Lecture 2: Memory Systems

Size: px
Start display at page:

Download "Lecture 2: Memory Systems"

Transcription

1 Lecture 2: Memory Systems Basic components Memory hierarchy Cache memory Virtual Memory Zebo Peng, IDA, LiTH Internal and External Memories CPU Date transfer Control Main Memory Control Data transfer Secondary Memory Zebo Peng, IDA, LiTH 2

2 Main Memory Model A word (8, 6, 32, or 64 bits) Memory Control Unit 3 2 address 0 a bit Read/write control MBR (in CPU) Address selection MAR (in CPU) Zebo Peng, IDA, LiTH 3 Memory Characteristics The most important characteristics of a memory: speed as fast as possible; size as large as possible; cost reasonable price. They are determined by the technology used for implementation. Your personal library Zebo Peng, IDA, LiTH 4 2

3 Memory Access Bottleneck CPU Quantitative measurement of the capacity of the bottleneck is the Memory Bandwidth Memory Zebo Peng, IDA, LiTH 5 Memory Bandwidth Memory bandwidth denotes the amount of data that can be accessed from a memory per second: M-Bandwidth = amount of data per access memory cycle time Ex. MCT = 00 nano second and 4 bytes (a word) per access: M-Bandwidth = 40 mega bytes per second. There are two basic techniques to increase the bandwidth of a given memory: Reduce the memory cycle time Expensive Memory size limitation Divide the memory into several banks, each of which has its own control unit. Zebo Peng, IDA, LiTH 6 3

4 Memory Banks Interleaving placement of program and data Control Unit Control Unit Control Unit Control Unit CPU Zebo Peng, IDA, LiTH 7 Lecture 2: Memory Systems Basic components Memory hierarchy Cache memory Virtual Memory Zebo Peng, IDA, LiTH 8 4

5 Motivation What do we need? A memory to store very large programs and to work at a speed comparable to that of the CPU. The reality is: The larger a memory, the slower it will be; The faster a memory, the greater the cost per bit. A solution: To build a composite memory system which combines a small and fast memory with a large and slow memory, and behaves, most of the time, like a large and fast memory. This two-level principle can be extended to a hierarchy of many levels. Zebo Peng, IDA, LiTH 9 CPU Registers Cache Memory Hierarchy Main Memory Secondary Memory of direct access type Secondary Memory of archive type Zebo Peng, IDA, LiTH 0 5

6 Access time example -0 ns 0-50 ns ns 5-00 ms (for 4KB) s (for 8KB) CPU Registers Cache Main Memory Secondary Memory of direct access type Secondary Memory of archive type Memory Hierarchy Capacity example K 4-256M 40G/unit 50M/tape As one goes down the hierarchy, the following occur: Decreasing cost/bit. Increasing capacity. Increasing access time. Decreasing frequency of access by the CPU. Zebo Peng, IDA, LiTH Lecture 2: Memory Systems Basic components Memory hierarchy Cache memory Virtual Memory Zebo Peng, IDA, LiTH 2 6

7 Mismatch of CPU and MM Speeds Cycle Time (nano second) Speed Gap (ca. one order of magnitude, i.e., 0 times) Zebo Peng, IDA, LiTH 3 Cache Memory CPU addresses Main Memory addresses instructions and data instructions and data Cache addresses instructions and data A cache is a very fast memory which is put between the main memory and the CPU, and used to hold segments of program and data of the main memory. Zebo Peng, IDA, LiTH 4 7

8 Zebo s Cache Memory Model Personal library for a high-speed reader Storage cells Cache Memory controller A computer is a predictable and iterative reader, therefore high cache hit ratio, e.g., 96%, is achievable, even with a relatively small cache. Zebo Peng, IDA, LiTH 5 Cache Memory Features It is transparent to the programmers. It is only a small part of the program/data in the main memory which has its copy in the cache (e.g., 8KB cache with 8MB memory). If the CPU wants to access program/data not in the cache (called a cache miss), the relevant block of the main memory will be copied into the cache. The intermediate-future memory access will usually refer to the same word or words in the neighborhood, and will not have to involve the main memory. This property of program executions is denoted as locality of reference. Zebo Peng, IDA, LiTH 6 8

