Multipath TCP for heterogeneous environments

Size: px
Start display at page:

Download "Multipath TCP for heterogeneous environments"

Transcription

1 Multipath TCP for heterogeneous environments Takumi Kurosaka a) and Masaki Bandai b) Dept. of Information and Communication Sciences, Sophia University, 4 7 Yombancho, Chiyoda, Tokyo , Japan a) t_kurosaka@sophia.ac.jp b) bandai@sophia.ac.jp Abstract: Out-of-order packet problem incurs severe degradation of throughput performance of Multipath TCP (MPTCP) with heterogeneous communication links. In this paper, we propose an extended version of MPTCP to solve the out-of-order packet problem 1. The proposed method defines two types of ACK: Regular ACK and Extended ACK. When a receiver receives a data packet, the receiver sends a Regular ACK to the original path through which the data is transmitted, and Extended ACKs to all the other paths. If the Extended ACK arrives earlier than the Regular ACK, the proposed method solves the out-of-order packet problem. We evaluate the performance of the proposed method via NS-3 computer simulations, and show that the proposed method can improve the throughput performance when RTT of paths is heterogeneous. Keywords: TCP, Multipath TCP, mobile communication Classification: Internet References [1] A. Ford, C. Raiciu, M. Handaley, S. Barre, and J. Iyengar, Architechtural guidelines for multipath TCP development, IETF RFC 6182, Mar [2] A. Ford, C. Raiciu, M. Handaley, and O. Bonaventure, TCP extensions for multipath operation with multiple addresses, IETF RFC 6824, Jan [3] R. Stewart, Stream contorol transmission protocol, IETF RFC 4960, Sep [4] Y. Chen, Y. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and D. Towsley, A measurement-based study of multipath TCP performance over wirelss networks, Proc. of IMC 13, pp , Oct DOI: / [5] The NS-3 Simulator, [6] MPTCP Code Project, 1 Introduction Recent mobile devices have multiple network interfaces: Wi-Fi and 3G/LTE cellular networks. Multipath TCP (MPTCP) [1, 2] is an extension of TCP and 1 The paper has been presented in part at IEEE CCNC

2 enables mobile devices to use multiple network interfaces simultaneously. Differ from other multipath transport protocols such as Stream Control Transmission Protocol (SCTP) [3], MPTCP is easy to be deployed in practice. Application developers can use traditional APIs of TCP and do not require any modifications to their products. MPTCP has a great potential to improve throughput performance by aggregating bandwidth of multiple communication paths (subflows). However, when subflows have different characteristics such as round trip time (RTT). According to [4], the RTT of Wi-Fi subflow is 25 to 50 milliseconds, and that of AT&T LTE subflow is 40 to 200 milliseconds. In such a situation, data packets from subflows frequently arrive at a receiver in a wrong order, and incur throughput performance degradation of MPTCP. This is out-of-order packet problem. When receiving an out-of-order data packet, a receiver keeps the packet in its receive buffer until an in-order data packet arrives. If a receive buffer is filled up with out-of-order data packets, the receiver advertises its zero-window to the sender. When receiving the ACK with zero-window, the sender is blocked sending the next packet until receiving an ACK with nonzero-window. The more characteristics are different between subflows, the longer the sender is blocked sending packets, which incurs severe throughput performance degradation. If the receiver has infinite receive buffer, out-of-order packet problem does not occur. However, mobile devices have memory limitation and cannot utilize such a large receive buffer. In this paper, we propose an extended version of MPTCP with heterogeneous communication links. The proposed method solves the out-of-order packet problem and improves throughput performance. 2 Proposed method The proposed method defines two types of ACK: Regular ACK and Extended ACK. When a receiver receives an in-order data packet, the receiver sends a Regular ACK to the original subflow through which the data is transmitted, and Extended ACKs to all the other subflows. The format of Extended ACK is the same that of Regular ACK and does not have payload. Extended ACK is used for updating Data Sequence Number (DSN) and advertising window size for a sender. On the other hand, Extended ACK is not used for measuring RTT for calculating retransmission timeout value, and for congestion control of each subflow by the sender. Since the size of Extended ACK is much smaller than that of data packet, the proposed method has a small overhead. When the Extended ACK arrives at the sender earlier than the Regular ACK, the Extended ACK decreases the blocking duration of sending, and makes the sender restart sending next packets more quickly. Algorithm 1 shows the algorithm of the proposed method. The algorithm shows how a receiver makes a decision whether to send Extended ACK when it receives a data packet. k is the index of subflow through which the data packet is sent. N is the number of subflows in a connection. We assume N is a small value such as two. SSN k (Subflow Sequence Number at Subflow k ) and DSN are the values of the sequence number input in the data packet. The receiver keeps 212

