MAIDSTONE GRAMMAR SCHOOL FOR GIRLS DEPARTMENT OF MATHEMATICS

Size: px
Start display at page:

Download "MAIDSTONE GRAMMAR SCHOOL FOR GIRLS DEPARTMENT OF MATHEMATICS"

Transcription

1 MAIDSTONE GRAMMAR SCHOOL FOR GIRLS DEPARTMENT OF MATHEMATICS Introduction to A level Maths INDUCTION BOOKLET

2 INTRODUCTION TO A LEVEL MATHS AT MGGS Thank you for choosing to study Mathematics in the sixth form at Maidstone Grammar School for Girls. You will sit two modules in Pure Mathematics (C1 and C) as well as Statistics (S1) at the end of year 1. If you have chosen to study Further Mathematics as well as Maths then, in year 1, you will study modules in D1, D and Further Pure 1. The Mathematics Department is committed to ensuring that you make good progress throughout your A level or AS course. In order that you make the best possible start to the course, we have prepared this booklet. It is vital that you spend time working through the questions in this booklet over the summer. You need to have a good knowledge of these topics before you commence your course in September. You should have met all the topics before at GCSE. Work through what you need to from each chapter, making sure that you understand the examples. Then tackle the exercise to ensure you understand the topic thoroughly. The answers are at the back of the booklet. You will need to be very organised so keep your work in a folder & mark any queries to ask at the beginning of term. In the first or second week of term you will take a test to check how well you understand these topics, so it is important that you have completed the booklet by then. The pass mark is 75%. If you do not pass this test, you may be asked to leave the course or to complete a programme of additional work in order to bring your basic algebra skills to the required standard. If you have to complete more work you will be re-tested in October. A mock test is provided at the back of this booklet. Use this introduction to give you a good start to your AS work that will help you to enjoy, and benefit from, the course. The more effort you put in, right from the start, the better you will do. Mr C Ansette (Teacher i/c Key Stage 5 Mathematics) Mrs S Squibb (Head of Mathematics) Sources for further help are indicated throughout the booklet. All topics can be found on the MyMaths website. If you need to access this, our username is maidstone and our password is tables. You may also find the following book useful AS-Level Maths Head Start Published by CGP Workbooks ISBN: Cost: 4.95

3 CONTENTS Reading List... 3 Section 1: FRACTIONS... 4 Section : EXPANDING... 6 Section 3: LINEAR EQUATIONS... 8 Section 4: LINEAR INEQUALITIES Section 5: SIMULTANEOUS EQUATIONS Section 7: SOLVING QUADRATIC EQUATIONS Section 8: CHANGING THE SUBJECT OF A FORMULA... 0 Section 9: INDICES... 3 Section 10: SURDS... 6 Section 11: FUNCTIONS Practice Booklet Test Solutions to the Exercises... 3 Solutions to the Practice Booklet Test READING LIST As a student who is choosing to study Mathematics at A Level, it is logical to assume that you have an interest in the subject. With that said, the following books may be of interest to you. Alex s Adventures in Numberland by Alex Bellos Cabinet of Mathematical Curiosities by Ian Stewart The Num8er My5teries by Marcus du Sautoy How Many Socks Make a Pair?: Surprisingly Interesting Maths by Rob Eastway The Curious Incident of the Dog in the Night-time by Mark Haddon The Penguin Dictionary of Curious & Interesting Numbers by David Wells The Calculus Wars by Jason Socrates Bardi The Code Book by Simon Singh 50 Mathematical Ideas You Really Need to Know by Tony Crilly

4 Section 1: FRACTIONS To add or subtract fractions, find the lowest common denominator of the two fractions and then rewrite the fractions accordingly. Ensure that you simplify as far as possible. Examples When multiplying fractions, it is far more efficient to cancel first; this avoids trying to simplify fractions with unnecessarily large numerators and/or denominators. To multiply with fractions, simply multiply the numerators and denominators together. Example To divide by a fraction, we simply multiply by the reciprocal of the second fraction (i.e. we flip the second fraction over ). Example

5 For addition and subtraction with mixed numbers, add (or subtract) the integer (whole number) parts first and then work with the fractions. Examples To multiply and divide with mixed, convert the mixed numbers to improper fractions and then calculate as normal. It should also be noted that in the study of A Level Mathematics, answers are preferred as improper fractions rather than mixed numbers. EXERCISE More help is available from MyMaths: Adding/Subtracting Fractions, Multiplying Fractions, Dividing Fractions, Mixed Numbers