9 Locality of Reference Temporal locality: If an item is referenced, it will tend to be referenced again soon. Spatial locality: If an item is referenced, items whose addresses are close by will tend to be referenced soon. This access pattern is referred as locality of reference principle, which is an intrinsic features of the von Neumann architecture: Sequential instruction storage. Loops and iterations (e.g., subroutine calls). Sequential data storage (e.g., array). Zebo Peng, IDA, LiTH 7 Layered Memory Performance Average Access Time P hit x T cache_access + ( P hit ) x (T mm_access + T cache_access ) x Block_size + T checking where P hit = the probability of cache hit, cache hit ratio; T cache_access = cache access time; T mm_access = main memory access time; Block_size = number of words in a cache block; and T checking = the time needed to check for cache hit or miss. Ex. A computer has 8MB MM with 00 ns access time, 8KB cache with 0 ns access time, BS=4, and T checking = 2. ns, P hit = 0.97, AAT will be 25 ns. Zebo Peng, IDA, LiTH 8 9

10 Cache Design The size and nature of the copied block must be carefully designed, as well as the algorithm to decide which block to be removed from the cache when it is full: Cache block size (line size). Total cache size. Mapping function. Replacement method. Write policy. Numbers of caches: Single, two-level, or three-level cache. Unified vs. split cache. Zebo Peng, IDA, LiTH 9 Split Data and Instruction Caches? Split caches (Harvard Architectures): + Competition for the cache between instruction processing and execution units is eliminated. + Instruction fetch can proceed in parallel with memory access from the CPU for operands. One may be overloaded while the other is under utilized. Unified caches: + Better balance the load between instruction and data fetches depending on the dynamics of the program execution. + Design and implementation are cheaper. Lower performance. Zebo Peng, IDA, LiTH 20 0

11 Direct Mapping Cache Direct mapping - Each block of the main memory is mapped into a fixed cache slot. 2 2 Storage cells 2 Cache Memory controller Zebo Peng, IDA, LiTH 2 Direct Mapping Cache Example We have a 0,000-word MM and a 00-word cache. 0 memory cells are grouped into a block. Tag Slot Word Memory address = Tag Slot No ,000-Word Memory 00-Word Cache Zebo Peng, IDA, LiTH 22

12 Direct Mapping Pros & Cons Simple to implement and therefore inexpensive. Fixed location for blocks. If a program accesses 2 blocks that map to the same cache slot repeatedly, cache miss rate is very high. 2 2 Storage cells 2 Cache Memory controller Zebo Peng, IDA, LiTH 23 Associative Mapping A main memory block can be loaded into any slot of the cache. To determine if a block is in the cache, a mechanism is needed to simultaneously examine every slot s tag ,000-Word Memory Tag 006, 007 associative memory example Tag (3 ps) Word Cache Zebo Peng, IDA, LiTH 24 2

13 Fully Associative Organization Zebo Peng, IDA, LiTH 25 Set Associative Organization The cache is divided into a number of sets (K). Each set contains a number of slots (W). A given block maps to any slot in a given set. e.g. block i can be in any slot of set j. For example, 2 slots per set (W = 2): 2-way associative mapping. A given block can be in one of 2 slots. Direct mapping: W = (no alternative). Fully associative: K = (W = total number of all slots in the cache, all mappings possible). Zebo Peng, IDA, LiTH 26 3

14 Replacement Algorithms With direct mapping, it is no need. With associative mapping, a replacement algorithm is needed in order to determine which block to replace: First-in-first-out (FIFO). Least-recently used (LRU) - replace the block that has been in the cache longest with not reference to it. Lest-frequently used (LFU) - replace the block that has experienced the fewest references. Random. Use info 54 5:55 Tag Zebo Peng, IDA, LiTH 27 The problem: Write Policy How to keep cache content and main memory content consistent without losing too much performance? Write through: All write operations are passed to main memory: If the addressed location is currently in the cache, the cache is updated so that it is coherent with the main memory. For writes, the processor always slows down to main memory speed. Since the percentage of writes is small (ca. 5%), this scheme doesn t lead to large performance reduction. Zebo Peng, IDA, LiTH 28 4

15 Write through with buffered write: Write Policy (Cont d) The same as write-through, but instead of slowing the processor down by writing directly to main memory, the write address and data are stored in a high-speed write buffer; the write buffer transfers data to main memory while the processor continues its task. Higher speed, but more complex hardware. Write back: Write operations update only the cache memory which is not kept coherent with main memory. When the slot is replaced from the cache, its content has to be copied back to memory. Good performance (usually several writes are performed on a cache block before it is replaced), but more complex hardware is needed. Cache coherence problems are very complex and difficult to solve in multiprocessor systems (to be discussed later)! Zebo Peng, IDA, LiTH 29 Cache Architecture Examples Intel (introduced 989) a single on-chip cache of 8 Kbytes line size: 6 bytes 4-way set associative organization Intel Pentium (introduced 993) two on-chip caches, one for data and one for instructions each cache: 8 Kbytes line size: 32 bytes 2-way set associative organization IBM PowerPC 620 (introduced 995) two on-chip caches, one for data and one for instructions each cache: 32 Kbytes line size: 64 bytes 8-way set associative organization Zebo Peng, IDA, LiTH 30 5

