Astrodynamics (AERO0024) TP1: Introduction

Size: px
Start display at page:

Download "Astrodynamics (AERO0024) TP1: Introduction"

Transcription

1 Astrodynamics (AERO0024) TP1: Introduction

2 Teaching Assistant Amandine Denis Contact details Space Structures and Systems Lab (S3L) Structural Dynamics Research Group Aerospace and Mechanical Engineering Department Room: +2/516 (B52 building)

3 Today s program Objectives Presentation of STK Exercise 1: «What does STK do, anyway?» Exercise 2: Do It Yourself! 3

4 Objectives of this session Discover STK and its possibilities Discover STK interface Discover basic functions and options Illustrate the first lesson 4

5 Objectives of this session At the end of this session, you should be able to: Create a new scenario Handle graphics windows (2D and 3D, view from/to, ) Use common options of the Properties Browser Insert a satellite in three different ways (database, Orbit Wizard, manually) Insert a facility Calculate a simple access Generate simple reports 5

6 Presentation of STK Design, analyze, visualize, and optimize land, sea, air, and space systems. 6

7 Presentation of STK interface 7

8 8

9 9

10 Presentation of STK 10

11 11

12 Presentation of STK basic elements New scenario - Model the World! Insert object - Populate the World! Properties browser - Decide everything! Animation Reports Tabs 12

13 Exercise 1 First contact: «What does STK do, anyway?» AGI tutorial Illustration of a Molniya orbit Notion of scenario Rules of thumb Orbit Wizard Insertion of a facility Graphics windows Calculation of a simple access 13

14 Exercise 1: what does STK do, anyway? Are Molniya orbits really a great way to spy on the USA? How many periods of access? When does the first access occur? What is the duration of the first access? Remarks/questions? 14

15 Exercise 2 Do It Yourself! : Application to the satellites of the first lesson Insertion of satellites and definition of orbits: Using Orbit Wizard Importing from Data Base Manually Illustration of differents satellites and orbits Options of visualization 15

16 Exercise 2: application to the 1st lesson >> Represent in STK all the satellites named during the first lesson. To create a satellite: Insert >>New >> Satellite Orbit wizard : cfr ex1 From Database Define properties Visualization: Day/night limit ( 2D graphics Properties Browser >> Lighting) 16

17 Exercise 2: application to the 1st lesson Debriefing: 17

18 Astrodynamics (AERO0024) TP2: Introduction (2)

19 Today s program Objectives Exercise 1: A concrete problem Exercise 2: Use in celestial mechanics Exercise 3: Delfi-C 3 operation 2

20 Objectives of this session At the end of this session, you should be able to: Use STK autonomously to solve simple problems Define and use constraints Calculate access Import and visualize planets 3

21 Exercise 1 A concrete problem: «When could I see the ISS?» AGI tutorial Outline to build a scenario Constraints 4

22 Exercise 2 Use in celestial mechanics: The Venus Transit of 2004 AGI tutorial Planets and orbits Insertion of sensors Access calculation (Deck Access) 5

23 6

24 7

25 Exercise 3 Delfi-C 3 operations When does the Delfi-C 3 team have access to their satellite? When can they operate it? How much does it help if the OUFTI-1 ground station is also used? How long can the two teams communicate through Delfi-C 3 transponder? 8

26 Astrodynamics (AERO0024) TP3: Orbital elements

27 Today s program Objectives Exercises 1 & 2: SSO satellites Exercise 3: XMM - RKF7 algorithm 2

28 Objectives of this session At the end of this session, you should be able to: Calculate orbital elements Check your results with STK Create customized reports Export reports and use data in Matlab 3

29 Exercise 1 & 2: SSO satellites Ex. 1: Determine the altitude and the inclination of a sunsynchronous satellite for which T=100 min (circular orbit). Use STK to check your results. 4

30 Exercise 1 & 2: SSO satellites Ex. 2: Determine the perigee and apogee for the following satellite: -SSO - Constant argument of perigee -T = 3h Use STK to check your results. 5

31 Exercise 3 : XMM - RKF7 algorithm Reproduce graph from Lecture 4, showing time-step of the RKF7(8) algorithm vs true anomaly for XMM satellite. XMM data: Perigee = 7000 km Apogee = km i = 40 6

32 Astrodynamics (AERO0024) TP4: Astrogator

33 Today s program Objectives Introduction to Astrogator Exercise 1: OUFTI-1 Exercise 2: Hohmann transfer 2

34 Today s objectives After this exercise session, you should be able to: design missions involving orbital, impulsive maneuvers This imply that you will be able to: Use Astrogator when appropriate Create a simple mission control sequence (MCS) Use the following segments: initial state, propagate, impulsive maneuver Create summaries 3

35 Today s program Introduction to Astrogator What is it? Components of Astrogator: Mission Control Sequence Segments Stopping conditions Ex.1: OUFTI-1 Ex.2: Hohmann transfer 4