6 Section : EXPANDING To remove a single bracket multiply every term in the bracket by the number or expression outside: Examples 1) 3 (x + y) = 3x + 6y ) -(x - 3) = (-)(x) + (-)(-3) = -4x + 6 To expand two brackets multiply everything in the first bracket by everything in the second bracket. You may have used * the smiley face method * FOIL (First Outside Inside Last) * using a grid. Examples: 1) (x + 1)(x + ) = x(x + ) + 1(x + ) or (x +1)(x + ) = x + + x + x = x + 3x + or x 1 x x x x (x +1)(x + ) = x + x + x + = x + 3x + ) (x - )(x + 3) = x(x + 3) - (x +3) = x + 3x 4x - 6 = x x 6 or (x - )(x + 3) = x 6 + 3x 4x = x x 6 or x - x x -4x 3 3x -6 (x +3)(x - ) = x + 3x - 4x - 6 = x - x - 6

7 EXERCISE A 1. 7(4x + 5). -3(5x - 7) 3. 5a 4(3a - 1) 4. 4y + y( + 3y) 5. -3x (x + 4) Multiply out the following brackets and simplify. 7. (x + )(x + 3) 8. (t - 5)(t - ) 9. (x + 3y)(3x 4y) 10. 4(x - )(x + 3) 11. (y - 1)(y + 1) 6. 5(x - 1) (3x - 4) 1. (3 + 5x)(4 x) Two Special Cases Perfect Square: Difference of two squares: (x + (a) = (x + (a)(x + (a) = x + ax + a (x - (a)(x + (a) = x a (x - 3) = (x 3)(x 3) = 4x 1x + 9 (x - 3)(x + 3) = x 3 = x 9 EXERCISE B Expand the following 1. (x - 1). (3x + 5) 3. (7x - ) 4. (x + )(x - ) 5. (3x + 1)(3x - 1) 6. (5y - 3)(5y + 3 More help is available from MyMaths: Brackets

8 Section 3: LINEAR EQUATIONS When solving an equation whatever you do to one side must also be done to the other. You may add the same amount to both side subtract the same amount from each side multiply the whole of each side by the same amount divide the whole of each side by the same amount. If the equation has unknowns on both sides, collect all the letters onto the same side of the equation. If the equation contains brackets, you often start by expanding the brackets. A linear equation contains only numbers and terms in x. (Not x or 3 x or 1/x et(c) Example 1: Solve the equation 64 3x = 5 Solution: There are various ways to solve this equation. One approach is as follows: Step 1: Add 3x to both sides (so that the x term is positiv(e): 64 = 3x + 5 Step : Subtract 5 from both sides: Step 3: Divide both sides by 3: 39 = 3x 13 = x So the solution is x = 13. Example : Solve the equation 6x + 7 = 5 x. Solution: Step 1: Begin by adding x to both sides 8x + 7 = 5 (to ensure that the x terms are together on the same sid(e) Step : Subtract 7 from each side: 8x = - Step 3: Divide each side by 8: x = -¼ Exercise A: Solve the following equations, showing each step in your working: 1) x + 5 = 19 ) 5x = 13 3) 11 4x = 5 4) 5 7x = -9 5) x = 8 x 6) 7x + = 4x 5

9 Example 3: Solve the equation (3x ) = 0 3(x + ) Step 1: Multiply out the brackets: 6x 4 = 0 3x 6 (taking care of the negative signs) Step : Simplify the right hand side: 6x 4 = 14 3x Step 3: Add 3x to each side: 9x 4 = 14 Step 4: Add 4: 9x = 18 Step 5: Divide by 9: x = Exercise B: Solve the following equations. 1) 5(x 4) = 4 ) 4( x) = 3(x 9) 3) 8 (x + 3) = 4 4) 14 3(x + 3) =