16 Cache Architecture Examples (Cont d) Intel Itanium 2 (introduced 2002) three levels of cache: L L2 L3 Contents Split D and I Unified D + I Unified D + I Size 6 Kbytes each 256 Kbytes 3 Mbytes Line size 64 bytes 28 bytes 28 bytes Associativity 4 way 8 way 2 way Access time cycle 5-7 cycles 4-7 cycles Store policy Write-through Write-back Write-back Zebo Peng, IDA, LiTH 3 Lecture 2: Memory Systems Basic components Memory hierarchy Cache memory Virtual Memory Zebo Peng, IDA, LiTH 32 6

17 Motivation for Virtual Memory The physical main memory (RAM) is very limited in space. It may not be big enough to store all the executing programs at the same time. Some program may need memory larger than the main memory size, but not all the program need to be maintained in the main memory at the same time. Virtual Memory takes advantage of the fact that at any given instant of time, an executing program needs only a fraction of the memory that the whole program occupies. The basic idea: Load only pieces of each executing program which are currently needed. Zebo Peng, IDA, LiTH 33 Paging Divide programs (processes) into equal sized, small blocks, called pages. Divide the primary memory into equal sized, small blocks called page frames. Allocate the required number of page frames to a program. A program does not require continuous page frames! The operating system (OS) is responsible for: Maintaining a list of free frames. Using a page table to keep track of the mapping between pages and page frames. Zebo Peng, IDA, LiTH 34 7

18 Logical and Physical Addresses Implementation of the page-tables: Main memory slow since an extra memory access is needed Separate registers fast but expensive. Cache. Zebo Peng, IDA, LiTH 35 Objective of Virtual Memory To provide the user/programmer with a much bigger memory than the main memory with the help of the operative system. Virtual memory size >> main memory size. Program addresses 0000 MM addresses Secondary memory 5000 Zebo Peng, IDA, LiTH 36 8

19 Page Fault When accessing a VM page which is not in the main memory, a page fault occurs. The page must then be loaded from the secondary memory into the main memory by the OS. Virtual Address Page Number Offset Page Map Page Fault (Interrupt to OS) Pages in MM Zebo Peng, IDA, LiTH 37 Page Replacement When a page fault occurs and all page frames are occupied, one of them must be replaced. If the replaced page has been modified during the time it resides in the main memory, the updated version should be written back to the secondary memory. Our wish is to replace the page which will not be accessed in the future for the longest amount of time. Problem We don t know exactly what will happen in the future. Solution We predict the future by studying the access patterns up till now ( learn from history ). Zebo Peng, IDA, LiTH 38 9

20 Replacement Algorithms FIFO (First In First Out) To replace the one in MM the longest of time. LRU (Least Recently Used) To replace the one that has not be accessed the longest time. LFU (Least Frequently Used) To replace the one that has the smallest number of access during the latest time period. The replacement by random (used for Cache) is not used for VM! Zebo Peng, IDA, LiTH 39 Summary A memory system has to store very large programs and a lot of data and still provide fast access. No single type of memory can provide all the need of a computer system. Usually several different storage mechanisms are organized in a layer hierarchy. Cache is a hardware solution to improve memory access which is transparent to the programmers. Virtual memory provides a much larger address space than the available physical space with the help of the OS (software solution). The layer structure works very well due to the locality of reference principle. Zebo Peng, IDA, LiTH 40 20

361 Computer Architecture Lecture 14: Cache Memory

361 Computer Architecture Lecture 14: Cache Memory 1 361 Computer Architecture Lecture 14 Memory cache.1 The Motivation for s Memory System Processor DRAM Motivation Large memories (DRAM) are slow Small memories (SRAM) are fast Make the average access

More information

Computer Organization and Architecture. Characteristics of Memory Systems. Chapter 4 Cache Memory. Location CPU Registers and control unit memory

Computer Organization and Architecture. Characteristics of Memory Systems. Chapter 4 Cache Memory. Location CPU Registers and control unit memory Computer Organization and Architecture Chapter 4 Cache Memory Characteristics of Memory Systems Note: Appendix 4A will not be covered in class, but the material is interesting reading and may be used in

More information

Operating Systems. Virtual Memory

Operating Systems. Virtual Memory Operating Systems Virtual Memory Virtual Memory Topics. Memory Hierarchy. Why Virtual Memory. Virtual Memory Issues. Virtual Memory Solutions. Locality of Reference. Virtual Memory with Segmentation. Page

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Chapter 2: Computer-System Structures. Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture

Chapter 2: Computer-System Structures. Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture Chapter 2: Computer-System Structures Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture Operating System Concepts 2.1 Computer-System Architecture

More information

The Quest for Speed - Memory. Cache Memory. A Solution: Memory Hierarchy. Memory Hierarchy

The Quest for Speed - Memory. Cache Memory. A Solution: Memory Hierarchy. Memory Hierarchy The Quest for Speed - Memory Cache Memory CSE 4, Spring 25 Computer Systems http://www.cs.washington.edu/4 If all memory accesses (IF/lw/sw) accessed main memory, programs would run 20 times slower And

More information

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 412, University of Maryland. Guest lecturer: David Hovemeyer.