36 What s Astrogator? Astrogator is STK s mission planning module Used for: Trajectory design Maneuver planning Station keeping Launch window analysis Fuel use studies Derived from code used by NASA contractors Embedded into STK 5

37 Astrogator in STK Astrogator is one of 11 satellite propagators Propagator generates ephemeris Astrogator satellite acts like other STK satellites Can run STK reports (including Access) Can animate in 3D and 2D windows Generates ephemeris by running Mission Control Sequence (MCS) Components used in MCS configured in Astrogator Browser 6

38 Astrogator Mission Control Control Sequence Configuration Astrogator Runs Mission Control Sequence Ephemeris Other Other Mission Data Data

39 The Mission Control Sequence A series of segments that define the problem A graphical programming language Two types of segments Segments that produce ephemeris Segments that change the run flow of the MCS Segments pass their final state as the initial state to the next segment Some segments create their own initial state 8

40 The Mission Control Sequence State Segment 1 Ephemeris State Segment 2 Ephemeris State 9

41 10

42 MCS tree 11

43 MCS toolbar 12

44 13

45 14

46 15

47 Parameters of the segment currently selected 16

48 Segments Two types: That produce ephemeris That change the run flow 17

49 Segments that produce ephemeris Initial State specifies initial conditions Launch simulates launching Propagate integrate numerically until some event Maneuver impulsive or finite Follow follows leader vehicle until some event Update updates spacecraft parameters 18

50 Initial state segment Specify spacecraft state at some epoch Choose any coordinate system Enter in Cartesian, Keplerian, etc. Enter spacecraft properties: mass, fuel, etc. 19

51 Launch segment Specify launch and burnout location Specify time of flight Use any central body Connects launch and burnout points with an ellipse Creates its own initial state 20

52 Propagate segment Numerically integrates using chosen propagator Propagator can be configured in Astrogator browser Propagation continues until stopping conditions are met 21

53 Stopping conditions Define events on which to stop a segment Stop when some calc object reaches a desired value A calc object is any calculated value, such as an orbital element Calc objects can be user-defined 22

54 Stopping conditions Can also specify constraints: Only stop if another calc object is =, <, >, some value Determines if exact point stopping condition is met, then checks if constraints are satisfied Multiple constraints behave as logical And Segments can have multiple stopping conditions Stops when the first one is met Behaves as a logical Or 23

55 Stopping conditions Multiple conditions : «OR» Constraints : «AND» 24

56 Maneuver segment Maneuver segment owns two distinct segments: Finite maneuver Impulsive maneuver Combo box controls which one is run Finite maneuver created from impulsive maneuver with Seed button 25

57 Impulsive maneuver Adds delta-v to the current state Can specify magnitude and direction of delta-v Computes estimated burn duration and fuel usage, based on chosen engine Can configure engine model in Astrogator browser 26

58 Impulsive maneuver State Impulsive Maneuver Add delta-v to state State 27

59 Finite maneuver Works like propagate segment, thrust added to force model Can specify the direction of the thrust vector Can be specified in plug-in Magnitude of thrust comes from engine model 28

60 Follow segment Choose leader to follow Specify offset from the leader Follow leader between joining conditions and separation conditions Behave just like stopping conditions Creates its own initial state 29

61 Update segment Used to update spacecraft properties Useful to simulate stage separation, docking, etc Set properties to a new value, or add or subtract from their current value 30

62 Update segment State Update Update state parameters State 31

63 Segments that change run flow Auto-Sequences called by propagate segments Target Sequence loops over segments, changing values until goals are met Backwards Sequence changes direction of propagation Return exits a sequence Stop stops computation 32

64 Auto-sequences Automatic sequence browser Instead of stopping a segment, stopping conditions can trigger an auto-sequence An auto-sequence is another sequence of segments Behaves like a subroutine After the auto-sequence is finished, control returns to the calling segment Auto-sequences can inherit stopping conditions from the calling segment 33

65 Auto-sequences example Initial State Propagate Duration = 1 day Periapsis Burn In Plane Sequence Apoapsis Burn Out Of Plane Sequence Finite Maneuver In Plane Duration = 100 sec Finite Maneuver Out of Plane Duration = 100 sec 34

66 Target sequence Define maneuvers and propagations in terms of the goal they are intended to achieve Next week! 35

67 Backward sequence Segments in backward sequences propagated backwards: Propagate & finite maneuvers integrated with negative time step Impulsive maneuvers delta-vs are subtracted Can pass initial or final state of sequence to next segment 36

68 Questions 37

69 Today s program Introduction to Astrogator Ex.1: OUFTI-1 Ex.2: Hohmann transfer 38

70 Exercise 1: OUFTI-1 Propagate the orbit of OUFTI-1 using classical two-body and Astrogator (Earth point mass and HPOP), compare the results. OUFTI-1: 354 x 1447 km, 71 i.e. r a = km, r p = km, e =