3 Algorithm 1 Determination algorithm to send Extended ACK 1: Receive a data packet from Subflow k 2: if SSN k ¼ nextssn k then 3: Calculate new nextssn i 4: lastcount k Count k 5: if DSN ¼ nextdsn then 6: sendflag true 7: if ReceiveBuffer.isEmpty then 8: sendflag false 9: end if 10: Count k 0 11: Calculate new nextdsn and awnd 12: else if DSN > nextdsn then 13: Store the packet to receive buffer 14: Count k Count k þ 1 15: else 16: Count k Count k þ 1 17: end if 18: end if 19: if lastcount k Count k & sendflag then 20: for i ¼ 1 to N do 21: Send an ACK with (nextssn i, nextdsn, awnd) to Subflow i // case i ¼ k, Regular ACK // otherwise, Extended ACK 22: end for 23: else 24: Send a Regular ACK with (nextssn k, nextdsn, awnd) to Subflow k 25: end if nextssn k and nextdsn, respectively. If SSN k ¼ nextssn k and DSN ¼ nextdsn, the data packet is in-order data packet. Otherwise, the receiver realizes that the data packet is out-of-order one. The receiver also keeps a counter, Count k, for counting the number of receiving out-of-order data packet at Subflow k. When the receiver receives an in-order data packet at Subflow k, Count k is reset to zero. When receiving an in-order data packet, the receiver delivers it to application directly and, updates nextssn k and nextdsn. Therefore, if there is a packet whose DSN is equal to the updated nextdsn in a receive buffer, the packet becomes in-order packet and delivered to application directly. In this case, the receiver updates nextdsn again. As a result, the receiver has free space in the receive buffer, and the receiver can advertise nonzero-window size. In this case, Count k is reset to zero, and the receiver sends Regular ACK to Subflow k and Extended ACKs simultaneously to all the other Subflows. If receiving an in-order data packet while the receive buffer is empty, the receiver does not send any Extend ACKs by means of setting sendflag to false. In this case, since the out-of-order packet problem does 213

4 not happen, the receiver does not need to send Extend ACKs. On the other hand, since Extended ACK includes awnd (advertised window size), Extended ACK always advertises nonzero-window size. If there is a Subflow whose RTT is shorter than Subflow k, the Extended ACK sent to the Subflow arrives earlier than Regular ACK. In this case, the sender which is blocked sending next packets can restart sending at the arrival of Extended ACK. If there are some Extended ACKs which arrive earlier than Regular ACK, the proposed method uses only one Extended ACK that arrives at first. In this way, the proposed method decreases the blocking duration of sending, and solves out-of-order packet problem. Fig. 1 illustrates the operation example of the proposed method. In Fig. 1, there are two subflows, Subflow 1 and Subflow 2, between Sender and Receiver. At first, Sender assigns Subflow 2 to transmit a data packet P 1 whose DSN is 1.P 1 is in-order data packet for Receiver. After that, Sender assigns Subflow 1 to transmit three data packets P 2 to P 4 (DSNs are 2 to 4). We assume that the RTT of Subflow 1 (RTT 1 )is shorter than that of Subflow 2 (RTT 2 ). In this case, out-of-order packet problem arises because P 2 to P 4 arrive at Receiver earlier than P 1.AtT zero, we assume that the receive buffer at Receiver is filled up with P 2 to P 4. In this case, Sender is advertised zero-window at T block and blocked sending the next packet. When receiving in-order data packet P 1 at T, the out-of-order situation is resolved. Receiver sends Regular ACK to Subflow 2 and Extended ACK to Subflow 1 simultaneously. Regular ACK arrives at Sender at T 2. Extended ACK arrives at Sender at T 1. In this case, T 1 is earlier than T 2 because we assume RTT 1 < RTT 2. We define the time duration between T block and T 2 as D, and between T block and T 1 as D prop. D also means the blocking duration of sending in conventional MPTCP. D prop is the blocking duration of sending in the proposed method. We define the difference of arrival time between Regular ACK and Extended ACK as D improve. Thus, we can obtain following equation: Fig. 1. Operation example of proposed method. 214

