VOLCANIC FACIES IN STAVELY DRILLCORE PRELIMINARY OBSERVATIONS. Report for Geoscience Australia Attn: Dr David Huston

Size: px
Start display at page:

Download "VOLCANIC FACIES IN STAVELY DRILLCORE PRELIMINARY OBSERVATIONS. Report for Geoscience Australia Attn: Dr David Huston"

Transcription

1 0 VOLCANIC FACIES IN STAVELY DRILLCORE PRELIMINARY OBSERVATIONS Report for Geoscience Australia Attn: Dr David Huston Jocelyn McPhie McPhie Volcanology March 2015

2 1 Introduction Geoscience Australia drilled several holes into poorly exposed, ~500 Ma volcanic rocks in the Stavely area, western Victoria. This report summarises my observations and preliminary conclusions based one day of reviewing selected drill core. The report includes rough graphic logs of the holes based on my observations and detailed written logs prepared by Geoscience Australia geologists. Stavely 17 This hole contains a very thick section (downhole 156 m) of massive to weakly graded sandstone interbedded with minor laminated mudstone. The thick beds and weak grading imply deposition below wave base from turbidity currents. There are no obvious volcanic components (I am guessing, given the fine grain size) so a basement provenance is inferred. Igneous rocks occur at three depths. The top two occurrences (23.3 to 26.2 m and 46 to 51 m) are moderately to strongly altered, feldspar-ferromagnesian-phyric, and probably intermediate in composition. The upper interval has a porphyritic texture (Fig. 1) and sharp contacts. The lower interval appears to be equigranular (~1 mm grain size; Fig. 2), has a sharp upper contact and brecciated lower contact. Both these intervals are interpreted to be intrusive, based on the contacts and the igneous lithology. The sharp passive contacts are consistent with the sandstone being lithified when intruded. The moderate to strong alteration that has affected the igneous intervals and the abundant veins in the adjacent sandstone presumably both relate to hydrothermal activity initiated by the intrusions. Figure 1. Altered weakly porphyritic andesite(?), Stavely 17, ~24 m.

3 2 Figure 2. Altered equigranular microdiorite(?), Stavely 17, ~48 m. The lowest occurrence is a narrow (10 cm), irregular interval of weakly altered basalt (Fig. 3). The basalt is unlikely to be a clast because it is far coarser than the average grainsize of the sandstonemudstone that contains it, and it has an intricately irregular shape that would not have survived transport in a turbidity current. It is likely to be a very small intrusion presumably connected to a larger nearby feeder (dyke or sill). The irregular shape suggests that the basalt intruded the sandstone-mudstone before it was consolidated. Figure 3. Narrow interval of basalt with irregular contacts with grey mudstone, Stavely 17, ~127.5 m.

4

5

6 3 Stavely 09 This hole intersected ~40 m of weakly altered, mafic igneous rocks in which there is no obvious evidence of bedding. The top ~24 m mainly comprises dark green, aphyric amygdaloidal basalt (Fig. 4). There are at least four narrow (<1.5 m wide) intervals of monomictic basalt breccia in which the clasts are separated by white siliceous cement (Fig. 5). These breccia intervals are probably hydraulic in origin, formed where over-pressured fluid has locally brecciated the coherent basalt. The siliceous cement is likely to have been deposited from the over-pressured fluid that caused the brecciation. Close to the top, there are two narrow intervals of dense (non-amygdaloidal) basalt with sharp contacts against the amygdaloidal basalt (Fig. 6). The sharp contacts and cross-cutting relationships suggest that these intervals are narrow dykes or sills. Figure 4. Dark green, aphyric amygdaloidal basalt, Stavely 09, m. Figure 5. Monomictic basalt breccia with siliceous cement, Stavely 09, 145 m.

7 4 Figure 6. Aphyric dense basalt in sharp contact (arrow) with aphyric amygdaloidal basalt, Stavely 09, ~130 m. The lowermost ~15 m comprises equigranular, medium grained (1-2 mm) dolerite in which feldspar and a ferromagnesian phase can be recognised (Fig. 7). The dolerite has a sharp contact with the overlying aphyric basalt, and the top ~20 cm of the dolerite is very fine grained (Fig. 8). Below about ~160 m, the dolerite has a spotty appearance due to epidote and the grainsize is slightly coarser than above. Given the sharp chilled topmost contact, and the equigranular texture, it appears that the dolerite has intruded the aphyric basalt. Figure 7. Equigranular dolerite, Stavely 09, ~156 m.

8 5 Figure 8. Top, very fine grained (chilled) margin of dolerite, Stavely 09, ~150 m. The basaltic section would have accumulated close to a basaltic volcanic centre that was mainly producing lavas, and the lavas accumulated without interruption because there is no interbedded volcaniclastic or sedimentary facies. This section does not provide any constraints on the depositional environment. The dolerite intrusion could be related to the basaltic volcanic section, being part of the deeper magma feeder system of a basaltic volcano, or unrelated. Data on the compositions of the basalt and dolerite could help distinguish between these two possibilities. Geochronology could also help, providing apatite or zircon or another dateable mineral is present.

9

10 6 Stavely 04 This hole intersected ~45 m of chlorite-sericite-epidote altered, amygdaloidal basalt in which there is no obvious evidence of bedding. The basalt is either aphyric (Fig. 9) or weakly porphyritic, having a locally visible population of altered ferromagnesian phenocrysts (~1 mm, <5 %). There are three intervals (56.5 to 59.5m, 62.1 to 63.6 m, 75.2 to 81.9 m) where the basalt contains highly irregular domains of black or red silicified, massive mudstone (Figs 10, 11, 12). In these domains, the basalt is locally brecciated and dismembered, forming clasts in mudstone matrix. From 81.9 to 88.4 m (below the lowest interval), the basalt contains narrow (mm cm), wispy and fluidal lenses of mainly red silicified mudstone. Figure 9. Weakly sericite-altered aphyric basalt, Stavely 04, 89 m. Figure 10. Fluidal lenses of silicified red mudstone in aphyric basalt, Stavely 04, ~57 m.