71 Today s program Introduction to Astrogator Ex.1: OUFTI-1 Ex.2: Hohmann transfer 40

72 Exercise 2: simple Hohmann transfer Represent Hohmann transfer (from 322km to GEO) using Astrogator. Simple : - coplanar maneuver - no use of target sequence Most efficient 2-burn method (in terms of ΔV) Elliptical transfer orbit periapsis at the inner orbit apoapsis at the outer orbit 41

73 Exercise 2: simple Hohmann transfer Δv 2 v circ = μ r v ellip 2 1 = μ r a r 2 r 1 2μr μ 2 Δ v1 = r ( ) 1 r1+ r2 r1 Δv 1 2μr μ 1 Δ v2 = + r ( ) 2 r1+ r2 r2 42

74 Exercise 2: simple Hohmann transfer Initial circular orbit: 322 km Δv 1 = km/s Transfer orbit Δv 2 = km/s Final circular orbit: GEO 43

75 Astrodynamics (AERO0024) TP5: Astrogator & Targeter

76 Today program Objectives Introduction to Astrogator Targeter Ex.1: Hohmann using target sequences Ex.2: Hohmann vs. bi-elliptic transfer 2

77 Today s objectives After this exercise session, you should be able to: Define and use target sequences Make videos of your scenarios 3

78 Introduction to Astrogator - Targeter Target sequence: 1. Add segments; 2. Define profiles; 3. Configure. 4

79 Introduction to Astrogator - Targeter Profiles: Search Differential corrector Plugin Segment configuration Change maneuver type (impulsive finite) Change propagator Change return segment Change stop segment Change stopping condition state Seed finite maneuvers 5

80 Ex.1: Hohmann transfer using target sequences Calculate the ΔV required for the following Hohmann transfer: Initial circular orbit: 322 km Δv 1 =? Transfer orbit Δv 2 =? Final circular orbit: GEO, km (r = 42165km) Capture a video of the final trajectory. 6

81 Ex.2: Hohmann vs. bi-elliptic transfer Find the total delta-v requirement for a bi-elliptic transfer from a geocentric circular orbit of 7000 km radius to one of km radius. Let the apogee of the first ellipse be km. Compare the delta-v schedule and total time of flighttime with that of a single Hohmann transfer ellipse. Verify using STK. v circ v ellip μ = r 2 1 = μ r a 7

82 Ex.2: Hohmann vs. bi-elliptic transfer r A = 7000 km r B = km r C = km ΔV Hohmann =? ΔV bi-elliptic =? t Homann =? t bi-elliptic =? 8

83 Astrodynamics (AERO0024) TP6: Interplanetary trajectories

84 Today s program Objectives Ex.1: Mars Probe Ex.2: Moon mission with B-plane targeting 2

85 Today s objectives After this exercise session, you should be able to: Define interplanetary trajectories Construct your own point-mass propagator Take advantage of multiple 3D windows Create complex MCS and target sequences Use B-plane targeting 3

86 Ex.1: Mars probe Based on orbital elements for the Math Pathfinder mission (Sojourner rover, 96-97) Two successive segments: - heliocentric - Mars point mass «Spirit» Source: 4

87 Ex.2: Moon mission with B-Plane targeting Mission: Earth parking Trans-lunar injection Lunar orbit insertion ( Δ V ) ( circularization ) Targeting: Launch date? ΔV? When? Constraints: ΔRA & Δdecl. 5

Trajectory Design with STK/Astrogator. New Horizons Mission Tutorial

Trajectory Design with STK/Astrogator. New Horizons Mission Tutorial Trajectory Design with STK/Astrogator New Horizons Mission Tutorial STK/Astrogator New Horizons Mission Tutorial Page 2 Mission Overview In this tutorial, we will model a Mission to Pluto. Starting from

More information

Penn State University Physics 211 ORBITAL MECHANICS 1

Penn State University Physics 211 ORBITAL MECHANICS 1 ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there

More information

Lecture L17 - Orbit Transfers and Interplanetary Trajectories

Lecture L17 - Orbit Transfers and Interplanetary Trajectories S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 6. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Course Outline THEMATIC UNIT 1: ORBITAL DYNAMICS Lecture 02: The Two-Body Problem Lecture 03:

More information

Does currently available technology have the capacity to facilitate a manned mission to Mars?

Does currently available technology have the capacity to facilitate a manned mission to Mars? Furze Platt Senior School Does currently available technology have the capacity to facilitate a manned mission to Mars? Daniel Messias Date: 8/03/2015 Candidate Number: 7158 Centre Number: 51519 Contents

More information

Astromechanics Two-Body Problem (Cont)

Astromechanics Two-Body Problem (Cont) 5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the

More information

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

More information

Orbital Mechanics and Space Geometry

Orbital Mechanics and Space Geometry Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times.