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 412, University of Maryland. Guest lecturer: David Hovemeyer. Guest lecturer: David Hovemeyer November 15, 2004 The memory hierarchy Red = Level Access time Capacity Features Registers nanoseconds 100s of bytes fixed Cache nanoseconds 1-2 MB fixed RAM nanoseconds

More information

Secondary Storage. Any modern computer system will incorporate (at least) two levels of storage: magnetic disk/optical devices/tape systems

Secondary Storage. Any modern computer system will incorporate (at least) two levels of storage: magnetic disk/optical devices/tape systems 1 Any modern computer system will incorporate (at least) two levels of storage: primary storage: typical capacity cost per MB $3. typical access time burst transfer rate?? secondary storage: typical capacity

More information

The Classical Architecture. Storage 1 / 36

The Classical Architecture. Storage 1 / 36 1 / 36 The Problem Application Data? Filesystem Logical Drive Physical Drive 2 / 36 Requirements There are different classes of requirements: Data Independence application is shielded from physical storage

More information

Computer Architecture

Computer Architecture Cache Memory Gábor Horváth 2016. április 27. Budapest associate professor BUTE Dept. Of Networked Systems and Services ghorvath@hit.bme.hu It is the memory,... The memory is a serious bottleneck of Neumann

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

A3 Computer Architecture

A3 Computer Architecture A3 Computer Architecture Engineering Science 3rd year A3 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/3co Michaelmas 2000 1 / 1 6. Stacks, Subroutines, and Memory

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 11 Memory Management Computer Architecture Part 11 page 1 of 44 Prof. Dr. Uwe Brinkschulte, M.Sc. Benjamin

More information

COMPUTER HARDWARE. Input- Output and Communication Memory Systems

COMPUTER HARDWARE. Input- Output and Communication Memory Systems COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)

More information

The Big Picture. Cache Memory CSE 675.02. Memory Hierarchy (1/3) Disk

The Big Picture. Cache Memory CSE 675.02. Memory Hierarchy (1/3) Disk The Big Picture Cache Memory CSE 5.2 Computer Processor Memory (active) (passive) Control (where ( brain ) programs, Datapath data live ( brawn ) when running) Devices Input Output Keyboard, Mouse Disk,

More information

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access?

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access? ECE337 / CS341, Fall 2005 Introduction to Computer Architecture and Organization Instructor: Victor Manuel Murray Herrera Date assigned: 09/19/05, 05:00 PM Due back: 09/30/05, 8:00 AM Homework # 2 Solutions

More information

An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008

An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008 An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008 Computer Science the study of algorithms, including Their formal and mathematical properties Their hardware realizations

More information

Computer Systems Structure Main Memory Organization

Computer Systems Structure Main Memory Organization Computer Systems Structure Main Memory Organization Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Storage/Memory

More information

Price/performance Modern Memory Hierarchy

Price/performance Modern Memory Hierarchy Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion

More information

COS 318: Operating Systems. Virtual Memory and Address Translation

COS 318: Operating Systems. Virtual Memory and Address Translation COS 318: Operating Systems Virtual Memory and Address Translation Today s Topics Midterm Results Virtual Memory Virtualization Protection Address Translation Base and bound Segmentation Paging Translation

More information

Solid State Drive Architecture

Solid State Drive Architecture Solid State Drive Architecture A comparison and evaluation of data storage mediums Tyler Thierolf Justin Uriarte Outline Introduction Storage Device as Limiting Factor Terminology Internals Interface Architecture

More information

Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. adiaz@cinvestav.mx. MemoryHierarchy- 1

Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. adiaz@cinvestav.mx. MemoryHierarchy- 1 Hierarchy Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN adiaz@cinvestav.mx Hierarchy- 1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor

More information

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging

Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging Memory Management Outline Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging 1 Background Memory is a large array of bytes memory and registers are only storage CPU can

More information

Data Storage - I: Memory Hierarchies & Disks

Data Storage - I: Memory Hierarchies & Disks Data Storage - I: Memory Hierarchies & Disks W7-C, Spring 2005 Updated by M. Naci Akkøk, 27.02.2004 and 23.02.2005, based upon slides by Pål Halvorsen, 11.3.2002. Contains slides from: Hector Garcia-Molina,