11 7 Figure 11. Red mudstone-matrix basalt breccia, interpreted to be blocky peperite, Stavely 04, ~78 m. Figure 12. Red mudstone-matrix basalt breccia, interpreted to be blocky peperite, Stavely 04, ~80 m. The intervals of basalt that contain significant mudstone are readily interpreted as peperite, a facies that forms from the mingling between molten magma (in this case, basalt) and unconsolidated sediment (in this case, mud, now mudstone). Peperite forms subsurface where magmas interact with sediment piles, and can be connected to dykes, sills or irregular intrusions of any dimensions. The peperite in this section implies that the basalt was largely intrusive but intrusion took place at shallow depths where mud remained unlithified. Peperite can occur in subaerial settings but given that the sediment in this case was mud, it is most likely that the basalt intruded mud that had accumulated on the seafloor. Substantial thicknesses of basalt can be emplaced by means of shallow intrusions. The Hellyer Basalt in the northern Mount Read Volcanics (western Tasmania) is typically >100 m thick and up to ~250 m thick. Intermingled mudstone (equivalent to the Que River Shale) occurs throughout sections through the Hellyer Basalt, and no evidence for conventional extrusive emplacement has yet been found.

12

13 8 Stavely 07 Only the top ~150 m of this long hole (total depth m) was available for review. There is no evidence of bedding in the drill core reviewed. Almost of all of the section comprises feldsparferromagnesian-phyric andesite(?). The andesite(?) locally has well-preserved relic perlitic texture in the groundmass and is weakly amygdaloidal. There could be two emplacement units of only slightly different andesite(?) (Fig. 13), separated by ~55 cm of mudstone at ~98.05 m (Fig. 14). The upper andesite(?) is cut by narrow (<1 m), irregular, green basaltic dykes at 35.2 m and m (Fig. 15). The top contact of the lower andesite(?) (at ~98.6 m) with mudstone is sharp (Fig. 14) and the adjacent andesite(?) is not brecciated. It could be that the andesite(?) is intrusive but at very shallow levels because its groundmass was originally glassy. The intervals of porphyritic coherent facies (andesite and/or dacite) in this hole are substantial; clastic facies account for less than 1% of the total depth (~500 m). Such dimensions and the dominance of coherent facies typically correspond to the proximal parts of domes or dome complexes, and their intrusive equivalents (cryptodomes). Because the orientation of the hole in relation to regional bedding is not known, the actual dimensions of the units in Stavely 07 may be much smaller.

14 9 Figure 13. Feldspar-ferromagnesian-phyric andesite(?) in Stavely 07. Top: upper andesite, ~47 m; middle: lower andesite, ~120 m; lower: quartz-filled amygdales in the lower andesite, ~120 m.

15 10 Figure 14. Sharp contact between grey mudstone (LHS) and feldspar-ferromagnesian-phyric andesite(?)(rhs), Stavely 07, 98.6 m. The groundmass of the andesite(?) is perlitic. Figure 15. Narrow, irregular, green basaltic dykes intruding the feldspar-ferromagnesian-phyric andesite(?) at 35.2 m (top) and m (lower) in Stavely 07.

16

17 11 Stavely 02 This hole intersected roughly 70 m of both coherent and clastic facies. The coherent facies are predominantly amygdaloidal basalt that locally includes possible pillows (around 121 m) and is cut by a non-amygdaloidal basalt dyke (~118 m). There are two different clastic facies. In the lower ~ 20 m of the hole, there are intervals with a distinctive clastic texture comprising fluidal, amygdaloidal basalt clasts with chilled margins and minor angular basalt clasts ( fluidal-clast basalt breccia ). This breccia is monomictic and derived from weak fountains of highly vesicular basalt on the seafloor. The fountains break up into droplets of molten basalt that chill and fall out around the vent; some of the smallest droplets quench-fragment entirely, producing angular basalt clasts that are deposited with the fluidal clasts. This is a near-vent facies, usually found within tens of m of the vent(s) that produced it. The second clastic facies occurs near the top of the hole (~98 to 115 m) and comprises polymicitc volcanic breccia. Although polymictic, the clasts are mainly amygdaloidal basalt and ferromagnesianphyric andesite(?). The breccia is not bedded or internally organised. This breccia probably records a mass-wasting event from a local basalt/andesite source. Collectively, the association of facies in this hole are broadly proximal, comprising basaltic lavas and fluidal-clast breccia, and thick, coarse polymictic volcanic breccia that accumulated in proximity to an active basaltic-andesitic volcano. There are no non-volcanic sedimentary facies, implying that the accumulation rate was too high for such facies to be included. The fluidal-clast breccia, and of course, the pillows if confirmed, provide evidence of a subaqueous depositional setting.

18

19 12 Stavely 16 Almost all this hole (from ~288 to 354 m) comprises very thick, polymictic volcanic breccia (Fig. 16) that is lacking in any internal organisation. The true thickness is not known because the orientation of the drill hole in relation to regional bedding is not known. The lowermost ~3 m (from 354 to m) of the hole intersected feldspar-ferromagnesian-phyric andesite(?) that could be a large clast or in situ andesite(?). The polymictic clast assemblage includes green and dark green feldspar-ferromagnesian-phyric andesite(?), highly vesicular green basalt(?), red basaltic scoria and red finely feldspar-phyric rhyolite(?). The latter clasts are particularly conspicuous in being very coarse (many are coarser than 20 cm) and abundant. Some of the largest rhyolite(?) clasts contain fractures that are filled by the matrix (Fig. 17), some occur in jigsaw-fit clusters, and some are weakly banded. Figure 16. Polymictic volcanic breccia in Stavely 16, m.