1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times. Appendix A Orbits As discussed in the Introduction, a good first approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational

More information

Coverage Characteristics of Earth Satellites

Coverage Characteristics of Earth Satellites Coverage Characteristics of Earth Satellites This document describes two MATLAB scripts that can be used to determine coverage characteristics of single satellites, and Walker and user-defined satellite

More information

USE OF SCILAB FOR SPACE MISSION ANALYSIS AND FLIGHT DYNAMICS ACTIVITIES

USE OF SCILAB FOR SPACE MISSION ANALYSIS AND FLIGHT DYNAMICS ACTIVITIES USE OF SCILAB FOR SPACE MISSION ANALYSIS AND FLIGHT DYNAMICS ACTIVITIES Thierry Martin CNES Scilabtec 09 Use of Scilab for space mission analysis Page 1 Use of Scilab in CNES Scilab is now widely used

More information

Spacecraft orbits and missions

Spacecraft orbits and missions General Astrophysics and Space Research Course 210142, Space Physics Module Spring 2009, Joachim Vogt Spacecraft orbits and missions Topics of this lecture Basics of celestial mechanics Geocentric orbits

More information

Development of a Sun Synchronous. Conjunctions

Development of a Sun Synchronous. Conjunctions Development of a Sun Synchronous Zoning Architecture to Minimize Conjunctions Kevin Shortt Brian Weeden Secure World Foundation www.secureworldfoundation.org Overview Current Situation in Sun synchronous

More information

Orbital Mechanics. Orbital Mechanics. Principles of Space Systems Design. 2001 David L. Akin - All rights reserved

Orbital Mechanics. Orbital Mechanics. Principles of Space Systems Design. 2001 David L. Akin - All rights reserved Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time and flight path angle as a function of orbital position Relative orbital

More information

DEVELOPMENT OF AN ARCHITECTURE OF SUN-SYNCHRONOUS ORBITAL SLOTS TO MINIMIZE CONJUNCTIONS. Brian Weeden Secure World Foundation

DEVELOPMENT OF AN ARCHITECTURE OF SUN-SYNCHRONOUS ORBITAL SLOTS TO MINIMIZE CONJUNCTIONS. Brian Weeden Secure World Foundation DEVELOPMENT OF AN ARCHITECTURE OF SUN-SYNCHRONOUS ORBITAL SLOTS TO MINIMIZE CONJUNCTIONS Brian Weeden Secure World Foundation Sun-synchronous orbit (SSO) satellites serve many important functions, primarily

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Can Hubble be Moved to the International Space Station? 1

Can Hubble be Moved to the International Space Station? 1 Can Hubble be Moved to the International Space Station? 1 On January 16, NASA Administrator Sean O Keefe informed scientists and engineers at the Goddard Space Flight Center (GSFC) that plans to service

More information

EN4 Dynamics and Vibrations. Design Project. Orbital Design for a Lunar Impact Mission. Synopsis

EN4 Dynamics and Vibrations. Design Project. Orbital Design for a Lunar Impact Mission. Synopsis EN4 Dynamics and Vibrations Design Project Orbital Design for a Lunar Impact Mission Synopsis NASA has identified a need for a low-cost mission to launch a satellite that will impact the moon. You will

More information

MECH 5105 Orbital Mechanics and Control. Steve Ulrich Carleton University Ottawa, ON, Canada

MECH 5105 Orbital Mechanics and Control. Steve Ulrich Carleton University Ottawa, ON, Canada MECH 5105 Orbital Mechanics and Control Steve Ulrich Carleton University Ottawa, ON, Canada 2 Copyright c 2015 by Steve Ulrich 3 4 Course Outline About the Author Steve Ulrich is an Assistant Professor

More information

DIN Department of Industrial Engineering School of Engineering and Architecture

DIN Department of Industrial Engineering School of Engineering and Architecture DIN Department of Industrial Engineering School of Engineering and Architecture Elective Courses of the Master s Degree in Aerospace Engineering (MAE) Forlì, 08 Nov 2013 Master in Aerospace Engineering

More information

This page left blank for double-sided printing

This page left blank for double-sided printing This page left blank for double-sided printing A COMPARISON OF LUNAR LANDING TRAJECTORY STRATEGIES USING NUMERICAL SIMULATIONS Mike Loucks 1, John Carrico 2, Timothy Carrico 2, Chuck Deiterich 3 1 Space

More information

Correct Modeling of the Indirect Term for Third-Body Perturbations

Correct Modeling of the Indirect Term for Third-Body Perturbations AAS 07-47 Correct Modeling of the Indirect Term for Third-Body Perturbations Matthew M. Berry * Vincent T. Coppola The indirect term in the formula for third body perturbations models the acceleration

More information

Artificial Satellites Earth & Sky

Artificial Satellites Earth & Sky Artificial Satellites Earth & Sky Name: Introduction In this lab, you will have the opportunity to find out when satellites may be visible from the RPI campus, and if any are visible during the activity,

More information

Where On Earth Will Three Different Satellites Provide Simultaneous Coverage?