5 D improve ¼ D D prop ¼ T 2 T ðrtt 2 RTT 1 Þ: ð1þ where RTT i is RTT of Subflow i. Since Regular ACK and Extended ACK are sent simultaneously, D improve is almost the half value of the difference between RTT 2 and RTT 1. Eq. (1) implies that the longer difference of RTT between subflows becomes, the more Extended ACK transmitted in the proposed method reduces the blocking duration of sending. In this way, the proposed method effectively improves the throughput performance when RTTs of subflows are different. 3 Performance evaluation We evaluate the performance of the proposed method via computer simulations on NS-3 (version 3.6) [5]. We use [6] as conventional MPTCP. We consider there are two subflows, Subflow 1 and Subflow 2, between a sender and a receiver. We evaluate the throughput performance. Throughput is the aggregated value of all subflows. Simulation results for various RTT 2 s are shown in Fig. 2. The dashed line in Fig. 2 indicates the throughput performance of single TCP using only Subflow 1. We observe that when RTT 1 < RTT 2, the proposed method achieves higher throughput performance than conventional MPTCP. This is because the blocking duration caused by out-of-order packet problem can be effectively reduced by adding Extended ACK in the proposed method. Moreover, when RTT 2 is 250 milliseconds, the proposed method improves the throughput performance up to 58.9%. In this case, the number of Regular ACKs is 22,055, and that of Extended ACKs is 5,203. This means that an overhead of the proposed method is much smaller than the transmitted data size (30 MByte). On the other hand, when RTT 1 ¼ RTT 2, both methods have almost the same throughput performance. This Fig. 2. Throughput comparison result for various RTT 2 s when RTT 1 is 25 milliseconds. 215

6 result leads that the proposed method can obtain almost the same throughput performance as the conventional MPTCP in the ideal condition for MPTCP. 4 Conclusion In this paper, we have proposed an extended version of MPTCP with heterogeneous communication links to solve the out-of-order packet problem. We have confirmed that the proposed method can improve the throughput performance up to 58.9% when RTTs of subflows are different. In addition, we have also confirmed that the proposed method does not affect the throughput performance in the situation when RTTs of subflows are almost the same. As the future work, we modify the proposed algorithm to reduce Extended ACK transmissions when N is large. 216

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Protocol

More information

High-Speed TCP Performance Characterization under Various Operating Systems

High-Speed TCP Performance Characterization under Various Operating Systems High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,

More information

Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks

Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Vasilios A. Siris and Despina Triantafyllidou Institute of Computer Science (ICS) Foundation for Research and Technology - Hellas

More information

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation Fu-Min Chang #1, I-Ping Hsieh 2, Shang-Juh Kao 3 # Department of Finance, Chaoyang University of Technology

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Communications Technology

Communications Technology 1 Multi-channel combining for Airborne Flight Research Will Ivancic william.d.ivancic@nasa.gov Matt Sargent matt.sargent@epeerless.com Joseph Ishac jishac@nasa.gov NASA Don Sullivan donald.v.sullivan@nasa.gov

More information

Congestion Control of Multipath TCP: Problems and Solutions

Congestion Control of Multipath TCP: Problems and Solutions Congestion Control of Multipath TCP: Problems and Solutions Ramin Khalili, T-Labs/TU-Berlin, Germany draft-khalili-mptcp-performance-issues-03 draft-khalili-mptcp-congestion-control-01 Multipath TCP (MPTCP)

More information

Handover Management based on the Number of Retries for VoIP on WLANs

Handover Management based on the Number of Retries for VoIP on WLANs Handover Management based on the Number of Retries for VoIP on WLANs Shigeru Kashihara Yuji Oie Department of Computer Science and Electronics, Kyushu Institute of Technology Kawazu 68-4, Iizuka, 82-852