More information

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011 SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications Jürgen Primsch, SAP AG July 2011 Why In-Memory? Information at the Speed of Thought Imagine access to business data,

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Bindel, Spring 2010 Applications of Parallel Computers (CS 5220) Week 1: Wednesday, Jan 27

Bindel, Spring 2010 Applications of Parallel Computers (CS 5220) Week 1: Wednesday, Jan 27 Logistics Week 1: Wednesday, Jan 27 Because of overcrowding, we will be changing to a new room on Monday (Snee 1120). Accounts on the class cluster (crocus.csuglab.cornell.edu) will be available next week.

More information

Record Storage and Primary File Organization

Record Storage and Primary File Organization Record Storage and Primary File Organization 1 C H A P T E R 4 Contents Introduction Secondary Storage Devices Buffering of Blocks Placing File Records on Disk Operations on Files Files of Unordered Records

More information

18-548/15-548 Associativity 9/16/98. 7 Associativity. 18-548/15-548 Memory System Architecture Philip Koopman September 16, 1998

18-548/15-548 Associativity 9/16/98. 7 Associativity. 18-548/15-548 Memory System Architecture Philip Koopman September 16, 1998 7 Associativity 18-548/15-548 Memory System Architecture Philip Koopman September 16, 1998 Required Reading: Cragon pg. 166-174 Assignments By next class read about data management policies: Cragon 2.2.4-2.2.6,

More information

Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat

Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat Why Computers Are Getting Slower The traditional approach better performance Why computers are

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization

More information

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

More information

We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -

We r e going to play Final (exam) Jeopardy! Answers: Questions: - 1 - . (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)

More information

CS 6290 I/O and Storage. Milos Prvulovic

CS 6290 I/O and Storage. Milos Prvulovic CS 6290 I/O and Storage Milos Prvulovic Storage Systems I/O performance (bandwidth, latency) Bandwidth improving, but not as fast as CPU Latency improving very slowly Consequently, by Amdahl s Law: fraction

More information

The Orca Chip... Heart of IBM s RISC System/6000 Value Servers

The Orca Chip... Heart of IBM s RISC System/6000 Value Servers The Orca Chip... Heart of IBM s RISC System/6000 Value Servers Ravi Arimilli IBM RISC System/6000 Division 1 Agenda. Server Background. Cache Heirarchy Performance Study. RS/6000 Value Server System Structure.

More information

Board Notes on Virtual Memory

Board Notes on Virtual Memory Board Notes on Virtual Memory Part A: Why Virtual Memory? - Letʼs user program size exceed the size of the physical address space - Supports protection o Donʼt know which program might share memory at

More information

Lecture 17: Virtual Memory II. Goals of virtual memory

Lecture 17: Virtual Memory II. Goals of virtual memory Lecture 17: Virtual Memory II Last Lecture: Introduction to virtual memory Today Review and continue virtual memory discussion Lecture 17 1 Goals of virtual memory Make it appear as if each process has:

More information

OPERATING SYSTEM - VIRTUAL MEMORY

OPERATING SYSTEM - VIRTUAL MEMORY OPERATING SYSTEM - VIRTUAL MEMORY http://www.tutorialspoint.com/operating_system/os_virtual_memory.htm Copyright tutorialspoint.com A computer can address more memory than the amount physically installed

More information

Concept of Cache in web proxies

Concept of Cache in web proxies Concept of Cache in web proxies Chan Kit Wai and Somasundaram Meiyappan 1. Introduction Caching is an effective performance enhancing technique that has been used in computer systems for decades. However,

More information

I/O Management. General Computer Architecture. Goals for I/O. Levels of I/O. Naming. I/O Management. COMP755 Advanced Operating Systems 1

I/O Management. General Computer Architecture. Goals for I/O. Levels of I/O. Naming. I/O Management. COMP755 Advanced Operating Systems 1 General Computer Architecture I/O Management COMP755 Advanced Operating Systems Goals for I/O Users should access all devices in a uniform manner. Devices should be named in a uniform manner. The OS, without

More information

Chapter 12. Paging an Virtual Memory Systems

Chapter 12. Paging an Virtual Memory Systems Chapter 12 Paging an Virtual Memory Systems Paging & Virtual Memory Virtual Memory - giving the illusion of more physical memory than there really is (via demand paging) Pure Paging - The total program

More information

Using Synology SSD Technology to Enhance System Performance Synology Inc.

Using Synology SSD Technology to Enhance System Performance Synology Inc. Using Synology SSD Technology to Enhance System Performance Synology Inc. Synology_SSD_Cache_WP_ 20140512 Table of Contents Chapter 1: Enterprise Challenges and SSD Cache as Solution Enterprise Challenges...

