EFFECT OF SINTERING ATMOSPHERE ON THE MICROSTRUCTURE OF HIGH Cr-ALLOYED SINTERED STAINLESS STEEL

Size: px
Start display at page:

Download "EFFECT OF SINTERING ATMOSPHERE ON THE MICROSTRUCTURE OF HIGH Cr-ALLOYED SINTERED STAINLESS STEEL"

Transcription

1 Powder Metallurgy Progress, Vol.13 (2013), No EFFECT OF SINTERING ATMOSPHERE ON THE MICROSTRUCTURE OF HIGH Cr-ALLOYED SINTERED STAINLESS STEEL R. Shvab, E. Dudrová, O. Bergman, S. Bengtsson Abstract The influence of sintering atmosphere on the microstructure of high Cralloyed sintered stainless steel was investigated. Two regimes using three sintering atmospheres were applied. Sintering in pure hydrogen was evaluated as unsatisfactory due to the strong decarburization of the compact surface. Sintering in mixed N 2 -H 2 atmosphere resulted in more acceptable microstructure with small austenitic grains and fine distributed small precipitates. Some decarburization at the surface was also observed. Avoidance of surface decarburization was obtained by using N 2 -H 2 atmosphere admixed with 0.5% of CH 4. Material sintered in such an atmosphere is characterized by microstructure with fine grains and well distributed fine precipitates. Its surface hardness showed the highest values among all obtained materials. Keywords: high chromium alloyed sintered steel, sintering atmosphere, nitrogen uptake, carburization, decarburization INTRODUCTION During the whole sintering cycle (including delubrication during heating) a large number of reactions between the furnace atmosphere and sintered material take place. They are strongly associated with the chemical composition of the atmosphere and sintered material, but also with the time-temperature sintering regime. Therefore, it is necessary to pay attention to the complex reactions between the furnace atmosphere and sintered material, especially in terms of nitrogen and carbon content at the surface of sintered parts. Carbon is normally considered as an undesirable impurity in austenitic stainless steel. While it stabilizes the austenite structure, it has a great thermodynamic affinity for chromium. Because of this affinity, chromium carbides form whenever carbon reaches levels of supersaturation in austenite, and diffusion rates are sufficient for carbon and chromium to form precipitates. Carbon potential of the sintering atmosphere is the main instrument to control the amount of carbon in the sintered material. The aim of using nitrogen-containing atmospheres during the sintering of stainless steels was to achieve corrosion resistance equal or superior to sintering in hydrogen, in combination with markedly improved strength. For many years, inexpensive nitrogen has been added to austenitic stainless steels because it stabilizes the austenite, and increases yield strength more than additions of carbon or solid-solution alloying elements, and it is more soluble than carbon at intermediate and high temperatures, thus reducing the fraction of precipitates [1]. Ruslan Shvab, Eva Dudrová, Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovak Republic Ola Bergman, Sven Bengtsson, Höganäs AB, Höganäs, Sweden