More information

On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks

On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks Yung-Chih Chen School of Computer Science University of Massachusetts Amherst yungchih@cs.umass.edu Don Towsley School of Computer

More information

Boosting mobility performance with Multi-Path TCP

Boosting mobility performance with Multi-Path TCP Boosting mobility performance with Multi-Path TCP Name SURNAME 1, Name SURNAME 2 1 Organisation, Address, City, Postcode, Country Tel: +countrycode localcode number, Fax: + countrycode localcode number,

More information

Data Center Networking with Multipath TCP

Data Center Networking with Multipath TCP Data Center Networking with Multipath TCP Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, Mark Handley Hotnets 2010 報 告 者 : 莊 延 安 Outline Introduction Analysis Conclusion

More information

On Uplink Measurement of Cellular Networks for Mobile Multi-Path TCP

On Uplink Measurement of Cellular Networks for Mobile Multi-Path TCP On Uplink Measurement of Cellular Networks for Mobile Multi-Path TCP Yung-Chih Chen 1, Erich M. Nahum 2, Don Towsley 1, and Chang Liu 1 1 Department of Computer Science, University of Massachusetts Amherst

More information

Improved Multiple File Transfer Protocol using Extended features of SCTP

Improved Multiple File Transfer Protocol using Extended features of SCTP Vol.2, Issue.3, May-June 2012 pp-1034-1038 ISSN: 2249-6645 Improved Multiple File Transfer Protocol using Extended features of SCTP Prabhanshu Jaiswal 1,Gaurav Agrawal 2,Pushpendra Singh 3, Dr. A.K. Sharma

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

SJBIT, Bangalore, KARNATAKA

SJBIT, Bangalore, KARNATAKA A Comparison of the TCP Variants Performance over different Routing Protocols on Mobile Ad Hoc Networks S. R. Biradar 1, Subir Kumar Sarkar 2, Puttamadappa C 3 1 Sikkim Manipal Institute of Technology,

More information

A Survey: High Speed TCP Variants in Wireless Networks

A Survey: High Speed TCP Variants in Wireless Networks ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:

More information

Data Networks Summer 2007 Homework #3

Data Networks Summer 2007 Homework #3 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

More information

Secure SCTP against DoS Attacks in Wireless Internet

Secure SCTP against DoS Attacks in Wireless Internet Secure SCTP against DoS Attacks in Wireless Internet Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwjoe@hanyang.ac.kr Abstract. The Stream Control Transport Protocol

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

More information

PSM-throttling: Minimizing Energy Consumption for Bulk Data Communications in WLANs

PSM-throttling: Minimizing Energy Consumption for Bulk Data Communications in WLANs PSM-throttling: Minimizing Energy Consumption for Bulk Data Communications in WLANs Xiaodong Zhang Ohio State University in Collaborations with Enhua Tan, Ohio State Lei Guo, Yahoo! Songqing Chen, George

More information

The Problem with TCP. Overcoming TCP s Drawbacks

The Problem with TCP. Overcoming TCP s Drawbacks White Paper on managed file transfers How to Optimize File Transfers Increase file transfer speeds in poor performing networks FileCatalyst Page 1 of 6 Introduction With the proliferation of the Internet,

More information

A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks

A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks Min-Kim, Jong-min Kim, Hwa-sung Kim Dept. of Electronics and Communications Engineering Kwangwoon University

More information

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying

More information

Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008

Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 When you buy a broadband Wide Area Network (WAN) you want to put the entire bandwidth capacity to

More information

D. SamKnows Methodology 20 Each deployed Whitebox performs the following tests: Primary measure(s)

D. SamKnows Methodology 20 Each deployed Whitebox performs the following tests: Primary measure(s) v. Test Node Selection Having a geographically diverse set of test nodes would be of little use if the Whiteboxes running the test did not have a suitable mechanism to determine which node was the best

More information

Network management and QoS provisioning - QoS in the Internet

Network management and QoS provisioning - QoS in the Internet QoS in the Internet Inernet approach is based on datagram service (best effort), so provide QoS was not a purpose for developers. Mainly problems are:. recognizing flows;. manage the issue that packets