10 EQUATIONS CONTAINING FRACTIONS When an equation contains a fraction, the first step is usually to multiply through by the denominator of the fraction. This ensures that there are no fractions in the equation. y Example 4: Solve the equation 5 11 Solution: Step 1: Multiply through by (the denominator in the fraction): y 10 Step : Subtract 10: y = 1 Example 5: Solve the equation 1 (x 1) 5 3 Solution: Step 1: Multiply by 3 (to remove the fraction) x 1 15 Step : Subtract 1 from each side x = 14 Step 3: Divide by x = 7 When an equation contains two fractions, you need to multiply by the lowest common denominator. This will then remove both fractions. Example 6: Solve the equation x 1 x 4 5 Solution: Step 1: Find the lowest common denominator: The smallest number that both 4 and 5 divide into is 0. Step : Multiply both sides by the lowest common denominator Step 3: Simplify the left hand side: 0( x 1) 0( x ) ( x 1) 0 ( x ) (x + 1) + 4(x + ) = 40 Step 4: Multiply out the brackets: 5x x + 8 = 40 Step 5: Simplify the equation: 9x + 13 = 40 Step 6: Subtract 13 9x = 7 Step 7: Divide by 9: x = 3

11 Example 7: Solve the equation x 3 5x x 4 6 Solution: The lowest number that 4 and 6 go into is 1. So we multiply every term by 1: 1( x ) 1(3 5 x) 1x Simplify 1x 3( x ) 4 (3 5 x) Expand brackets 1x 3x x Simplify 15x x Subtract 10x 5x 6 18 Add 6 5x = 4 Divide by 5 x = 4.8 Exercise C: Solve these equations 1) 1 ( 3) 5 x ) x x ) y y x 3 x 3 5 4) ) 7x 1 13 x y 1 y 1 y 5 6) 3 6 7) x 1 5x 3 x 8) x x

12 FORMING EQUATIONS Example 8: Find three consecutive numbers so that their sum is 96. Solution: Let the first number be n, then the second is n + 1 and the third is n +. Therefore n + (n + 1) + (n + ) = 96 3n + 3 = 96 3n = 93 n = 31 So the numbers are 31, 3 and 33. Exercise D: 1) Find 3 consecutive even numbers so that their sum is 108. ) The perimeter of a rectangle is 79 cm. One side is three times the length of the other. Form an equation and hence find the length of each side. 3) Two girls have 7 photographs of celebrities between them. One gives 11 to the other and finds that she now has half the number her friend has. Form an equation, letting n be the number of photographs one girl had at the beginning. Hence find how many each has now. More help is available from MyMaths: Solving Equations

13 Section 4: LINEAR INEQUALITIES Linear inequalities can be solved using the same techniques as linear equations (for the most part). We may add and subtract the same numbers on both sides and we can also multiply and divide by positive numbers; multiplying/dividing both sides by a negative needs further explanation. Example x - 3 < 11 Here we can simply add 3 to both sides: x < 14 Next, as with linear equations we divide by : x < 7 However, if we were to have 3 x > 6, we would need to adopt a different technique. If we wish to divide or multiply by a negative number, we must reverse the direction of the inequality. Example As before, we would subtract 3 from both sides: Divide by - and subsequently reverse the inequality: We can see this working on a more basic level; it is true to state that 3 < 4 but it is incorrect if we multiply both sides by a negative and keep the sign as it was: -6 < -8 is not true. You may find it easier to rearrange the inequality: Example If we add x to both sides, we remove the hassle: We then subtract 6: Divide by two as normal: Remember that you can change this round to say Both of these techniques are acceptable and is more a matter of preference. Exercise: Solve each inequality 1) ) 3) 4) 5) 6) 7) 8) More help is available from MyMaths: Inequalities, Negative Inequalities

14 Section 5: SIMULTANEOUS EQUATIONS Example 3x + y = 8 5x + y = 11 x and y stand for two numbers. Solve these equations in order to find the values of x and y by eliminating one of the letters from the equations. In these equations it is simplest to eliminate y. Make the coefficients of y the same in both equations. To do this multiply equation by, so that both equations contain y: 3x + y = 8 10x + y = = To eliminate the y terms, subtract equation from equation. We get: 7x = 14 i.e. x = To find y substitute x = into one of the original equations. For example put it into : 10 + y = 11 y = 1 Therefore the solution is x =, y = 1. Remember: Check your solutions by substituting both x and y into the original equations. Example: Solve x + 5y = 16 3x 4y = 1 Solution: Begin by getting the same number of x or y appearing in both equation. Multiply the top equation by 4 and the bottom equation by 5 to get 0y in both equations: 8x + 0y = 64 15x 0y = 5 As the SIGNS in front of 0y are DIFFERENT, eliminate the y terms from the equations by ADDING: 3x = 69 + i.e. x = 3 Substituting this into equation gives: 6 + 5y = 16 5y = 10 So y = The solution is x = 3, y =. Exercise: Solve the pairs of simultaneous equations in the following questions: 1) x + y = 7 ) x + 3y = 0 3x + y = 9 3x + y = -7 3) 3x y = 4 4) 9x y = 5 x + 3y = -6 4x 5y = 7 5) 4a + 3b = 6) 3p + 3q = 15 5a 4b = 43 p + 5q = 14 More help is available from MyMaths: Simultaneous Equations 1, Simultaneous Equations - Medium, Simultaneous Equations - Hard, Simultaneous Equations - Negatives, Solving Simultaneous Equations Graphically

