STEM Endorsement Course Framework Nature of Science and Engineering In this course participants will experience introductory explorations of

More information

Smart Science Lessons and Middle School Next Generation Science Standards

Smart Science Lessons and Middle School Next Generation Science Standards Smart Science Lessons and Middle School Next Generation Science Standards You have chosen the right place to find great science learning and, beyond learning, how to think. The NGSS emphasize thinking

More information

Level 3 Biology, 2012

Level 3 Biology, 2012 90719 907190 3SUPERVISOR S Level 3 Biology, 2012 90719 Describe trends in human evolution 2.00 pm Tuesday 13 November 2012 Credits: Three Check that the National Student Number (NSN) on your admission

More information

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME. Biology Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is used

More information

AP Biology 2015 Free-Response Questions

AP Biology 2015 Free-Response Questions AP Biology 2015 Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

More information

BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS

BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-110 012 seema@iasri.res.in Genomics A genome is an organism s

More information

Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R

Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R Binary Search Trees A Generic Tree Nodes in a binary search tree ( B-S-T) are of the form P parent Key A Satellite data L R B C D E F G H I J The B-S-T has a root node which is the only node whose parent

More information

Plant and Animal Adaptations [4th grade]

Plant and Animal Adaptations [4th grade] Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design 6-14-2006 Plant and Animal Adaptations [4th grade] Jennifer Mahler Trinity University Follow

More information