More information

MPEG-4 Video Transfer with SCTP-Friendly Rate Control Mohamed N. El Derini

MPEG-4 Video Transfer with SCTP-Friendly Rate Control Mohamed N. El Derini MPEG-4 Video Transfer with SCTP-Friendly Rate Control Mohamed N. El Derini elderini@ieee.org Amr A.Elshikh elshikha@emro.who.int Faculty of Engineering, Alexandria University, Egypt Computer Science and

More information

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This

More information

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management

More information

A Fast Path Recovery Mechanism for MPLS Networks

A Fast Path Recovery Mechanism for MPLS Networks A Fast Path Recovery Mechanism for MPLS Networks Jenhui Chen, Chung-Ching Chiou, and Shih-Lin Wu Department of Computer Science and Information Engineering Chang Gung University, Taoyuan, Taiwan, R.O.C.

More information

Disjoint Path Algorithm for Load Balancing in MPLS network

Disjoint Path Algorithm for Load Balancing in MPLS network International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 13 No. 1 Jan. 2015, pp. 193-199 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke

Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Multipath TCP design, and application to data centers Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Packet switching pools circuits. Multipath pools links : it is Packet Switching 2.0.

More information

Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols

Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji

More information

A Congestion Control Algorithm for Data Center Area Communications

A Congestion Control Algorithm for Data Center Area Communications A Congestion Control Algorithm for Data Center Area Communications Hideyuki Shimonishi, Junichi Higuchi, Takashi Yoshikawa, and Atsushi Iwata System Platforms Research Laboratories, NEC Corporation 1753

More information

Algorithms for Interference Sensing in Optical CDMA Networks

Algorithms for Interference Sensing in Optical CDMA Networks Algorithms for Interference Sensing in Optical CDMA Networks Purushotham Kamath, Joseph D. Touch and Joseph A. Bannister {pkamath, touch, joseph}@isi.edu Information Sciences Institute, University of Southern

More information

Oscillations of the Sending Window in Compound TCP

Oscillations of the Sending Window in Compound TCP Oscillations of the Sending Window in Compound TCP Alberto Blanc 1, Denis Collange 1, and Konstantin Avrachenkov 2 1 Orange Labs, 905 rue Albert Einstein, 06921 Sophia Antipolis, France 2 I.N.R.I.A. 2004

More information

MAPS: Adaptive Path Selection for Multipath Transport Protocols in the Internet

MAPS: Adaptive Path Selection for Multipath Transport Protocols in the Internet MAPS: Adaptive Path Selection for Multipath Transport Protocols in the Internet TR-11-09 Yu Chen Xin Wu Xiaowei Yang Department of Computer Science, Duke University {yuchen, xinwu, xwy}@cs.duke.edu ABSTRACT

More information

MMPTCP: A Novel Transport Protocol for Data Centre Networks

MMPTCP: A Novel Transport Protocol for Data Centre Networks MMPTCP: A Novel Transport Protocol for Data Centre Networks Morteza Kheirkhah FoSS, Department of Informatics, University of Sussex Modern Data Centre Networks FatTree It provides full bisection bandwidth

More information

TCP performance optimization for handover Management for LTE satellite/terrestrial hybrid. network.

TCP performance optimization for handover Management for LTE satellite/terrestrial hybrid. network. TCP performance optimization for handover Management for LTE satellite/terrestrial hybrid networks Michael Crosnier, Riadh Dhaou, Fabrice Planchou and Andre-Luc Beylot Astrium, 31 avenue des cosmonautes,

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

Network Friendliness of Mobility Management Protocols

Network Friendliness of Mobility Management Protocols Network Friendliness of Mobility Management Protocols Md Sazzadur Rahman, Mohammed Atiquzzaman Telecommunications and Networks Research Lab School of Computer Science, University of Oklahoma, Norman, OK

More information

Low-rate TCP-targeted Denial of Service Attack Defense

Low-rate TCP-targeted Denial of Service Attack Defense Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu

More information

Exploring Mobile/WiFi Handover with Multipath TCP

Exploring Mobile/WiFi Handover with Multipath TCP Exploring Mobile/WiFi Handover with Multipath TCP Fabien Duchene fabien.duchene@uclouvain.be Christoph Paasch christoph.paasch@uclouvain.be Costin Raiciu costin.raiciu@cs.pub.ro Gregory Detal gregory.detal@uclouvain.be