More information

Memory management basics (1) Requirements (1) Objectives. Operating Systems Part of E1.9 - Principles of Computers and Software Engineering

Memory management basics (1) Requirements (1) Objectives. Operating Systems Part of E1.9 - Principles of Computers and Software Engineering Memory management basics (1) Requirements (1) Operating Systems Part of E1.9 - Principles of Computers and Software Engineering Lecture 7: Memory Management I Memory management intends to satisfy the following

More information

Operating Systems, 6 th ed. Test Bank Chapter 7

Operating Systems, 6 th ed. Test Bank Chapter 7 True / False Questions: Chapter 7 Memory Management 1. T / F In a multiprogramming system, main memory is divided into multiple sections: one for the operating system (resident monitor, kernel) and one

More information

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit. Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency

More information

CPS104 Computer Organization and Programming Lecture 18: Input-Output. Robert Wagner

CPS104 Computer Organization and Programming Lecture 18: Input-Output. Robert Wagner CPS104 Computer Organization and Programming Lecture 18: Input-Output Robert Wagner cps 104 I/O.1 RW Fall 2000 Outline of Today s Lecture The I/O system Magnetic Disk Tape Buses DMA cps 104 I/O.2 RW Fall

More information

Virtual Memory Paging

Virtual Memory Paging COS 318: Operating Systems Virtual Memory Paging Kai Li Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Today s Topics Paging mechanism Page replacement algorithms

More information

Slide Set 8. for ENCM 369 Winter 2015 Lecture Section 01. Steve Norman, PhD, PEng

Slide Set 8. for ENCM 369 Winter 2015 Lecture Section 01. Steve Norman, PhD, PEng Slide Set 8 for ENCM 369 Winter 2015 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2015 ENCM 369 W15 Section

More information

Physical Data Organization

Physical Data Organization Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor

More information

CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen

CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen LECTURE 14: DATA STORAGE AND REPRESENTATION Data Storage Memory Hierarchy Disks Fields, Records, Blocks Variable-length

More information

Quiz for Chapter 6 Storage and Other I/O Topics 3.10

Quiz for Chapter 6 Storage and Other I/O Topics 3.10 Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [6 points] Give a concise answer to each

More information

Lecture 1: the anatomy of a supercomputer

Lecture 1: the anatomy of a supercomputer Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers of the future may have only 1,000 vacuum tubes and perhaps weigh 1½ tons. Popular Mechanics, March 1949

More information

Hardware Configuration Guide

Hardware Configuration Guide Hardware Configuration Guide Contents Contents... 1 Annotation... 1 Factors to consider... 2 Machine Count... 2 Data Size... 2 Data Size Total... 2 Daily Backup Data Size... 2 Unique Data Percentage...

More information

x64 Servers: Do you want 64 or 32 bit apps with that server?

x64 Servers: Do you want 64 or 32 bit apps with that server? TMurgent Technologies x64 Servers: Do you want 64 or 32 bit apps with that server? White Paper by Tim Mangan TMurgent Technologies February, 2006 Introduction New servers based on what is generally called

More information

Chapter 7 Memory Management

Chapter 7 Memory Management Operating Systems: Internals and Design Principles Chapter 7 Memory Management Eighth Edition William Stallings Frame Page Segment A fixed-length block of main memory. A fixed-length block of data that

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operatin g Systems: Internals and Design Principle s Chapter 11 I/O Management and Disk Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles An artifact can

More information

POSIX. RTOSes Part I. POSIX Versions. POSIX Versions (2)

POSIX. RTOSes Part I. POSIX Versions. POSIX Versions (2) RTOSes Part I Christopher Kenna September 24, 2010 POSIX Portable Operating System for UnIX Application portability at source-code level POSIX Family formally known as IEEE 1003 Originally 17 separate

More information

İSTANBUL AYDIN UNIVERSITY

İSTANBUL AYDIN UNIVERSITY İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic

More information

With respect to the way of data access we can classify memories as:

With respect to the way of data access we can classify memories as: Memory Classification With respect to the way of data access we can classify memories as: - random access memories (RAM), - sequentially accessible memory (SAM), - direct access memory (DAM), - contents

More information

Binary search tree with SIMD bandwidth optimization using SSE

Binary search tree with SIMD bandwidth optimization using SSE Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous

More information

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University. (http://www.cs.princeton.edu/courses/cos318/)

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University. (http://www.cs.princeton.edu/courses/cos318/) COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Today s Topics Magnetic disks Magnetic disk performance

More information

Memory Management CS 217. Two programs can t control all of memory simultaneously