20 13 Figure 17. Polymictic volcanic breccia in Stavely 16, m. Note the matrix-filled fractures (arrow) in the red weakly feldspar-phyric rhyolite(?) clast in the lower core, and the cluster of red weakly feldspar-phyric rhyolite(?) clasts (arrow) in the upper core. The polymictic volcanic breccia in Stavely 16 does not provide any constraints on the depositional setting. The components indicate derivation from a volcanic source that included rhyolite, andesite and basalt compositions. The breccia contains a significant proportion of red and purplish red clasts, including red scoria. Redness in volcanic clasts or in lavas may be the product of thermal oxidation which is restricted to subaerial settings (thermal oxidation requires cooling of hot clasts or lava in contact with the atmosphere). One implication is that the source of the clasts was at least partly subaerial. Oxidation that produces reddening may also be the result of hydrothermal processes. If the red colour of the clasts in the breccia is hydrothermal in origin, then the source area included hydrothermally altered volcanic rocks (subaerial or submarine). The coarse grain size, angular clast shapes and lack of organisation suggest that the breccia is the product of catastrophic mass-wasting event involving the partial failure of a volcanic edifice. Given the high abundance of the red weakly feldspar-phyric rhyolite(?) clasts, and the presence of prepared fractures in these clasts, a dome-collapse event is plausible. Assuming the true thickness is in the order of a few tens of m or more, the thickness and coarse grain size imply relative proximity to the source (10 s m to perhaps 1-2 km?).

21 14 Recommendations Assuming there is an unlimited budget, additional research could be carried out on the Stavely drill holes. Prepare graphic logs to accompany the detailed written logs. Complete systematic petrography and geochemistry (especially immobile trace elements and mineral chemistry on secondary phases) on the main coherent units, and on selected clasts in the polymictic breccia units (e.g. in Stavely 02), in order to confirm field names, to identify original geochemical affinities, and to determine the mineralogy, textures and relationships among the secondary phases present. Complete systematic geochronology on the main units, in order to determine the ages and duration of volcanic activity, and to identify regional correlations.

Earth Materials: Intro to rocks & Igneous rocks. The three major categories of rocks Fig 3.1 Understanding Earth

Earth Materials: Intro to rocks & Igneous rocks. The three major categories of rocks Fig 3.1 Understanding Earth Earth Materials: 1 The three major categories of rocks Fig 3.1 Understanding Earth 2 Intro to rocks & Igneous rocks Three main categories of rocks: Igneous Sedimentary Metamorphic The most common minerals

More information

ES 104: Laboratory # 7 IGNEOUS ROCKS

ES 104: Laboratory # 7 IGNEOUS ROCKS ES 104: Laboratory # 7 IGNEOUS ROCKS Introduction Igneous rocks form from the cooling and crystallization of molten rock material. This can occur below the surface of the earth forming intrusive rocks

More information

Rocks & Minerals 1 Mark Place, www.learnearthscience.com

Rocks & Minerals 1 Mark Place, www.learnearthscience.com Name: KEY Rocks & Minerals 1 KEY CONCEPT #1: What is a mineral? It is a naturally occurring, inorganic substance which has a definite chemical composition What would be the opposite of this? man-made,

More information

Name: Rocks & Minerals 1 Mark Place, www.learnearthscience.com

Name: Rocks & Minerals 1 Mark Place, www.learnearthscience.com Name: Rocks & Minerals 1 KEY CONCEPT #1: What is a mineral? It is a, substance which has a What would be the opposite of this? KEY CONCEPT #2: What causes minerals to have different physical properties?

More information

Presents the. Rock Test Study Resource

Presents the. Rock Test Study Resource Presents the Rock Test Study Resource Created by Simone Markus Published by EngLinks 1 Preface This is a free resource provided by EngLinks for students in APSC 151. This presentation is a supplementary

More information

FROM SEDIMENT INTO SEDIMENTARY ROCK. Objectives. Sediments and Sedimentation

FROM SEDIMENT INTO SEDIMENTARY ROCK. Objectives. Sediments and Sedimentation FROM SEDIMENT INTO SEDIMENTARY ROCK Objectives Identify three types of sediments. Explain where and how chemical and biogenic sediments form. Explain three processes that lead to the lithification of sediments.

More information

Sedimentary Rocks Practice Questions and Answers Revised September 2007

Sedimentary Rocks Practice Questions and Answers Revised September 2007 Sedimentary Rocks Practice Questions and Answers Revised September 2007 1. Clastic sedimentary rocks are composed of and derived from pre-existing material. 2. What is physical weathering? 3. What is chemical

More information

Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE

Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE Instructions: Read each question carefully before selecting the BEST answer Provide specific and detailed

More information

EARTH SCIENCE 110 INTRODUCTION to GEOLOGY MINERALS & ROCKS LABORATORY

EARTH SCIENCE 110 INTRODUCTION to GEOLOGY MINERALS & ROCKS LABORATORY EARTH SCIENCE 110 INTRODUCTION to GEOLOGY DR. WOLTEMADE NAME: SECTION: MINERALS & ROCKS LABORATORY INTRODUCTION The identification of minerals and rocks is an integral part of understanding our physical

More information

Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE

Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE Instructions: Read each question carefully before selecting the BEST answer Provide specific and detailed

More information

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate 1. Of the Earth's more than 2,000 identified minerals, only a small number are commonly found in rocks. This fact indicates that most 1) minerals weather before they can be identified 2) minerals have

More information

Rock Identification Lab

Rock Identification Lab Rock Identification Lab Name Mineral Hardness Objective: You will determine the relative hardness of common objects relative to the known hardness of index minerals. We will use fingernail, copper, glass,

More information

SGL 101: MATERIALS OF THE EARTH Lecture 5 C.M. NYAMAI SECTION 3 LECTURE 5. 5.0 NATURE AND CLASSIFICATION OF IGNEOUS ROCKS

SGL 101: MATERIALS OF THE EARTH Lecture 5 C.M. NYAMAI SECTION 3 LECTURE 5. 5.0 NATURE AND CLASSIFICATION OF IGNEOUS ROCKS SECTION 3 LECTURE 5. 5.0 NATURE AND CLASSIFICATION OF IGNEOUS ROCKS 5.1 INTRODUCTION Welcome to lecture 5. You have now successfully completed section 1 and 2 of this unit. You can now state the basic

More information

Ch6&7 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch6&7 Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Ch6&7 Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following does NOT change the form of existing rock? a. tremendous pressure c.