More information

Experiences with MPTCP in an intercontinental multipathed OpenFlow network

Experiences with MPTCP in an intercontinental multipathed OpenFlow network Experiences with MP in an intercontinental multipathed network Ronald van der Pol, Michael Bredel, Artur Barczyk SURFnet Radboudkwartier 273 3511 CK Utrecht, The Netherlands Email: Ronald.vanderPol@SURFnet.nl

More information

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks 1 Mr. Praveen S Patil, 2 Mr. Rabinarayan Panda, 3 Mr. Sunil Kumar R D 1,2,3 Asst. Professor, Department of MCA, The Oxford College of Engineering,

More information

A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks

A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks T.Chandrasekhar 1, J.S.Chakravarthi 2, K.Sravya 3 Professor, Dept. of Electronics and Communication Engg., GIET Engg.

More information

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Basic Multiplexing models. Computer Networks - Vassilis Tsaoussidis

Basic Multiplexing models. Computer Networks - Vassilis Tsaoussidis Basic Multiplexing models? Supermarket?? Computer Networks - Vassilis Tsaoussidis Schedule Where does statistical multiplexing differ from TDM and FDM Why are buffers necessary - what is their tradeoff,

More information

Final Exam. Route Computation: One reason why link state routing is preferable to distance vector style routing.

Final Exam. Route Computation: One reason why link state routing is preferable to distance vector style routing. UCSD CSE CS 123 Final Exam Computer Networks Directions: Write your name on the exam. Write something for every question. You will get some points if you attempt a solution but nothing for a blank sheet

More information

CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006 CSE33: Introduction to Networks and Security Lecture 9 Fall 2006 Announcements Project Due TODAY HW Due on Friday Midterm I will be held next Friday, Oct. 6th. Will cover all course material up to next

More information

Seamless Handover of Streamed Video over UDP between Wireless LANs

Seamless Handover of Streamed Video over UDP between Wireless LANs Seamless Handover of Streamed Video over UDP between Wireless LANs Ger Cunningham, Seán Murphy, Liam Murphy Department of Computer Science University College Dublin Dublin, Ireland {ger.munningham,liam.murphy@ucd.ie,

More information

Split TCP for Mobile Ad Hoc Networks

Split TCP for Mobile Ad Hoc Networks 1 Split TCP for Mobile Ad Hoc Networks Swastik Kopparty, Srikanth V. Krishnamurthy, Michalis Faloutsos, Satish K. Tripathi Department of Computer Science and Engineering, University of California, Riverside,

More information

Supporting VoIP in IEEE802.11 Distributed WLANs

Supporting VoIP in IEEE802.11 Distributed WLANs Supporting VoIP in IEEE802.11 Distributed WLANs Zuo Liu Supervisor: Dr. Nick Filer July 2012 1 Voice VoIP Applications Constant Streaming Traffic Packetize interval usually 10-30 ms 8 160 bytes each packet

More information

4 High-speed Transmission and Interoperability

4 High-speed Transmission and Interoperability 4 High-speed Transmission and Interoperability Technology 4-1 Transport Protocols for Fast Long-Distance Networks: Comparison of Their Performances in JGN KUMAZOE Kazumi, KOUYAMA Katsushi, HORI Yoshiaki,

More information

Performance Comparison of SCTP and TCP over Linux Platform

Performance Comparison of SCTP and TCP over Linux Platform Performance Comparison of SCTP and TCP over Linux Platform Jong-Shik Ha, Sang-Tae Kim, and Seok J. Koh Department of Computer Science, Kyungpook National University, Korea {mugal1, saintpaul1978, sjkoh}@cs.knu.ac.kr

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

IAB CONCERNS ABOUT CONGESTION CONTROL. Iffat Hasnian 1832659

IAB CONCERNS ABOUT CONGESTION CONTROL. Iffat Hasnian 1832659 IAB CONCERNS ABOUT CONGESTION CONTROL Iffat Hasnian 1832659 IAB CONCERNS Outline 1- Introduction 2- Persistent High Drop rate Problem 3- Current Efforts in the IETF 3.1 RTP 3.2 TFRC 3.3 DCCP 3.4 Audio

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

The Effect of Packet Reordering in a Backbone Link on Application Throughput Michael Laor and Lior Gendel, Cisco Systems, Inc.