Where On Earth Will Three Different Satellites Provide Simultaneous Coverage? Where On Earth Will Three Different Satellites Provide Simultaneous Coverage? In this exercise you will use STK/Coverage to model and analyze the quality and quantity of coverage provided by the Earth

More information

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example Prepared by DARcorporation 1. Program Layout & Organization APP Consists of 8 Modules, 5 Input Modules and 2 Calculation Modules.

More information

SATELLITE ORBIT DETERMINATION AND ANALYSIS (S.O.D.A) A VISUAL TOOL OF SATELLITE ORBIT FOR SPACE ENGINEERING EDUCATION & RESEARCH

SATELLITE ORBIT DETERMINATION AND ANALYSIS (S.O.D.A) A VISUAL TOOL OF SATELLITE ORBIT FOR SPACE ENGINEERING EDUCATION & RESEARCH SATELLITE ORBIT DETERMINATION AND ANALYSIS (S.O.D.A) A VISUAL TOOL OF SATELLITE ORBIT FOR SPACE ENGINEERING EDUCATION & RESEARCH 1 Muhammad Shamsul Kamal Adnan, 2 Md. Azlin Md. Said, 3 M. Helmi Othman,

More information

Quasi-Synchronous Orbits

Quasi-Synchronous Orbits Quasi-Synchronous Orbits and Preliminary Mission Analysis for Phobos Observation and Access Orbits Paulo J. S. Gil Instituto Superior Técnico Simpósio Espaço 50 anos do 1º Voo Espacial Tripulado 12 de

More information

Hyperspectral Satellite Imaging Planning a Mission

Hyperspectral Satellite Imaging Planning a Mission Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective

More information

TOPO Trajectory Operations Officer

TOPO Trajectory Operations Officer ISS Live! was developed at NASA s Johnson Space Center (JSC) under NASA Contracts NNJ14RA02C and NNJ11HA14C wherein the U.S. Government retains certain rights. Console Handbook TOPO Trajectory Operations

More information

Aerospace Engineering: Space Stream Overview

Aerospace Engineering: Space Stream Overview Aerospace Engineering: Space Stream Overview Dept. of Aerospace Engineering Ryerson University Winter 2011 Department of Aerospace Engineering 1 The Space-stream at a Glance Builds on strong aerospace

More information

Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

More information

Chapter 2. Mission Analysis. 2.1 Mission Geometry

Chapter 2. Mission Analysis. 2.1 Mission Geometry Chapter 2 Mission Analysis As noted in Chapter 1, orbital and attitude dynamics must be considered as coupled. That is to say, the orbital motion of a spacecraft affects the attitude motion, and the attitude

More information

The Space Shuttle: Teacher s Guide

The Space Shuttle: Teacher s Guide The Space Shuttle: Teacher s Guide Grade Level: 6-8 Curriculum Focus: Astronomy/Space Lesson Duration: Two class periods Program Description This video, divided into four segments, explores scientists'

More information

IAC-10.C1.7.5 DIRECT TRANSCRIPTION OF LOW-THRUST TRAJECTORIES WITH FINITE TRAJECTORY ELEMENTS

IAC-10.C1.7.5 DIRECT TRANSCRIPTION OF LOW-THRUST TRAJECTORIES WITH FINITE TRAJECTORY ELEMENTS IAC-1.C1.7.5 DIRECT TRANSCRIPTION OF LOW-THRUST TRAJECTORIES WITH FINITE TRAJECTORY ELEMENTS Federico Zuiani PhD Candidate, Department of Aerospace Engineering, University of Glasgow, UK, fzuiani@eng.gla.ac.uk

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

Orbital Dynamics: Formulary

Orbital Dynamics: Formulary Orbital Dynamics: Formulary 1 Introduction Prof. Dr. D. Stoffer Department of Mathematics, ETH Zurich Newton s law of motion: The net force on an object is equal to the mass of the object multiplied by

More information

Vocabulary - Understanding Revolution in. our Solar System

Vocabulary - Understanding Revolution in. our Solar System Vocabulary - Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar

More information

Satellite Mission Analysis

Satellite Mission Analysis CARLETON UNIVERSITY SPACECRAFT DESIGN PROJECT 2004 FINAL DESIGN REPORT Satellite Mission Analysis FDR Reference Code: FDR-SAT-2004-3.2.A Team/Group: Satellite Mission Analysis Date of Submission: April

More information

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

More information

The µtorque Momentum-Exchange Tether Experiment

The µtorque Momentum-Exchange Tether Experiment The µtorque Momentum-Exchange Tether Experiment Robert P. Hoyt Tethers Unlimited, Inc., 19011 36 h Ave. W., Suite F, Lynnwood, WA 98036-5752 (425) 744-0400 TU@tethers.com Abstract. Long, high-strength