More information

P1: Rock identification (I)

P1: Rock identification (I) P1: Rock identification (I) Examine the rocks specimens provided with the aid of these notes. All the rocks come from Ireland, as detailed on the attached map. Answer the short question on each specimen

More information

What is a rock? How are rocks classified? What does the texture of a rock reveal about how it was formed?

What is a rock? How are rocks classified? What does the texture of a rock reveal about how it was formed? CHAPTER 4 1 The Rock Cycle SECTION Rocks: Mineral Mixtures BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a rock? How are rocks classified? What does

More information

CLASSIFICATION // CHARACTERIZATION OF SOME ROCK FEATURES

CLASSIFICATION // CHARACTERIZATION OF SOME ROCK FEATURES Reference: CLASSIFICATION // CHARACTERIZATION OF SOME ROCK FEATURES Engineering characteristics of main rock material: - Geological name, (type of rock) - Orientation of foliation/bedding/layering - Anisotropy,

More information

Magmas and Igneous Rocks

Magmas and Igneous Rocks Page 1 of 14 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Magmas and Igneous Rocks This page last updated on 03-Sep-2015 Magma and Igneous Rocks Igneous Rocks are formed by crystallization

More information

Igneous Rocks. Geology 200 Geology for Environmental Scientists

Igneous Rocks. Geology 200 Geology for Environmental Scientists Igneous Rocks Geology 200 Geology for Environmental Scientists Magma Compositions Ultramafic - composition of mantle Mafic - composition of basalt, e.g. oceanic crust. 900-1200 o C, 50% SiO 2 Intermediate

More information

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire UNIT 3 EXAM ROCKS AND MINERALS NAME: BLOCK: DATE: 1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire FRANCONIA, N.H. Crowds

More information

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas 1 Igneous Geochemistry What is magma phases, compositions, properties Major igneous processes Making magma how and where Major-element variations Classification using a whole-rock analysis Fractional crystallization

More information

All sediments have a source or provenance, a place or number of places of origin where they were produced.

All sediments have a source or provenance, a place or number of places of origin where they were produced. Sedimentary Rocks, Processes, and Environments Sediments are loose grains and chemical residues of earth materials, which include things such as rock fragments, mineral grains, part of plants or animals,

More information

Roadstone - which rock? Investigating the best rock type for the wearing course of roads

Roadstone - which rock? Investigating the best rock type for the wearing course of roads Roadstone - which rock? Investigating the best rock type for the wearing course of roads Roads are made of various types of rock aggregate (crushed rock fragments). Quarries provide the aggregate used

More information

Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids.

Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids. Protolith or parent rock is

More information

For personal use only

For personal use only ANNOUNCEMENT TO THE AUSTRALIAN SECURITIES EXCHANGE: 18 March 2013 Update on Bunawan and Bahayan Permit Approvals. The Directors of Sierra Mining Limited ( Sierra ) are pleased to update shareholders on

More information

Igneous, Sedimentary, and Metamorphic Rocks Earth Science Rock Lab. Introduction

Igneous, Sedimentary, and Metamorphic Rocks Earth Science Rock Lab. Introduction Igneous, Sedimentary, and Metamorphic Rocks Earth Science Rock Lab Introduction A rock is any natural aggregate composed of minerals, mineraloids, glass, or organic particles. There are three primary rock

More information

Unit 8.3.1 Study Guide: Rocks, Minerals, and the Rock Cycle

Unit 8.3.1 Study Guide: Rocks, Minerals, and the Rock Cycle Name Date Per Unit 8.3.1 Study Guide: Rocks, Minerals, and the Rock Cycle I Can Statements I Can Statements are the learning targets for each unit. By the time you take the test for this unit, you should

More information

BOWEN'S REACTION SERIES

BOWEN'S REACTION SERIES BOWEN'S REACTION SERIES Purpose John J. Thomas Frequently, people cannot visualize the mineral associations that form the sequences of igneous rocks that you find in the earth's crust and what happens

More information

Amygdaloidal texture. Kimberlite. UNC sample. H-64 Rock type. amygdaloidal basalt Locality. unknown

Amygdaloidal texture. Kimberlite. UNC sample. H-64 Rock type. amygdaloidal basalt Locality. unknown Amygdaloidal texture H-64 amygdaloidal basalt unknown The oval feature in this photomicrograph is an amygdule: a formerly open vesicle which has been filled with a secondary mineral(s) precipitated from

More information

Drillhole Log Units Meters

Drillhole Log Units Meters iresources Ltd Drillhole Log Units Meters Q-Gold (Ontario) Ltd Province/State Co-ordinate System Grid/Property Hole Type Length Date Started Ontario UTM NAD83 Canada Zone 15 MG Grid Exploration hole 171.00

More information

Characteristics of Sedimentary Rocks

Characteristics of Sedimentary Rocks Characteristics of Sedimentary Rocks Deposited at the earth s surface by wind, water, glacier ice, or biochemical processes Typically deposited in strata (layers) under cool surface conditions. This is

More information

Chapter 2. Igneous Rocks

Chapter 2. Igneous Rocks Chapter 2 Igneous Rocks Most students find the definition of a mineral to be rather long and cumbersome. In contrast, the definition of a rock is short and sweet. A rock is any naturally occurring aggregate

More information

IF YOU BIT A ROCK Teacher Page Purpose: Background: Preparation: rock kit

IF YOU BIT A ROCK Teacher Page Purpose: Background: Preparation: rock kit IF YOU BIT A ROCK Teacher Page This activity has been modified from a lesson plan for meteorite education from NASA. It has been refitted for more common rocks. The web site for the original lesson plan,

More information

7) A clastic sedimentary rock composed of rounded to subrounded gravel is called a A) coal. B) shale. C) breccia.