The Effect of Packet Reordering in a Backbone Link on Application Throughput Michael Laor and Lior Gendel, Cisco Systems, Inc. The Effect of Packet Reordering in a Backbone Link on Application Throughput Michael Laor and Lior Gendel, Cisco Systems, Inc. Abstract Packet reordering in the Internet is a well-known phenomenon. As

More information

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC

More information

STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT

STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT 1. TIMING ACCURACY The accurate multi-point measurements require accurate synchronization of clocks of the measurement devices. If for example time stamps

More information

An Overview of Multipath TCP

An Overview of Multipath TCP An Overview of Multipath TCP Olivier Bonaventure, Mark Handley, and Costin Raiciu Olivier Bonaventure is a Professor at Catholic University of Louvain, Belgium. His research focus is primarily on Internet

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

TO realize effective Grid computing on a wide-area network, Performance Evaluation of Data Transfer Protocol GridFTP for Grid Computing

TO realize effective Grid computing on a wide-area network, Performance Evaluation of Data Transfer Protocol GridFTP for Grid Computing Performance Evaluation of Data Transfer Protocol for Grid Computing Hiroyuki Ohsaki and Makoto Imase Abstract In Grid computing, a data transfer protocol called has been widely used for efficiently transferring

More information

A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access

A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access Kyung-ah Kim 1, Chong-Kwon Kim 2, and Tongsok Kim 1 1 Marketing & Technology Lab., KT, Seoul, Republic of Korea, {kka1,tongsok}@kt.co.kr

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Security Scheme for Distributed DoS in Mobile Ad Hoc Networks

Security Scheme for Distributed DoS in Mobile Ad Hoc Networks Security Scheme for Distributed DoS in Mobile Ad Hoc Networks Sugata Sanyal 1, Ajith Abraham 2, Dhaval Gada 3, Rajat Gogri 3, Punit Rathod 3, Zalak Dedhia 3 and Nirali Mody 3 1 School of Technology and

More information

EFFECT OF TRANSFER FILE SIZE ON TCP-ADaLR PERFORMANCE: A SIMULATION STUDY

EFFECT OF TRANSFER FILE SIZE ON TCP-ADaLR PERFORMANCE: A SIMULATION STUDY EFFECT OF TRANSFER FILE SIZE ON PERFORMANCE: A SIMULATION STUDY Modupe Omueti and Ljiljana Trajković Simon Fraser University Vancouver British Columbia Canada {momueti, ljilja}@cs.sfu.ca ABSTRACT Large

More information

Analysis of Delayed Reservation Scheme in Server-based QoS Management Network

Analysis of Delayed Reservation Scheme in Server-based QoS Management Network Analysis of Delayed Reservation Scheme in Server-based QoS Management Network Takeshi Ikenaga Ý, Kenji Kawahara Ý, Tetsuya Takine Þ, and Yuji Oie Ý Ý Dept. of Computer Science and Electronics, Kyushu Institute

More information

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A

More information

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,

More information

Multipath TCP in Data Centres (work in progress)

Multipath TCP in Data Centres (work in progress) Multipath TCP in Data Centres (work in progress) Costin Raiciu Joint work with Christopher Pluntke, Adam Greenhalgh, Sebastien Barre, Mark Handley, Damon Wischik Data Centre Trends Cloud services are driving

More information

Performance evaluation of TCP connections in ideal and non-ideal network environments

Performance evaluation of TCP connections in ideal and non-ideal network environments Computer Communications 24 2001) 1769±1779 www.elsevier.com/locate/comcom Performance evaluation of TCP connections in ideal and non-ideal network environments Hala ElAarag, Mostafa Bassiouni* School of

More information

TCP and UDP Performance for Internet over Optical Packet-Switched Networks

TCP and UDP Performance for Internet over Optical Packet-Switched Networks TCP and UDP Performance for Internet over Optical Packet-Switched Networks Jingyi He S-H Gary Chan Department of Electrical and Electronic Engineering Department of Computer Science Hong Kong University