15 Section 6: FACTORISING Taking out a common factor Example 1: Factorise 1x 30 Solution: Example : 6 is a common factor to both 1 and 30. Factorise by taking 6 outside a bracket: 1x 30 = 6(x 5) Factorise 6x xy Solution: is a common factor to both 6 and. Both terms also contain an x. Factorise by taking x outside a bracket. 6x xy = x(3x y) Example 3: Factorise 9x 3 y 18x y Solution: 9 is a common factor to both 9 and 18. The highest power of x that is present in both expressions is x. There is also a y present in both parts. So we factorise by taking 9x y outside a bracket: 9x 3 y 18x y = 9x y(xy ) Example 4: Factorise 3x(x 1) 4(x 1) Solution: There is a common bracket as a factor. So we factorise by taking (x 1) out as a factor. The expression factorises to (x 1)(3x 4) Exercise A Factorise each of the following 1) 3x + xy ) 4x xy 3) pq p q 4) 3pq - 9q 5) x 3 6x 6) 8a 5 b 1a 3 b 4 7) 5y(y 1) + 3(y 1) More help is available from MyMaths: Factorising Expressions

16 Factorising quadratics Simple quadratics: Factorising quadratics of the form x bx c The method is: Step 1: Form two brackets (x )(x ) Step : Find two numbers that multiply to give c and add to make b. Write these two numbers at the end of the brackets. Example 1: Factorise x 9x 10. Solution: Find two numbers that multiply to make -10 and add to make -9. These numbers are -10 and 1. Therefore x 9x 10 = (x 10)(x + 1). General quadratics: Factorising quadratics of the form ax bx c One method is that of combining factors. Look at factorising on MyMaths or ask a teacher for help with our preferred method but is difficult to explain on paper. Another method is: Step 1: Find two numbers that multiply together to make ac and add to make b. Step : Split up the bx term using the numbers found in step 1. Step 3: Factorise the front and back pair of expressions as fully as possible. Step 4: There should be a common bracket. Take this out as a common factor. Example : Factorise 6x + x 1. Solution: We need to find two numbers that multiply to make 6-1 = -7 and add to make 1. These two numbers are -8 and 9. Therefore, 6x + x 1 = 6x - 8x + 9x 1 = x(3x 4) + 3(3x 4) (the two brackets must be identical) = (3x 4)(x + 3) Difference of two squares: Factorising quadratics of the form x a Remember that x a = (x + (a)(x (a). Therefore: x x x x 9 3 ( 3)( 3) 16x 5 ( x) 5 (x 5)(x 5) Also notice that: and x 8 ( x 4) ( x 4)( x 4) 3 3x 48xy 3 x( x 16 y ) 3 x( x 4 y)( x 4 y) Factorising by pairing or grouping Factorise expressions like x xy x y using the method of factorising by pairing: x xy x y = x(x + y) 1(x + y) (factorise front and back pairs, both brackets identical) = (x + y)(x 1)

17 Exercise B Factorise 1) x x 6 8) 10x 5x 30 ) x 6x 16 9) 4x 5 3) x 5x 10) x 3x xy 3y 4) x 3 x 11) 4x 1x 8 5) 3x 5x 1) 16m 81n 6) y 17y 1 13) 3 4y 9a y 7) 7y 10y 3 14) 8( x 1) ( x 1) 10 More help is available from MyMaths: Factorising Quadratics 1, Factorising Quadratics