7) A clastic sedimentary rock composed of rounded to subrounded gravel is called a A) coal. B) shale. C) breccia. Please read chapters 10 and 5 CHAPTER 5 Sedimentary Rocks 1) Sedimentary rocks A) form by compaction and cementation of loose sediment. B) are widespread on the continents and ocean floor. C) are common

More information

FIRST GRADE ROCKS 2 WEEKS LESSON PLANS AND ACTIVITIES

FIRST GRADE ROCKS 2 WEEKS LESSON PLANS AND ACTIVITIES FIRST GRADE ROCKS 2 WEEKS LESSON PLANS AND ACTIVITIES ROCK CYCLE OVERVIEW OF FIRST GRADE CHEMISTRY WEEK 1. PRE: Comparing solids, gases, liquids, and plasma. LAB: Exploring how states of matter can change.

More information

Clastic/Detrital Sedimentary Rocks. I.G.Kenyon

Clastic/Detrital Sedimentary Rocks. I.G.Kenyon Clastic/Detrital Sedimentary Rocks I.G.Kenyon Characteristics of Sedimentary Rocks Formed at or very close to the earth s surface Deposited in layers or beds - often horizontal Frequently contain fossils

More information

SEDIMENTARY ROCKS. Sedimentary rocks are formed near or at the surface of the earth.

SEDIMENTARY ROCKS. Sedimentary rocks are formed near or at the surface of the earth. SEDIMENTARY ROCKS Sedimentary rocks are formed near or at the surface of the earth. They are derived from preexisting source rocks. They are composed by sediments, this is material that has been weathered,

More information

The Geology of the Marginal Way, Ogunquit, Maine

The Geology of the Marginal Way, Ogunquit, Maine Geologic Site of the Month February, 2002 The Geology of the Marginal Way, Ogunquit, Maine 43 14 23.88 N, 70 35 18.36 W Text by Arthur M. Hussey II, Bowdoin College and Robert G. Marvinney,, Department

More information

EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE

EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE Rocks and Minerals I. OBJECTIVES One of the many ways to study Earth is by examining the rocks that make up its surface. Earth is a dynamic planet, with plate tectonics, water, wind, volcanoes, and mountains.

More information

Lecture Notes: Bill Engstrom Instructor Igneous Rocks GLG 101: Physical Geology

Lecture Notes: Bill Engstrom Instructor Igneous Rocks GLG 101: Physical Geology Lecture Notes: Bill Engstrom Instructor Igneous Rocks GLG 101: Physical Geology In our overview of the Earth, we found out that Earth s internal heat combined with other mechanisms causes rocks to melt

More information

How can you tell rocks apart?

How can you tell rocks apart? How can you tell rocks apart? Grade Range: 4-7 G.L.E Focus: 1.1.5 Time Budget: 1 1.5 hours WASL Vocabulary: Overview: Different rocks have different characteristics because of their minerals, the ways

More information

How Did These Ocean Features and Continental Margins Form?

How Did These Ocean Features and Continental Margins Form? 298 10.14 INVESTIGATION How Did These Ocean Features and Continental Margins Form? The terrain below contains various features on the seafloor, as well as parts of three continents. Some general observations

More information

Metamorphic Rocks Practice Questions and Answers Revised October 2007

Metamorphic Rocks Practice Questions and Answers Revised October 2007 Metamorphic Rocks Practice Questions and Answers Revised October 2007 1. Metamorphism is a that involves no melt phase. 2. The protolith of a metamorphic rock is the (a) sibling (b) brother (c) parent

More information

Atoms and Elements. Atoms: Learning Goals. Chapter 3. Atoms and Elements; Isotopes and Ions; Minerals and Rocks. Clicker 1. Chemistry Background?

Atoms and Elements. Atoms: Learning Goals. Chapter 3. Atoms and Elements; Isotopes and Ions; Minerals and Rocks. Clicker 1. Chemistry Background? Chapter 3 Atoms Atoms and Elements; Isotopes and Ions; Minerals and Rocks A Review of Chemistry: What geochemistry tells us Clicker 1 Chemistry Background? A. No HS or College Chemistry B. High School

More information

Unit 4: The Rock Cycle

Unit 4: The Rock Cycle Unit 4: The Rock Cycle Objective: E 3.1A Discriminate between igneous, metamorphic, and sedimentary rocks and describe the processes that change one kind of rock into another. E 3.1B Explain the relationship

More information

Rocks and Minerals Multiple Choice

Rocks and Minerals Multiple Choice Rocks and Minerals Multiple Choice 1. The basaltic bedrock of the oceanic crust is classified as (1) felsic, with a density of 2.7 g/cm3 (2) felsic, with a density of 3.0 g/cm3 (3) mafic, with a density

More information

Ride the Rock Cycle. Suggested Goals: Students will gain an understanding of how a rock can move through the different stages of the rock cycle.

Ride the Rock Cycle. Suggested Goals: Students will gain an understanding of how a rock can move through the different stages of the rock cycle. Illinois State Museum Geology Online http://geologyonline.museum.state.il.us Ride the Rock Cycle Grade Level: 5 6 Purpose: To teach students that the rock cycle, like the water cycle, has various stages

More information

Rocks and Minerals What is right under your feet?

Rocks and Minerals What is right under your feet? Rocks and Minerals What is right under your feet? Name: 1 Before you start What do you already know? What is the difference between a rock and a mineral? What are the three categories of rocks? 1. 2. 3.