2 Powder Metallurgy Progress, Vol.13 (2013), No Sintering of stainless steel in nitrogen-containing atmospheres leads to nitrogen uptake by the material, due to high affinity of chromium for nitrogen. Important information on nitrogen uptake in sintered chromium alloyed steels was reported by Bergman [2, 3] and also in [4]. The effect of nitrogen content on properties of the sintered steel depends on the amount of nitrogen dissolved and the amount of precipitated nitrides in the steel. Strengthening by nitrogen is caused by the lattice expansion of austenite from the dissolved nitrogen as well as by the precipitation of fine dispersed Cr 2 N. The latter is also beneficial to the fatigue properties but detrimental to corrosion resistance. Nitrides in steels may have a positive effect, as in the case of nitriding, but they may also lead to deterioration of mechanical properties if precipitation occurs along grain boundaries [2]. The two critical processing parameters for minimizing Cr 2 N precipitates are the cooling rate and dew-point of the sintering atmosphere. Higher sintering temperature, lower nitrogen content in atmosphere and rapid cooling lead to a lower total nitrogen content and a smaller amount of chromium nitrides in the sintered material. Sands et al. [5] pointed out that 316L sintered in dissociated ammonia required a cooling rate of 200 C/min to prevent nitrogen absorption and precipitation of Cr 2 N. Frisk et al. [6] determined that the sintering of 316L in dissociated ammonia at 1250 C required cooling rates of >450 C/min. The oxygen content of the atmosphere influences the dissolution rate and thereby the nitrogen uptake during sintering. Jargelius-Pettersson et al. [7] reported that an increased dew point in N 2 -H 2 atmospheres decreases the nitrogen uptake during high temperature annealing of stainless steel. Because nitrogen absorption occurs through diffusion, the presence of nitrides or oxides in the material reduces the rate of nitrogen absorption. A low dew-point removes surface oxides and facilitates nitrogen absorption from the atmosphere. This explains why nitrogen absorption during cooling increases with a decreasing dew-point of the sintering atmosphere. The influence of the sintering atmosphere on the microstructure and mechanical properties of high Cr-alloyed sintered austenitic stainless steel was investigated in the present contribution. EXPERIMENTAL MATERIAL AND METHODS The material studied in this work is sintered high chromium alloyed austenitic stainless steel Fe-20 wt.%cr-ni-x-c with a total content alloying addition of 36.9%. Cold compaction at pressing pressure of 600 MPa was applied for all samples. Sintering was performed at 1250ºC for 30 min in pure hydrogen, N 2 -H 2 and N 2 -H 2 atmosphere admixed with 0.5% of CH 4 in Carbolite laboratory furnace. All the gases were of 5.0 purity and the inlet dewpoint was lower than -60 C. Sintering followed with a cooling of 10 C/min. In the case of N 2 -H 2 atmosphere and N 2 -H 2 admixed with 0.5% of CH 4 the sintering regime was modified with interruption at 850 C with holding for 30 min (gas nitridation and gas carburization). Sintering in N 2 -H 2 atmosphere was realized with and without interruption at 850 C. The surface hardness of the investigated samples was measured using HECKERT hardness tester. Metallographic observation of sintered microstructure was performed on JEOL JSM-7000F scanning electron microscope in the etched state. The etchant of 1ml HF+5ml HNO 3 +44ml distilled water was used.

3 Powder Metallurgy Progress, Vol.13 (2013), No RESULTS AND DISCUSSION Sintering in pure hydrogen atmosphere Figures 1 and 2 show the microstructure in the core and at the surface of the material sintered in the pure hydrogen atmosphere. Fig.1. Microstructure at the surface of the compact sintered in pure H 2. Fig.2. Microstructure at the core of the compact sintered in pure H 2. Metallographic observation of material sintered in pure H 2 showed that the microstructure contains austenitic grains sized at ~30 µm with coarse carbides distributed mostly on the grain boundaries. Microstructure at the surface has the same character. Hardness measured on the surface of the sintered specimens was 181±9 HV10 which corresponds to the obtained microstructure. Sintering in N 2 -H 2 atmosphere Figure 3 show the microstructure of compacts sintered in N 2 -H 2 atmosphere without interruption during cooling. The microstructure resulting from sintering with nitriding at 850 C for 30 min is presented in Figs.4a-c. a) b) Fig.3. Microstructure of material sintered in N 2 -H 2 without nitriding, a) at the surface, b) in the core area.

4 Powder Metallurgy Progress, Vol.13 (2013), No a) b) c) d) Fig.4. Microstructure of material sintered in N 2 -H 2 with gas nitriding. The carbides with a size up to 2-3 μm precipitate at austenitic grain boundaries, Fig.3b. The mean austenite grain size is 3-5 μm. The decarburization processes at the surface during the sintering in N 2 -H 2 atmosphere lead to the growth of austenitic grains and formation of coarse, irregularly shaped carbide particles, Fig.3a. Thickness of the decarburized layer was ~200 µm. The presence of small acicular nitride particles with a size up to ~1.5µm located at grain boundaries and within the grains was identified. In the case of sintering with nitriding, Figs.4a-d, the surface nitrided layer with a thickness of ~20 µm consists of isolated lamellar nitride areas sized µm and slightly smaller areas with acicular nitrides. The surface hardness of samples sintered without nitriding was 239±10 HV10 when for samples sintered with gas nitriding surface hardness value was slightly higher 245±12 HV10. The sintering of investigated material in N 2 -H 2 atmosphere is more beneficial than in pure hydrogen. Sintered microstructure consists of significantly lower grains with fine distributed small carbides. Mechanical properties are also better, which was confirmed by measured hardness values. Some decarburization of the surface area is the main disadvantage of sintering in this atmosphere. In the case of using gas nitriding, changes in surface microstructure were identified. It contains areas with lamellar and acicular nitrides up to 20 µm in depth, which is the consequence of a slow cooling rate. Such changes in surface microstructure did not decrease mechanical properties of the material, and can be