More information

Spacecraft Dynamics and Control. An Introduction

Spacecraft Dynamics and Control. An Introduction Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude

More information

Use of Graphical Programming Tools for Electrical Engineering and Technology Courses

Use of Graphical Programming Tools for Electrical Engineering and Technology Courses Use of Graphical Programming Tools for Electrical Engineering and Technology Courses Salahuddin Qazi and Naseem Ishaq School of Information Systems and Engineering Technology State University of New York

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication Michael D. Hogue, NASA Kennedy Space Center Robert P. Mueller, NASA Kennedy Space Center Laurent Sibille,

More information

4.1.6. Interplanetary Travel. Outline. In This Section You ll Learn to...

4.1.6. Interplanetary Travel. Outline. In This Section You ll Learn to... Interplanetary Travel 4.1.6 In This Section You ll Learn to... Describe the basic steps involved in getting from one planet in the solar system to another Explain how we can use the gravitational pull

More information

Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS)

Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS) Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS) Denny Sissom Elmco, Inc. May 2003 Pg 1 of 27 SSMD-1102-366 [1] The Ground-Based Midcourse Defense

More information

Curiosity's Fight Path to Mars. A Project for Differential Equations (Math 256)

Curiosity's Fight Path to Mars. A Project for Differential Equations (Math 256) Curiosity's Fight Path to Mars A Project for Differential Equations (Math 56) On November 5 th, 011, NASA launched a rocket that will carry a rover called Curiosity to Mars. The rover is scheduled to land

More information

APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY

APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY Jean-Yves Prado CNES Toulouse - France Presentation Outline APOPHIS reminder The April 2029 flyby Mission objectives Sequence of events Launch Orbit transfer Relative

More information

Trajectory design for the Solar Orbiter mission

Trajectory design for the Solar Orbiter mission Monografías de la Real Academia de Ciencias de Zaragoza. 25: 177 218, (2004). Trajectory design for the Solar Orbiter mission G. Janin European Space Operations Centre. European Space Agency. 64293 Darmstadt,

More information

Development of an automated satellite network management system

Development of an automated satellite network management system Development of an automated satellite network management system Iasonas Kytros Christos Porios Nikitas Terzoudis Varvara Chatzipavlou Coach: Sitsanlis Ilias February 2013 Abstract In this paper we present

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction to Aerospace Engineering AE1-10 Dept. Space Engineering Astrodynamics & Space Missions (AS) Prof. ir. B.A.C. Ambrosius

More information

WEIGHTLESS WONDER Reduced Gravity Flight

WEIGHTLESS WONDER Reduced Gravity Flight WEIGHTLESS WONDER Reduced Gravity Flight Instructional Objectives Students will use trigonometric ratios to find vertical and horizontal components of a velocity vector; derive a formula describing height

More information

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne

More information

DTU Satellite Systems and Design Course. Orbital_Mechanics.ppt. Danish Space Research Institute Danish Small Satellite Programme

DTU Satellite Systems and Design Course. Orbital_Mechanics.ppt. Danish Space Research Institute Danish Small Satellite Programme DTU Satellite Systems and Design Course Orbital Mechanics Flemming Hansen MScEE, PhD Technology Manager Danish Space Research Institute Phone: 3532 5721 E-mail: fh@dsri.dk Slide # 1 Planetary and Satellite

More information

Space Exploration. A Visual History. Philip Stooke

Space Exploration. A Visual History. Philip Stooke Space Exploration A Visual History Philip Stooke It all began with Sputnik 4 th October 1957 It all began with Sputnik 4 th October 1957 It all began with Sputnik 4 th October 1957 and Laika Laika on the

More information

Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2

Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2 Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2 Ok-Chul Jung 1 Korea Aerospace Research Institute (KARI), 45 Eoeun-dong, Daejeon, South Korea, 305-333 Jung-Hoon Shin 2 Korea Advanced

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

More information

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great. Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Chapter 6. Orbital Mechanics. Maj Edward P. Chatters IV, USAF; Maj Bryan Eberhardt, USAF; and Maj Michael S. Warner, USAF

Chapter 6. Orbital Mechanics. Maj Edward P. Chatters IV, USAF; Maj Bryan Eberhardt, USAF; and Maj Michael S. Warner, USAF Chapter 6 Orbital Mechanics Maj Edward P. Chatters IV, USAF; Maj Bryan Eberhardt, USAF; and Maj Michael S. Warner, USAF Knowledge of orbital motion is essential for a full understanding of space operations.

More information

Science Investigations: Investigating Astronomy Teacher s Guide

Science Investigations: Investigating Astronomy Teacher s Guide Teacher s Guide Grade Level: 6 12 Curriculum Focus: Astronomy/Space Duration: 7 segments; 66 minutes Program Description This library of videos contains seven segments on celestial bodies and related science.