More information

Regents Questions: Plate Tectonics

Regents Questions: Plate Tectonics Earth Science Regents Questions: Plate Tectonics Name: Date: Period: August 2013 Due Date: 17 Compared to the oceanic crust, the continental crust is (1) less dense and more basaltic (3) more dense and

More information

What are the controls for calcium carbonate distribution in marine sediments?

What are the controls for calcium carbonate distribution in marine sediments? Lecture 14 Marine Sediments (1) The CCD is: (a) the depth at which no carbonate secreting organisms can live (b) the depth at which seawater is supersaturated with respect to calcite (c) the depth at which

More information

Geologic Time. This page last updated on 08-Oct-2015

Geologic Time. This page last updated on 08-Oct-2015 Page 1 of 16 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Geologic Time This page last updated on 08-Oct-2015 From the beginning of this course, we have stated that the Earth is

More information

December 8, 2008. Visit www.ivanhoemines.com for pictures of the drill core and maps and sections of the new discovery.

December 8, 2008. Visit www.ivanhoemines.com for pictures of the drill core and maps and sections of the new discovery. December 8, 2008 Ivanhoe Mines Makes Another High-Grade Discovery of Gold and Copper at the Oyu Tolgoi Project in Mongolia Discovery Remains Open to Expansion in All Directions ULAANBAATAR, MONGOLIA John

More information

Drillhole Log Units Meters

Drillhole Log Units Meters iresources Ltd Drillhole Log Units Meters Q-Gold (Ontario) Ltd Province/State Co-ordinate System Grid/Property Hole Type Length Date Started Ontario UTM NAD83 Canada Zone 15 MG Grid Exploration hole 162.00

More information

Field Meeting Report: The Shelve Inlier, led by Bill Dean 17 th May 1987

Field Meeting Report: The Shelve Inlier, led by Bill Dean 17 th May 1987 ISSN 1750-855X (Print) ISSN 1750-8568 (Online) Field Meeting Report: The Shelve Inlier, led by Bill Dean 17 th May 1987 Susan Beale 1 BEALE, S. (1988). Field Meeting Report: The Shelve Inlier, led by Professor

More information

SECOND GRADE ROCKS 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE ROCKS 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE ROCKS 1 WEEK LESSON PLANS AND ACTIVITIES ROCK CYCLE OVERVIEW OF SECOND GRADE CHEMISTRY WEEK 1. PRE: Comparing the states of matter. LAB: Observing the elements on the periodic table. POST:

More information

What are Rocks??? Rocks are the most common material on Earth. They are a naturally occurring collection of one or more minerals.

What are Rocks??? Rocks are the most common material on Earth. They are a naturally occurring collection of one or more minerals. The Rock Cycle What are Rocks??? Rocks are the most common material on Earth. They are a naturally occurring collection of one or more minerals. The Rock Cycle a cycle that continuously forms and changes

More information

Rocks and Plate Tectonics

Rocks and Plate Tectonics Name: Class: _ Date: _ Rocks and Plate Tectonics Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is a naturally occurring, solid mass of mineral or

More information

Continental Drift. Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on:

Continental Drift. Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on: Plate Tectonics and Continental Drift Continental Drift Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on: Similarities in shorelines

More information

Rock Identification. Introduction

Rock Identification. Introduction Introduction Rock Identification In our everyday lives, we often find confusion between the terms rock and mineral. People will sometimes use the terms interchangeably since they are both found in the

More information

89.215 - FORENSIC GEOLOGY GEOLOGIC TIME AND GEOLOGIC MAPS

89.215 - FORENSIC GEOLOGY GEOLOGIC TIME AND GEOLOGIC MAPS NAME 89.215 - FORENSIC GEOLOGY GEOLOGIC TIME AND GEOLOGIC MAPS I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in

More information

Three Main Types of Rocks Igneous Rocks. Sedimentary Rocks Metamorphic Rocks. Made by Liesl at The Homeschool Den

Three Main Types of Rocks Igneous Rocks. Sedimentary Rocks Metamorphic Rocks. Made by Liesl at The Homeschool Den Three Main Types of Rocks Igneous Rocks Sedimentary Rocks Metamorphic Rocks Igneous Rocks Above and below: Basalt Above: Gabbro Above: Pumice Above: Basalt, Giant Causeway in Ireland Above: Obsidian Above:

More information

Topic: Rocks, Minerals and Soil Duration: Grade Level: 6 9 days

Topic: Rocks, Minerals and Soil Duration: Grade Level: 6 9 days 6 th Grade Science Unit: Sedimentary Rocks Unit Snapshot Topic: Rocks, Minerals and Soil Duration: Grade Level: 6 9 days Summary The following activities allow students to focus on the study of rocks.

More information

Geology 200 Getting Started...

Geology 200 Getting Started... Geology 200 Getting Started... Name This handout should be completed and become a part of your Notebook for this course. This handout is intended to be a review of some important ideas from your introductory

More information

The Carolina Slate Belt

The Carolina Slate Belt Chapter 2 The Carolina Slate Belt John J. W. Rogers The hilly Piedmont of North Carolina separates the flat Coastal Plain and Triassic-Jurassic rift basins from the mountainous Blue Ridge and Appalachians

More information

Introduction and Origin of the Earth

Introduction and Origin of the Earth Page 1 of 5 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Introduction and Origin of the Earth This page last updated on 30-Jul-2015 Geology, What is it? Geology is the study of

More information

IGNEOUS, SEDIMENTARY & METAMORPHIC ROCKS

IGNEOUS, SEDIMENTARY & METAMORPHIC ROCKS IGNEOUS, SEDIMENTARY & METAMORPHIC ROCKS the appearance of a rock is determined by its mineralogy and its texture (Gefüge) mineralogy relative proportions of the different minerals texture size and shape

More information

PICTOU PROPERTY : ATLIN GOLD CAMP

PICTOU PROPERTY : ATLIN GOLD CAMP PICTOU PROPERTY : ATLIN GOLD CAMP EXECUTIVE SUMMARY The Pictou Property in the Atlin Gold Camp ( AGC ) is an example of a Motherlode- Bonanza, lode gold, quartz vein exploration target in the northern