18 Section 7: SOLVING QUADRATIC EQUATIONS A quadratic equation has the form ax bx c 0. There are two methods that are commonly used for solving quadratic equations: * factorising * the quadratic formula Not all quadratic equations can be solved by factorising. Method 1: Factorising Make sure that the equation is rearranged so that the right hand side is 0. It usually makes it easier if the coefficient of x is positive. Example 1 : Solve x 3x + = 0 Factorise (x 1)(x ) = 0 Either (x 1) = 0 or (x ) = 0 So the solutions are x = 1 or x = Note: The individual values x = 1 and x = are called the roots of the equation. Example : Solve x x = 0 Factorise: x(x ) = 0 Either x = 0 or (x ) = 0 So x = 0 or x = More help is available from MyMaths: Quadratic Equations

19 Method : Using the formula The roots of the quadratic equation ax bx c 0 are given by the formula: b b 4ac x a Example 3: Solve the equation x x Solution: First we rearrange so that the right hand side is 0. We get We can then tell that a =, b = 3 and c = -1. Substituting these into the quadratic formula gives: x 3x ( 1) x (this is the surd form for the solutions) 4 If we have a calculator, we can evaluate these roots to get: x = 1.81 or x = Exercise 1) Use factorisation to solve the following equations: (a) x + 3x + = 0 (b) x 3x 4 = 0 (c) x = 15 x ) Find the roots of the following equations: (a) x + 3x = 0 (b) x 4x = 0 (c) 4 x = 0 3) Solve the following equations either by factorising or by using the formula: (a) 6x - 5x 4 = 0 (b) 8x 4x + 10 = 0 4) Use the formula to solve the following equations to 3 significant figures where possible (a) x +7x +9 = 0 (b) 6 + 3x = 8x (c) 4x x 7 = 0 (d) x 3x + 18 = 0 (e) 3x + 4x + 4 = 0 f) 3x = 13x 16 More help is available from MyMaths: The Quadratic Formula

20 Section 8: CHANGING THE SUBJECT OF A FORMULA Rearranging a formula is similar to solving an equation always do the same to both sides. Example 1: Make x the subject of the formula y = 4x + 3. Solution: y = 4x + 3 Subtract 3 from both sides: y 3 = 4x Divide both sides by 4; y 3 x 4 y 3 So x is the same equation but with x the subject. 4 Example : Make x the subject of y = 5x Solution: Notice that in this formula the x term is negative. y = 5x Add 5x to both sides y + 5x = (the x term is now positiv(e) Subtract y from both sides 5x = y Divide both sides by 5 y x 5 Example 3: 5( F 3) The formula C is used to convert between Fahrenheit and Celsius. 9 Rearrange to make F the subject. 5( F 3) C 9 Multiply by 9 9C 5( F 3) (this removes the fraction) Expand the brackets 9C 5F 160 Add 160 to both sides 9C 160 5F Divide both sides by 5 9C 160 F 5 9C 160 Therefore the required rearrangement is F. 5 Exercise A Make x the subject of each of these formulae: 1) y = 7x 1 x 3) 4y 3 x 5 ) y 4(3x 5) 4 4) y 9

21 Example 4: Make x the subject of Solution: Subtract y from both sides: x y w x y w Square root both sides: x w y Remember the positive & negative square root. x w y (this isolates the term involving x) Example 5: Make a the subject of the formula t 1 5a 4 h Solution: Multiply by 4 Square both sides Multiply by h: Divide by 5: 1 5a t 4 h 5a 4t h 5a 16t h 16t h 5a 16th a 5 Exercise B: Make t the subject of each of the following 1) P wt 3r 3) V 1 3 t h 5) Pa w( v t) g ) wt P 3r 4) P t g 6) r a bt More help is available from MyMaths: Rearranging Equations

22 Harder examples Sometimes the subject occurs in more than one place in the formula. In these questions collect the terms involving this variable on one side of the equation, and put the other terms on the opposite side. Example 6: Make t the subject of the formula a xt b yt Solution: a xt b yt Start by collecting all the t terms on the right hand side: Add xt to both sides: a b yt xt Now put the terms without a t on the left hand side: Subtract b from both sides: a b yt xt Factorise the RHS: a b t( y x) Divide by (y + x): So the required equation is a b t y x t a b y x Example 7: Make W the subject of the formula Wa T W b Solution: This formula is complicated by the fractional term. Begin by removing the fraction: Multiply by b: bt bw Wa Add bw to both sides: bt Wa bw (this collects the W s together) Factorise the RHS: bt W ( a b) Divide both sides by a + b: W bt a b Exercise C Make x the subject of these formulae: 1) ax 3 bx c ) 3( x a) k( x ) 3) x 3 y 5x 4) x x 1 a b More help is available from MyMaths: Higher Rearranging