More information

SCADE Suite in Space Applications

SCADE Suite in Space Applications SCADE Suite in Space Applications at EADS David Lesens 09/10/2008 Overview Introduction Historical use of SCADE at EADS Astrium ST Why using SCADE? The Automatic Transfer Vehicle (ATV) M51 and Vega R&T

More information

Mobile Communications: Satellite Systems

Mobile Communications: Satellite Systems Mobile Communications: Satellite Systems Mobile Communication: Satellite Systems - Jochen Schiller http://www.jochenschiller.de 1 History of satellite communication 1945 Arthur C. Clarke publishes an essay

More information

MISSION DESIGN AND OPERATIONS CONSIDERATIONS FOR NASA S LUNAR RECONNAISSANCE ORBITER

MISSION DESIGN AND OPERATIONS CONSIDERATIONS FOR NASA S LUNAR RECONNAISSANCE ORBITER MISSION DESIGN AND OPERATIONS CONSIDERATIONS FOR NASA S LUNAR RECONNAISSANCE ORBITER Mr. Martin B. Houghton NASA's Goddard Space Flight Center, Greenbelt, Maryland USA martin.b.houghton@nasa.gov Mr. Craig

More information

Discrete mechanics, optimal control and formation flying spacecraft

Discrete mechanics, optimal control and formation flying spacecraft Discrete mechanics, optimal control and formation flying spacecraft Oliver Junge Center for Mathematics Munich University of Technology joint work with Jerrold E. Marsden and Sina Ober-Blöbaum partially

More information

Visualizing Wireless Transfer of Power: Proposal for A Five-Nation Demonstration by 2020. ISDC2012: Washington DC, May 26, 2012

Visualizing Wireless Transfer of Power: Proposal for A Five-Nation Demonstration by 2020. ISDC2012: Washington DC, May 26, 2012 Visualizing Wireless Transfer of Power: Proposal for A Five-Nation Demonstration by 2020 Don Flournoy Ohio University Brendan Dessanti & Narayanan Komerath Georgia Institute of Technology ISDC2012: Washington

More information

Alexandru Csete (Rovsing A/S) alc@rovsing.dk. 3. International Workshop on Astrodynamics Tools and Techniques ESTEC, October 2-5, 2006

Alexandru Csete (Rovsing A/S) alc@rovsing.dk. 3. International Workshop on Astrodynamics Tools and Techniques ESTEC, October 2-5, 2006 Real-Time Satellite Tracking and Orbit Prediction with GPREDICT Alexandru Csete (Rovsing A/S) alc@rovsing.dk 3. International Workshop on Astrodynamics Tools and Techniques ESTEC, October 2-5, 2006 September

More information

Once in a Blue Moon (Number Systems and Number Theory)

Once in a Blue Moon (Number Systems and Number Theory) The Middle School Math Project Once in a Blue Moon (Number Systems and Number Theory) Objective Students will use number theory skills to investigate when certain planets are aligned. Overview of the Lesson

More information

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET PREPARATION

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET PREPARATION ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET Total Time: 30 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery

More information

Truck Automation for the Ready Mixed Concrete Industry. Michael J. Hoagland (205) 879-3282 ext. 1164 mhoagland@commandalkon.com

Truck Automation for the Ready Mixed Concrete Industry. Michael J. Hoagland (205) 879-3282 ext. 1164 mhoagland@commandalkon.com Truck Automation for the Ready Mixed Concrete Industry Michael J. Hoagland (205) 879-3282 ext. 1164 mhoagland@commandalkon.com Session Agenda What is GPS and How does it work? Auto Signaling Explained

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Software Verification for Space Applications Part 2. Autonomous Systems. G. Brat USRA/RIACS

Software Verification for Space Applications Part 2. Autonomous Systems. G. Brat USRA/RIACS Software Verification for Space Applications Part 2. Autonomous Systems G. Brat USRA/RIACS Main Objectives Implement a sustained and affordable human and robotic program to explore the solar system and

More information

From Aristotle to Newton

From Aristotle to Newton From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers

More information

Mission Design for the Lunar Reconnaissance Orbiter

Mission Design for the Lunar Reconnaissance Orbiter AAS 07-057 Mission Design for the Lunar Reconnaissance Orbiter Mark Beckman Goddard Space Flight Center, Code 595 29th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE February 4-8, 2006 Breckenridge, Colorado

More information

Automated Spacecraft Scheduling The ASTER Example

Automated Spacecraft Scheduling The ASTER Example Automated Spacecraft Scheduling The ASTER Example Ron Cohen ronald.h.cohen@jpl.nasa.gov Ground System Architectures Workshop 2002 Jet Propulsion Laboratory The Concept Scheduling by software instead of

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Lecture 5: Satellite Orbits Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

Lecture 10: Managing Risk" Risk Management"