More information

Viscosity experiments: physical controls and implications for volcanic hazards. Ben Edwards Dept of Geology, Dickinson College

Viscosity experiments: physical controls and implications for volcanic hazards. Ben Edwards Dept of Geology, Dickinson College Viscosity experiments: physical controls and implications for volcanic hazards Student Name: Ben Edwards Dept of Geology, Dickinson College OBJECTIVES OF LAB Learn about the rheological property called

More information

Sediment and Sedimentary Rocks

Sediment and Sedimentary Rocks Page 1 of 10 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Sediment and Sedimentary Rocks This page last updated on 15-Sep-2015 Sedimentary Rocks Rivers, oceans, winds, and rain

More information

REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES)

REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES) REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES) (See also General Regulations) The Postgraduate Diploma in Earth Sciences is a postgraduate diploma awarded for the satisfactory completion

More information

Magma Composition and Igneous Rocks By Dr. James Brophy, Indiana University

Magma Composition and Igneous Rocks By Dr. James Brophy, Indiana University Magma Composition and Igneous Rocks By Dr. James Brophy, Indiana University Introduction In the following chapters we will find that nearly all of the varied aspects of volcanism are either directly or

More information

For personal use only

For personal use only January, 202 Silver Swan Group Limited December 20 Quarterly Activities Report HIGHLIGHTS STAKEWELL Gold Project: Drilling intersected high and low grade gold mineralisation at Kohinoor, including surface

More information

THE COMPOSITION OF EARTH: ROCKS AND MINERALS. Keywords: petrology, petrography, mineralogy, rock classification, crust

THE COMPOSITION OF EARTH: ROCKS AND MINERALS. Keywords: petrology, petrography, mineralogy, rock classification, crust THE COMPOSITION OF EARTH: ROCKS AND MINERALS Ruth Siddall University College London, UK Keywords: petrology, petrography, mineralogy, rock classification, crust Contents 1. Introduction 2. Minerals 2.1.

More information

Geologic time and dating. Geologic time refers to the ages relevant to Earth s history

Geologic time and dating. Geologic time refers to the ages relevant to Earth s history Geologic time and dating Most figures and tables contained here are from course text: Understanding Earth Fourth Edition by Frank Press, Raymond Siever, John Grotzinger, and Thomas H. Jordan Geologic time

More information

Porphyry Copper Potential Confirmed By Field Reconnaissance in Peru

Porphyry Copper Potential Confirmed By Field Reconnaissance in Peru 4 December 2013 Porphyry Copper Potential Confirmed By Field Reconnaissance in Peru Highlights Experienced Consultant Geologist with South American Copper-Gold experience engaged Field reconnaissance by

More information

ROCKS OF THE GRAND CANYON BACKGROUND INFORMATION FOR DOCENTS

ROCKS OF THE GRAND CANYON BACKGROUND INFORMATION FOR DOCENTS ROCKS OF THE GRAND CANYON BACKGROUND INFORMATION FOR DOCENTS There are three distinct types of rock. Igneous rocks. Igneous comes from the Greek word for fire. It is so hot deep in the Earth that rocks

More information

Chapter Overview. Bathymetry. Measuring Bathymetry. Echo Sounding Record. Measuring Bathymetry. CHAPTER 3 Marine Provinces

Chapter Overview. Bathymetry. Measuring Bathymetry. Echo Sounding Record. Measuring Bathymetry. CHAPTER 3 Marine Provinces Chapter Overview CHAPTER 3 Marine Provinces The study of bathymetry charts ocean depths and ocean floor topography. Echo sounding and satellites are efficient bathymetric tools. Most ocean floor features

More information

Introduction to Classification of Rocks Using the Building Stones of the Brooklyn College Campus

Introduction to Classification of Rocks Using the Building Stones of the Brooklyn College Campus Rocks and Stones EESC 1101 Introduction to Classification of Rocks Using the Building Stones of the Brooklyn College Campus Rocks and stones are not exactly the same thing: a rock is a natural material

More information

Volcano in the lab: a wax volcano in action: teacher s notes

Volcano in the lab: a wax volcano in action: teacher s notes Volcano in the lab: a wax volcano in action: teacher s notes Level This activity is designed for students aged 11-14, as a simple demonstration of igneous activity. English National Curriculum reference

More information

College of Science and Health ENVIRONMENTAL SCIENCE & GEOGRAPHY Course Outline

College of Science and Health ENVIRONMENTAL SCIENCE & GEOGRAPHY Course Outline College of Science and Health ENVIRONMENTAL SCIENCE & GEOGRAPHY Course Outline 1. TITLE OF COURSE AND COURSE NUMBER: General Geology ENV 115, 4 credits 2. DESCRIPTION OF THE COURSE: Includes the study

More information

IGNEOUS ROCKS. Teacher Guide including Lesson Plans, Student Readers, and More Information

IGNEOUS ROCKS. Teacher Guide including Lesson Plans, Student Readers, and More Information IGNEOUS ROCKS Teacher Guide including Lesson Plans, Student Readers, and More Information Lesson 1 - Rock Cycle Lesson 2 - Formation of Igneous Rocks Lesson 3 - Classification of Igneous Rocks Lesson 4

More information

Plate Tectonics. Introduction. Boundaries between crustal plates

Plate Tectonics. Introduction. Boundaries between crustal plates Plate Tectonics KEY WORDS: continental drift, seafloor spreading, plate tectonics, mid ocean ridge (MOR) system, spreading center, rise, divergent plate boundary, subduction zone, convergent plate boundary,

More information

Key concepts of rocks and soil

Key concepts of rocks and soil Rocks and soil Introduction It is by no means necessary to be a geological expert to implement a worthwhile study of rocks and soil at primary school level. Rocks and soil are not difficult to collect,

More information

The rock cycle. Introduction. What are rocks?