23 Section 9: INDICES Basic rules of indices y 4 means y y y y. 4 is called the index (plural: indices), power or exponent of y. There are 3 basic rules of indices: 1) ) 3) ( a ) m n m n a a a e.g. m n m n a a a e.g. m n mn Further examples a e.g y 5y 5y a 6a 4a (multiply the numbers and multiply the a s) c 3c 6 6c 8 (multiply the numbers and multiply the c s) 7 7 4d 5 4d 3d 8d (divide the numbers and divide the d terms by subtracting the powers) 3d Exercise A Simplify the following: Remember that b b 1 1) ) 3) 4) 5) b 5b 5 3c c 5 b c bc 3 6 n ( 6 n ) 8n n 8 3 6) d d ) a 4 8) 3 d

24 Zero index: Remember 0 a 1 For any non-zero number, a. 0 Therefore Negative powers 0 3 A power of -1 corresponds to the reciprocal of a number, i.e. Therefore This result can be extended to more general negative powers: This means: Fractional powers: Fractional powers correspond to roots: In general: Therefore: 1/ a 1/n n a 0 a 1 1 (Find the reciprocal of a fraction by turning it upside down) a n a 1. n a / 1/ 3 3 1/ 4 4 a a a a a a 1/ / m / n 1/ n A more general fractional power can be dealt with in the following way: a a So 3 3/ / 3 1/ / 3/ m

25 Exercise B: Find the value of: 1) ) 1/ 4 1/ 3 7 4) 5) ) 3 11) 8 7 / 3 3) 1 1/ 9 6) 7) 7 1 /3 7 9) 8 / 3 10) 1/ ) / Simplify each of the following: 13) 14) a 3a 3 x x 1/ 5 / 4 15) x y 1/ More help is available from MyMaths: Indices 1, Indices, Indices 3

26 Section 10: SURDS A surd is a root of a number that cannot be expressed as an integer. Surds are part of the set of irrational numbers. Example: and are surds but is not as it equals. Simplifying Surds Start to simplify surds by using two rules: and By using the multiplication rule, simplify surds by finding a factor of the number you are taking a root of which is a square number. Always try to find the largest square number factor, otherwise you will have to simplify further. Example: Exercise A Simplify 1) ) 3) 4) 5) 6)

27 Multiplying and Dividing with Surds The rules of algebra are true for any numeric value; these include surds. To multiply and divide using surds deal with any integers together and then deal with any surds. Examples: ( ) ( )( ) ( )( ) ( ) In this example, you could expand as usual but this is an example of the difference of two squares. Exercise B Simplify 1) ) 3) 4) 5) 6) 7) ( ) 8) ( )

28 Addition and Subtraction with Surds You can only add or subtract with surds if the surd is the same; sometimes if they are not the same, you may be able to simplify them so that the same surd is present. Example: Here add the and as the same surd is present but you cannot add the. By simplifying to, you can add the two surds together. These methods also work for subtraction of surds. Exercise C Simplify 1) ) 3) 4) 5) 6) 7) 8) 9) 10)

29 Rationalising the Denominator It is far easier to calculate with a fraction if the surd if the denominator is a rational number (i.e. not a sur(d). The process of this is known as rationalising the denominator. To do this, multiply by the surd in the denominator, doing so makes use of the fact that ( ) Example: Multiply the denominator by to rationalise it and so multiply the numerator by also: Example : Example 3: ( ) Exercise D Simplify 1) ) 3) 4) 5) 6) 7) 8) 9) More help is available from MyMaths: Surds 1, Surds (Surds covers some material which is not here; this will be covered in Core 1)

30 Section 11: FUNCTIONS A function is like a machine: it has an input and an output. The output is related somehow to the input. f(x) tells us the rule for finding the output for any given input. f(x) is one such function and is read as f of x. Other letters may be used for functions too. Example: If a) b) a) b), find If c) d) c) d), find Exercise A Given that and, find 1) ) 3) 4) 5) 6) Given the rule and an output generated, we can find the input. Example: If and, find. If and, find the possible values of. ` Exercise B 1. Given that and find. Given that and find the possible values of