Memory Management CS 217. Two programs can t control all of memory simultaneously Memory Management CS 217 Memory Management Problem 1: Two programs can t control all of memory simultaneously Problem 2: One program shouldn t be allowed to access/change the memory of another program

More information

EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES

EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES ABSTRACT EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES Tyler Cossentine and Ramon Lawrence Department of Computer Science, University of British Columbia Okanagan Kelowna, BC, Canada tcossentine@gmail.com

More information

Chapter 2 - Computer Organization

Chapter 2 - Computer Organization Chapter 2 - Computer Organization CPU organization Basic Elements and Principles Parallelism Memory Storage Hierarchy I/O Fast survey of devices Character Codes Ascii, Unicode Homework: Chapter 1 # 2,

More information

Central Processing Unit (CPU)

Central Processing Unit (CPU) Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

More information

Memory ICS 233. Computer Architecture and Assembly Language Prof. Muhamed Mudawar

Memory ICS 233. Computer Architecture and Assembly Language Prof. Muhamed Mudawar Memory ICS 233 Computer Architecture and Assembly Language Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline Random

More information

The IntelliMagic White Paper: Storage Performance Analysis for an IBM Storwize V7000

The IntelliMagic White Paper: Storage Performance Analysis for an IBM Storwize V7000 The IntelliMagic White Paper: Storage Performance Analysis for an IBM Storwize V7000 Summary: This document describes how to analyze performance on an IBM Storwize V7000. IntelliMagic 2012 Page 1 This

More information

Introduction to RISC Processor. ni logic Pvt. Ltd., Pune

Introduction to RISC Processor. ni logic Pvt. Ltd., Pune Introduction to RISC Processor ni logic Pvt. Ltd., Pune AGENDA What is RISC & its History What is meant by RISC Architecture of MIPS-R4000 Processor Difference Between RISC and CISC Pros and Cons of RISC

More information

More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction

More information

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX Multiple Choice: 1. Processing information involves: A. accepting information from the outside world. B. communication with another computer. C. performing arithmetic

More information

Buffer Management 5. Buffer Management

Buffer Management 5. Buffer Management 5 Buffer Management Copyright 2004, Binnur Kurt A journey of a byte Buffer Management Content 156 A journey of a byte Suppose in our program we wrote: outfile

More information

Central Processing Unit

Central Processing Unit Chapter 4 Central Processing Unit 1. CPU organization and operation flowchart 1.1. General concepts The primary function of the Central Processing Unit is to execute sequences of instructions representing

More information

PARALLELS CLOUD STORAGE

PARALLELS CLOUD STORAGE PARALLELS CLOUD STORAGE Performance Benchmark Results 1 Table of Contents Executive Summary... Error! Bookmark not defined. Architecture Overview... 3 Key Features... 5 No Special Hardware Requirements...

More information

OPERATING SYSTEM - MEMORY MANAGEMENT

OPERATING SYSTEM - MEMORY MANAGEMENT OPERATING SYSTEM - MEMORY MANAGEMENT http://www.tutorialspoint.com/operating_system/os_memory_management.htm Copyright tutorialspoint.com Memory management is the functionality of an operating system which

More information

Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer

Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer Disks and RAID Profs. Bracy and Van Renesse based on slides by Prof. Sirer 50 Years Old! 13th September 1956 The IBM RAMAC 350 Stored less than 5 MByte Reading from a Disk Must specify: cylinder # (distance

More information

Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems

Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems Lecture Outline Operating Systems Objectives Describe the functions and layers of an operating system List the resources allocated by the operating system and describe the allocation process Explain how

More information

Parallel Processing and Software Performance. Lukáš Marek

Parallel Processing and Software Performance. Lukáš Marek Parallel Processing and Software Performance Lukáš Marek DISTRIBUTED SYSTEMS RESEARCH GROUP http://dsrg.mff.cuni.cz CHARLES UNIVERSITY PRAGUE Faculty of Mathematics and Physics Benchmarking in parallel

More information

Generations of the computer. processors.

Generations of the computer. processors. . Piotr Gwizdała 1 Contents 1 st Generation 2 nd Generation 3 rd Generation 4 th Generation 5 th Generation 6 th Generation 7 th Generation 8 th Generation Dual Core generation Improves and actualizations

More information

How To Improve Performance On A Single Chip Computer

How To Improve Performance On A Single Chip Computer : Redundant Arrays of Inexpensive Disks this discussion is based on the paper:» A Case for Redundant Arrays of Inexpensive Disks (),» David A Patterson, Garth Gibson, and Randy H Katz,» In Proceedings

More information

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15 Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2014/15 Lecture I: Storage Storage Part I of this course Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 3 The

More information

Chapter 13: Query Processing. Basic Steps in Query Processing

Chapter 13: Query Processing. Basic Steps in Query Processing Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing

More information

Using Synology SSD Technology to Enhance System Performance Synology Inc.