More information

On the Characteristics and Origins of Internet Flow Rates

On the Characteristics and Origins of Internet Flow Rates On the Characteristics and Origins of Internet Flow Rates Yin Zhang Lee Breslau AT&T Labs Research {yzhang,breslau}@research.att.com Vern Paxson Scott Shenker International Computer Science Institute {vern,shenker}@icsi.berkeley.edu

More information

Mobile Computing/ Mobile Networks

Mobile Computing/ Mobile Networks Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

Wide Area Network Latencies for a DIS/HLA Exercise

Wide Area Network Latencies for a DIS/HLA Exercise Wide Area Network Latencies for a DIS/HLA Exercise Lucien Zalcman and Peter Ryan Air Operations Division Aeronautical & Maritime Research Laboratory Defence Science & Technology Organisation (DSTO) 506

More information

Multipath Transmission for Wireless Internet Access - From an End-to-End Transport Layer Perspective. Abstract

Multipath Transmission for Wireless Internet Access - From an End-to-End Transport Layer Perspective. Abstract Multipath Transmission for Wireless Internet Access - From an End-to-End Transport Layer Perspective WEIHUA ZHUANG, NEDA MOHAMMADIZADEH, XUEMIN (SHERMAN) SHEN Department of Electrical and Computer Engineering

More information

A Measurement-based Study of MultiPath TCP Performance over Wireless Networks

A Measurement-based Study of MultiPath TCP Performance over Wireless Networks A Measurement-based Study of MultiPath TCP Performance over Wireless Networks Yung-Chih Chen School of Computer Science University of Massachusetts Amherst, MA USA yungchih@cs.umass.edu Erich M. Nahum

More information

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of

More information

A Multi-level Security Mechanism for Secure Data Transmission in SCTP

A Multi-level Security Mechanism for Secure Data Transmission in SCTP Research Journal of Applied Sciences, Engineering and Technology 7(10): 2123-2128, 2014 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2014 Submitted: July 6, 2013 Accepted: September

More information

Selection of Techniques and Metrics

Selection of Techniques and Metrics Performance Evaluation: Selection of Techniques and Metrics Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. Raj Jain. Outline Selecting

More information

Key Components of WAN Optimization Controller Functionality

Key Components of WAN Optimization Controller Functionality Key Components of WAN Optimization Controller Functionality Introduction and Goals One of the key challenges facing IT organizations relative to application and service delivery is ensuring that the applications

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 Comparison of TCP I-Vegas with TCP Vegas in Wired-cum-Wireless Network Nitin Jain & Dr. Neelam Srivastava Abstract

More information

Congestions and Control Mechanisms n Wired and Wireless Networks

Congestions and Control Mechanisms n Wired and Wireless Networks International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst

More information

Performance improvement of TCP over wireless network

Performance improvement of TCP over wireless network Performance improvement of TCP over wireless network Raja singh Computer science Department, SRIT, Jabalpur, M.P.India, rajasinghpatel@gmail.com Brajesh patel Asst. Prof. SRIT,Jabalpur M.P., India, Abstract:

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

High Speed Internet Access Using Satellite-Based DVB Networks

High Speed Internet Access Using Satellite-Based DVB Networks High Speed Internet Access Using Satellite-Based DVB Networks Nihal K. G. Samaraweera and Godred Fairhurst Electronics Research Group, Department of Engineering University of Aberdeen, Aberdeen, AB24 3UE,

More information

Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control

Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Professor M. Chiang Electrical Engineering Department, Princeton University ELE539A February 21, 2007 Lecture Outline TCP

More information

TCP over Wireless Networks

TCP over Wireless Networks TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/

More information

A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage

A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage Iowa State University Digital Repository @ Iowa State University Graduate Theses and Dissertations Graduate College 2011 A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage Kuan-yu

More information

Influence of Load Balancing on Quality of Real Time Data Transmission*

Influence of Load Balancing on Quality of Real Time Data Transmission* SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 6, No. 3, December 2009, 515-524 UDK: 004.738.2 Influence of Load Balancing on Quality of Real Time Data Transmission* Nataša Maksić 1,a, Petar Knežević 2,

More information