Lecture 10: Managing Risk Risk Management General ideas about Risk" Risk Management" Identifying Risks" Assessing Risks" Case Study:" Mars Polar Lander" Lecture 10: Managing Risk" 2012 Steve Easterbrook. This presentation is available free for

More information

Goals of the Unit. spm - 2014 adolfo villafiorita - introduction to software project management

Goals of the Unit. spm - 2014 adolfo villafiorita - introduction to software project management Project Scheduling Goals of the Unit Making the WBS into a schedule Understanding dependencies between activities Learning the Critical Path technique Learning how to level resources!2 Initiate Plan Execute

More information

ORBIT DETERMINATION OF SATELLITES IN LUNAR ORBIT USING AN OPTIMAL SEQUENTIAL FILTER

ORBIT DETERMINATION OF SATELLITES IN LUNAR ORBIT USING AN OPTIMAL SEQUENTIAL FILTER AAS 08-103 ORBIT DETERMINATION OF SATELLITES IN LUNAR ORBIT USING AN OPTIMAL SEQUENTIAL FILTER James Woodburn * and John H. Seago INTRODUCTION Determination of orbits about the Moon poses a number of extra

More information

Mobile Communications Chapter 5: Satellite Systems

Mobile Communications Chapter 5: Satellite Systems Mobile Communications Chapter 5: Satellite Systems History Basics Localization Handover Routing Systems History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial

More information

Lunar Phase Simulator Student Guide

Lunar Phase Simulator Student Guide Name: Lunar Phase Simulator Student Guide Part I: Background Material Answer the following questions after reviewing the background pages for the simulator. Page 1 Introduction to Moon Phases Is there

More information

NNMi120 Network Node Manager i Software 9.x Essentials

NNMi120 Network Node Manager i Software 9.x Essentials NNMi120 Network Node Manager i Software 9.x Essentials Instructor-Led Training For versions 9.0 9.2 OVERVIEW This course is designed for those Network and/or System administrators tasked with the installation,

More information

Elements of Physics Motion, Force, and Gravity Teacher s Guide

Elements of Physics Motion, Force, and Gravity Teacher s Guide Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,

More information

SUN-SYNCHRONOUS ORBIT SLOT ARCHITECTURE ANALYSIS AND DEVELOPMENT. A Thesis. Presented to. the Faculty of California Polytechnic State University

SUN-SYNCHRONOUS ORBIT SLOT ARCHITECTURE ANALYSIS AND DEVELOPMENT. A Thesis. Presented to. the Faculty of California Polytechnic State University SUN-SYNCHRONOUS ORBIT SLOT ARCHITECTURE ANALYSIS AND DEVELOPMENT A Thesis Presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements

More information

DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites

DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites DEOS Deutsche Orbitale Servicing Mission The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites B. Sommer, K. Landzettel, T. Wolf, D. Reintsema, German Aerospace Center

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Material for exam: this presentation (i.e., no material from text book). Sun-synchronous orbit: used for a variety of earth-observing

More information

Aerospace Information Technology Topics for Internships and Bachelor s and Master s Theses

Aerospace Information Technology Topics for Internships and Bachelor s and Master s Theses Aerospace Information Technology s for Internships and Bachelor s and Master s Theses Version Nov. 2014 The Chair of Aerospace Information Technology addresses several research topics in the area of: Avionic

More information

Satellites and Space Stations

Satellites and Space Stations Satellites and Space Stations A satellite is an object or a body that revolves around another object, which is usually much larger in mass. Natural satellites include the planets, which revolve around

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Virtual Classroom Student Guide

Virtual Classroom Student Guide Virtual Classroom Student Guide Table of Contents Overview 3 Grade Weights 3 Finding Help 3 Virtual Classroom Login 4 Virtual Classroom Lobby 5 The Course Map 6 Activities in the Virtual Classroom 7 Vocabulary

More information

University microsatellites: an hands-on educational tool

University microsatellites: an hands-on educational tool University microsatellites: an hands-on educational tool Massimiliano RONZITTI School of Aerospace Engineering Università degli Studi di Roma La Sapienza December 2006 The content of this presentation

More information

A long time ago, people looked

A long time ago, people looked Supercool Space Tools! By Linda Hermans-Killam A long time ago, people looked into the dark night sky and wondered about the stars, meteors, comets and planets they saw. The only tools they had to study

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Mastering Microsoft Project 2010 50413B; 3 days, Instructor-led

Mastering Microsoft Project 2010 50413B; 3 days, Instructor-led Mastering Microsoft Project 2010 50413B; 3 days, Instructor-led Course Description This three-day instructor-led course provides students with the knowledge and skills plan and manage projects using Microsoft

More information

The Gravitational Field

The Gravitational Field The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec

More information

Planetary Orbit Simulator Student Guide

Planetary Orbit Simulator Student Guide Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.

More information