31 Practice Booklet Test You may NOT use a calculator If ax b + bx + c = 0 then x = b 4ac a 1. Calculate (a) (b) (c) (d). Expand and simplify (a) (x + 3)(x 1) (b) (a + 3) (c) 4x(3x ) x(x + 5) 3. Factorise (a) x 7x (b) y 64 (c) x + 5x 3 (d) 6t 13t Simplify 3 4x y (a) 3 8x y (b) 3x + 3 4x Solve the following equations h 1 3h (a) + = 4 (b) x 8x = 0 (c) p + 4p = Write each of the following as single powers of x and / y 1 (a) (b) (x y) 3 5 x (c) 4 x x 7. Work out the values of the following, giving your answers as fractions (a) 4 - (b) (c) 7 8. Solve the simultaneous equations 3x 5y = -11 5x y = 7 9. Rearrange the following equations to make x the subject (a) v = u 1 + ax (b) V = πx x h (c) y = 3 x Solve 5x x 1 = 0 giving your solutions in surd form 11. Find the values of x which satisfy the following inequalities (a) (b) 1. Given and, find (a) (b) (c) Simplify (a) (b) (c) (d) (e)

32 Solutions to the Exercises SECTION 1 1) 4) 7) 10) ) 5) 8) 11) 3) 6) 9) 1) SECTION Ex A 1) 8x + 35 ) -15x + 1 3) -7a + 4 4) 6y + 3y 5) -4x 4 6) 7x 1 7) x + 5x + 6 8) t 3t 10 9) 6x + xy 1y 10) 4x + 4x 4 11) 4y 1 1) x 5x Ex B 1) x x + 1 ) 9x + 30x + 5 3) 49x 8x + 4 4) x 4 5) 9x -1 6) 5y 9 SECTION 3 Ex A 1) 7 ) 3 3) 1½ 4) 5) 6) Ex B 1).4 ) 5 3) 1 4) ½ Ex C 1) 7 ) 15 3) 4/7 4) 35/3 5) 3 6) 7) 9/5 8) 5 Ex D 1) 34, 36, 38 ) 9.875, ) 4, 48 SECTION 4 1) ) 3) 4) 5) 6) 7) 8) SECTION 5 1) x = 1, y = 3 ) x = -3, y = 1 3) x = 0, y = - 4) x = 3, y = 1 5) a = 7, b = - 6) p = 11/3, q = 4/3

33 SECTION 6 Ex A 1) x(3 + y) ) x(x y) 3) pq(q p) Ex B 1) (x 3)(x + ) ) (x + 8)(x ) 3) (x + 1)(x + ) 4) x(x 3) 5) (3x -1 )(x + ) 4) 3q(p 3q) 5) x (x - 3) 6) 4a 3 b (a 3b ) 6) (y + 3)(y + 7) 7) (7y 3)(y 1) 8) 5(x 3)(x + ) 9) (x + 5)(x 5) 10) (x 3)(x y) 7) (y 1)(5y + 3) 11) 4(x )(x 1) 1) (4m 9n)(4m + 9n) 13) y(y 3(a)(y + 3(a) 14) (4x + 5)(x 4) SECTION 7 1) (a) -1, - (b) -1, 4 (c) -5, 3 ) (a) 0, -3 (b) 0, 4 (c), - 3) (a) -1/, 4/3 (b) 0.5,.5 4) (a) -5.30, (b) 1.07, (c) -1.0, 1.45 (d) no solutions (e) no solutions f) no solutions SECTION 8 Ex A y 1 1) x 7 Ex B 3rP 1) t w 3rP ) t w ) x 4y 5 3) x 3(4 y ) 3V 3) t h Pg 4) t 9y 0 4) x 1 Pag 5) t v w r a 6) t b Ex C c 3 1) x ) a b 3a k x k 3 3) y 3 x 5y 4) ab x b a SECTION 9 Ex A 1) 5b 6 ) 6c 7 3) b 3 c 4 4) -1n 8 5) 4n 5 6) d 7) a 6 8) -d 1 Ex B 1) ) 3 3) 1/3 4) 1/5 5) 1 6) 1/7 7) 9 8) 9/4 9) ¼ 10) 0. 11) 4/9 1) 64 13) 6a 3 14) x 15) xy

34 SECTION 10 Ex A 1) ) Ex B 1) ) 3) 3) 4) 4) 5) 6) 5) 6) 7) 8) Ex C 1) ) 3) 4) 5) 6) 7) 8) 9) 10) Ex D 1) ) 3) 4) 5) 6) 7) 8) 9) SECTION 11 Ex A 1) 8 ) -3 3) 56 4) 0 5) 65 6) Ex B 1) - ), 3