Using Synology SSD Technology to Enhance System Performance Synology Inc. Using Synology SSD Technology to Enhance System Performance Synology Inc. Synology_WP_ 20121112 Table of Contents Chapter 1: Enterprise Challenges and SSD Cache as Solution Enterprise Challenges... 3 SSD

More information

Sistemas Operativos: Input/Output Disks

Sistemas Operativos: Input/Output Disks Sistemas Operativos: Input/Output Disks Pedro F. Souto (pfs@fe.up.pt) April 28, 2012 Topics Magnetic Disks RAID Solid State Disks Topics Magnetic Disks RAID Solid State Disks Magnetic Disk Construction

More information

Operating System Concepts. Operating System 資 訊 工 程 學 系 袁 賢 銘 老 師

Operating System Concepts. Operating System 資 訊 工 程 學 系 袁 賢 銘 老 師 Lecture 6: Secondary Storage Systems Moving-head Disk Mechanism 6.2 Overview of Mass-Storage Structure Magnetic disks provide bulk of secondary storage of modern computers Drives rotate at 60 to 200 times

More information

INTRODUCTION The collection of data that makes up a computerized database must be stored physically on some computer storage medium.

INTRODUCTION The collection of data that makes up a computerized database must be stored physically on some computer storage medium. Chapter 4: Record Storage and Primary File Organization 1 Record Storage and Primary File Organization INTRODUCTION The collection of data that makes up a computerized database must be stored physically

More information

& Data Processing 2. Exercise 3: Memory Management. Dipl.-Ing. Bogdan Marin. Universität Duisburg-Essen

& Data Processing 2. Exercise 3: Memory Management. Dipl.-Ing. Bogdan Marin. Universität Duisburg-Essen Folie a: Name & Data Processing 2 3: Memory Management Dipl.-Ing. Bogdan Marin Fakultät für Ingenieurwissenschaften Abteilung Elektro-und Informationstechnik -Technische Informatik- Objectives Memory Management

More information

Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface

Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface File Management Two Parts Filesystem Interface Interface the user sees Organization of the files as seen by the user Operations defined on files Properties that can be read/modified Filesystem design Implementing

More information

Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design

Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards eddie.edwards@imperial.ac.uk At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components

More information

Computer-System Architecture

Computer-System Architecture Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture 2.1 Computer-System Architecture 2.2 Computer-System

More information

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching

More information

What is a bus? A Bus is: Advantages of Buses. Disadvantage of Buses. Master versus Slave. The General Organization of a Bus

What is a bus? A Bus is: Advantages of Buses. Disadvantage of Buses. Master versus Slave. The General Organization of a Bus Datorteknik F1 bild 1 What is a bus? Slow vehicle that many people ride together well, true... A bunch of wires... A is: a shared communication link a single set of wires used to connect multiple subsystems

More information

Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections

Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

The Implementation of a Hybrid-Execute-In-Place Architecture to Reduce the Embedded System Memory Footprint and Minimize Boot Time

The Implementation of a Hybrid-Execute-In-Place Architecture to Reduce the Embedded System Memory Footprint and Minimize Boot Time The Implementation of a Hybrid-Execute-In-Place Architecture to Reduce the Embedded System Memory Footprint and Minimize Boot Time Tony Benavides, Justin Treon, Jared Hulbert, and Willie Chang 1 Flash

More information

IOS110. Virtualization 5/27/2014 1

IOS110. Virtualization 5/27/2014 1 IOS110 Virtualization 5/27/2014 1 Agenda What is Virtualization? Types of Virtualization. Advantages and Disadvantages. Virtualization software Hyper V What is Virtualization? Virtualization Refers to

More information

RAID. RAID 0 No redundancy ( AID?) Just stripe data over multiple disks But it does improve performance. Chapter 6 Storage and Other I/O Topics 29

RAID. RAID 0 No redundancy ( AID?) Just stripe data over multiple disks But it does improve performance. Chapter 6 Storage and Other I/O Topics 29 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for redundant data storage Provides fault tolerant

More information

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters COSC 6374 Parallel Computation Parallel I/O (I) I/O basics Spring 2008 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network

More information

Cloud Storage. Parallels. Performance Benchmark Results. White Paper. www.parallels.com

Cloud Storage. Parallels. Performance Benchmark Results. White Paper. www.parallels.com Parallels Cloud Storage White Paper Performance Benchmark Results www.parallels.com Table of Contents Executive Summary... 3 Architecture Overview... 3 Key Features... 4 No Special Hardware Requirements...

More information