The rock cycle. Introduction. What are rocks? The rock cycle This Revision looks at the three types of rock: sedimentary, igneous and metamorphic. It looks at how they are formed, the weathering of rocks and the way one form of rock turns into another,

More information

1. Michigan Geological History Presentation (Michigan Natural Resources)

1. Michigan Geological History Presentation (Michigan Natural Resources) 1. Michigan Geological History Presentation (Michigan Natural Resources) The Michigan Geological History Presentation provides an overview of the approximately 3 billion years of Earth Processes that the

More information

Earth Science Chapter 14 Section 2 Review

Earth Science Chapter 14 Section 2 Review Name: Class: Date: Earth Science Chapter 14 Section Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is NOT one of the three

More information

7.2.4 Seismic velocity, attenuation and rock properties

7.2.4 Seismic velocity, attenuation and rock properties 7.2.4 Seismic velocity, attenuation and rock properties Rock properties that affect seismic velocity Porosity Lithification Pressure Fluid saturation Velocity in unconsolidated near surface soils (the

More information

MAJOR LANDFORMS IN VOLCANIC REGIONS

MAJOR LANDFORMS IN VOLCANIC REGIONS MAJOR LANDFORMS IN VOLCANIC REGIONS Volcanism is not randomly distributed over the world. It is concentrated near plate boundaries where plate subduction or seafloor spreading takes place. Other occurrences

More information

14.2 Theory 14.2.1 Compton Scattering and Photo-Electric Absorption

14.2 Theory 14.2.1 Compton Scattering and Photo-Electric Absorption 14. THE LITHO-DENSITY LOG 14.1 Introduction The litho-density log is a new form of the formation density log with added features. It is typified by Schlumberger s Litho-Density Tool (LDT). These tools

More information

Geology Laboratory: Metamorphic Rocks

Geology Laboratory: Metamorphic Rocks OBJECTIVES Learn to identify metamorphic rocks by structure and mineralogy. Identify major minerals contained within a metamorphic rock. Distinguish between foliated and non-foliated metamorphic rocks.

More information

CATACLYSMIC ERUPTIONS

CATACLYSMIC ERUPTIONS CATACLYSMIC ERUPTIONS The really big ones! This figure compares the size of some recent, well-known eruptions. Note how small the eruptions of Mount St. Helens and even Vesuvius are compared to Katmai,

More information

Exploring How Rocks Are Formed

Exploring How Rocks Are Formed Exploring How Rocks Are Formed Grade Level: 3-4 Purpose and Goals: In this lesson, students are introduced to the three types of rocks: igneous, sedimentary, and metamorphic. After receiving background

More information

O.Jagoutz. We know from ~ 20.000 borehole measurements that the Earth continuously emits ~ 44TW

O.Jagoutz. We know from ~ 20.000 borehole measurements that the Earth continuously emits ~ 44TW Lecture Notes 12.001 Metamorphic rocks O.Jagoutz Metamorphism Metamorphism describes the changes a rock undergoes with changing P, T and composition (X). For simplistic reasons we will focus here in the

More information

Queensland Mining Corporation L I M I T E D. Maiden JORC Resources Estimate for Horseshoe Copper Deposit, Duck Creek, South Cloncurry District

Queensland Mining Corporation L I M I T E D. Maiden JORC Resources Estimate for Horseshoe Copper Deposit, Duck Creek, South Cloncurry District ASX Release 12 October 2012 Maiden JORC Resources Estimate for Horseshoe Copper Deposit, Duck Creek, South Cloncurry District Total mineral resource at Duck Creek Project area of 960,000t @ 1.47% Cu (0.2%

More information

Sedimentary Rocks. Find and take out 11B-15B and #1 From Egg Carton

Sedimentary Rocks. Find and take out 11B-15B and #1 From Egg Carton Sedimentary Rocks Find and take out 11B-15B and #1 From Egg Carton Erosion Erosion is a natural process where rocks and soil are Broken and Moved We will focus on 4 types of erosion; Wind, Rain, Ice and

More information

Rapid Changes in Earth s Surface

Rapid Changes in Earth s Surface TEKS investigate rapid changes in Earth s surface such as volcanic eruptions, earthquakes, and landslides Rapid Changes in Earth s Surface Constant Changes Earth s surface is constantly changing. Wind,

More information

Sedimentary Rocks, Depositional Environments and Stratigraphy

Sedimentary Rocks, Depositional Environments and Stratigraphy Sedimentary Rocks, Depositional Environments and Stratigraphy The Nature of Sedimentary Rocks Sedimentary rocks are composed of: Fragments of other rocks (detrital or clastic) Chemical precipitates Organic

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION SGS MINERALS SERVICES TECHNICAL PAPER 2006-01 2006 DYE PENETRATION TECHNIQUES USED TO DETERMINE HEAP LEACH POTENTIAL OF A TELLURIDE BEARING CRIPPLE CREEK BRECCIA ORE GEOFFREY R. LANE SGS: MICHAEL JAHRAUS

More information

THE ROCKS OF POINT LOBOS

THE ROCKS OF POINT LOBOS THE ROCKS OF POINT LOBOS I Introduction II Igneous rocks a) Granodiorite Formal name... 4 Characteristics... 4 Distribution... 5 Origin... 5 Common Features in the granodiorite Phenocrysts.... 6 Veins...

More information

Exploring the Volcanic, Alteration, and Fluvio-Lacustrine History of Early Mars at the Jezero Crater Paleolake

Exploring the Volcanic, Alteration, and Fluvio-Lacustrine History of Early Mars at the Jezero Crater Paleolake Exploring the Volcanic, Alteration, and Fluvio-Lacustrine History of Early Mars at the Jezero Crater Paleolake Tim Goudge 1, Bethany Ehlmann 2, Caleb Fassett 3, Jim Head 1, Jack Mustard 1, Nicolas Mangold

More information