35 Solutions to the Practice Booklet Test 1 (a) (b) (c) (d) ) (a) 4x + 4x 3 (b) a + 6a + 9 (c) 10x -13x 3) (a) x(x 7) (b) (y + 8)(y 8) (c) (x - 1)(x + 3) (d) (3t - 5)(t 1) x 4) (a) y (b) 10 x 3 6 5) (a) h = 5 (b) x = 0 or x = 8 (c) p = -6 or p = 6) (a) x -4 (b) x 6 y 3 (c) x 7 7) (a) (b) 1 (c) 8) x = 3, y = 4 9) (a) v u x a (b) x 3V h (c) y x y 1 10) 1 1 x 10 11) (a) x < 1.6 (b) x < -.5 1) (a) 19 (b) 3 (c) (a) (b) (c) (d) (e)

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

CAHSEE on Target UC Davis, School and University Partnerships

CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project 9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

Exponents and Radicals

Exponents and Radicals Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

Radicals - Multiply and Divide Radicals

Radicals - Multiply and Divide Radicals 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

More information

The Greatest Common Factor; Factoring by Grouping

The Greatest Common Factor; Factoring by Grouping 296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Answers to Basic Algebra Review

Answers to Basic Algebra Review Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Factoring Trinomials: The ac Method

Factoring Trinomials: The ac Method 6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

More information

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

SIMPLIFYING SQUARE ROOTS

SIMPLIFYING SQUARE ROOTS 40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify

More information

GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.

GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1. GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright

More information

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

More information

MTN Learn. Mathematics. Grade 10. radio support notes

MTN Learn. Mathematics. Grade 10. radio support notes MTN Learn Mathematics Grade 10 radio support notes Contents INTRODUCTION... GETTING THE MOST FROM MINDSET LEARN XTRA RADIO REVISION... 3 BROADAST SCHEDULE... 4 ALGEBRAIC EXPRESSIONS... 5 EXPONENTS... 9

More information

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

Fractions and Linear Equations

Fractions and Linear Equations Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:

Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions: Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Factoring Polynomials

Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

More information

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

More information

Factoring and Applications

Factoring and Applications Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

More information

Using the ac Method to Factor

Using the ac Method to Factor 4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

ACCUPLACER. Testing & Study Guide. Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011

ACCUPLACER. Testing & Study Guide. Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011 ACCUPLACER Testing & Study Guide Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011 Thank you to Johnston Community College staff for giving permission to revise

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

Clifton High School Mathematics Summer Workbook Algebra 1

Clifton High School Mathematics Summer Workbook Algebra 1 1 Clifton High School Mathematics Summer Workbook Algebra 1 Completion of this summer work is required on the first day of the school year. Date Received: Date Completed: Student Signature: Parent Signature:

More information

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions. (x 1)(x 2 + 1) Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

More information

Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

More information

Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one.

Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one. What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1 5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

More information

Section 1. Finding Common Terms

Section 1. Finding Common Terms Worksheet 2.1 Factors of Algebraic Expressions Section 1 Finding Common Terms In worksheet 1.2 we talked about factors of whole numbers. Remember, if a b = ab then a is a factor of ab and b is a factor

More information

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

More information

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x). .7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Simplifying Algebraic Fractions

Simplifying Algebraic Fractions 5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an

More information

MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Florida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower

Florida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including

More information

Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

More information

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD A quadratic equation in one variable has as standard form: ax^2 + bx + c = 0. Solving it means finding the values of x that make the equation true.

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

( ) FACTORING. x In this polynomial the only variable in common to all is x.

( ) FACTORING. x In this polynomial the only variable in common to all is x. FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

1.6 The Order of Operations

1.6 The Order of Operations 1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

More information

National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

More information

Algebra Cheat Sheets

Algebra Cheat Sheets Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).

In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form). CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,

More information

Algebra 2 PreAP. Name Period

Algebra 2 PreAP. Name Period Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

More information

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

More information

FACTORING POLYNOMIALS

FACTORING POLYNOMIALS 296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

More information

Lesson 9: Radicals and Conjugates

Lesson 9: Radicals and Conjugates Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

More information

Simplifying Square-Root Radicals Containing Perfect Square Factors

Simplifying Square-Root Radicals Containing Perfect Square Factors DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

More information

Welcome to Basic Math Skills!

Welcome to Basic Math Skills! Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

More information