5 Powder Metallurgy Progress, Vol.13 (2013), No beneficial for wear properties. Corrosion resistance of material can be decreased due to the depletion of matrix with chromium. Sintering in N 2 -H 2 atmosphere admixed with 0.5% of CH 4 Sintering regime modified with gas carburization at 850 ºC resulted in surface microstructure consisting of small austenite grains of 3-5 µm with relatively coarse carbides distributed along the grain boundaries. Areas with lamellar nitrides (size up to µm) and Si-oxides were also observed, Fig.5a-d. The microstructure in the core area is similar to sintering in N 2 -H 2 atmosphere. a) b) c) d) Fig.5a-d. Microstructure of material sintered in N 2 -H 2 atmosphere admixed with 0.5% of CH 4. The surface hardness for samples sintered with gas carburization increased to 267±11 HV10 in comparison with samples sintered in N 2 -H 2 atmosphere. Sintering in N 2 -H 2 atmosphere with an addition of CH 4 led to the creation of microstructure with small austenitic grains and fine distributed small carbides as in core area as at the surface. As a consequence, surface hardness increased to the maximal value among all the samples. It means that N 2 -H 2 atmosphere admixed with CH 4 is better than N 2 - H 2 or pure hydrogen for sintering the investigated powder.

6 Powder Metallurgy Progress, Vol.13 (2013), No CONCLUSIONS Sintering of high chromium alloyed austenitic stainless steel powder in pure hydrogen atmosphere leads to the creation of microstructure with large grains and coarse carbides along grain boundaries. Surface hardness is low due to decarburization. N 2 -H 2 atmosphere is more beneficial from the point of both microstructure and surface hardness. Microstructure contains small austenitic grains with fine distributed small carbides. Some decarburization at the surface took place which was reflected on the larger grains and coarse and irregular shaped carbides. The most beneficial from among the investigated atmospheres was N 2 -H 2 admixed with CH 4. Small austenitic grains with relatively coarse carbides at the surface provide the highest surface hardness from among all investigated samples. Acknowledgements The authors are grateful to Höganäs AB Sweden for their support of this work. REFERENCES [1] Reed, RP.: JOM, 1989, March, p. 16 [2] Bergman, O.: Studies of Oxide Reduction and Nitrogen Uptake in Sintering of Chromium-alloyed Steel. Powder Licentiate Thesis. Stockholm : KTH, Industrial Engineering and Management, 2008 [3] Bergman, O.: Effects of nitrogen uptake during sintering on the properties of PM Steels prealloyed with chromium. Stockholm : Swedish Institute for Metals Research [4] Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties. Chapter 5: Sintering and Corrosion Resistance. ASM International, [5] Sands, RL., Bidmead, GF., Oliver, DA. In: Modern Developments in Powder Metallurgy. Vol. 2. Ed. H.H. Hausner. Plenum Press, 1966, p. 73 [6] Frisk, K., Johanson, A., Lindberg, C. In: Advances in Powder Metallurgy and Particulate Materials. Eds. J. Capus, R. German. Vol. 3. Princeton : Metal Powder Industries Federation, 1992, p 167 [7] Jargelius-Pettersson, RFA., Ekman, T., Hertzman, S., Holm, T., Linder, J.: Materials Science and Technology, vol. 9, 1993, p. 1123

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.

More information

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA Development of a High Performance Nickel-Free P/M Steel Bruce Lindsley Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA Abstract A developmental nickel-free P/M steel containing

More information

North American Stainless

North American Stainless Introduction: North American Stainless Flat Products Stainless Steel Grade Sheet 309S (S30908)/ EN1.4833 SS309 is a highly alloyed austenitic stainless steel used for its excellent oxidation resistance,

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077 SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS W. Brian James Hoeganaes Corporation Cinnaminson, NJ 08077 Leander F. Pease III Powder-Tech Associates Inc. Andover, MA 01845

More information

Full Density Properties of Low Alloy Steels

Full Density Properties of Low Alloy Steels Full Density Properties of Low Alloy Steels Michael L. Marucci & Arthur J. Rawlings Hoeganaes Corporation, Cinnaminson, NJ Presented at PM 2 TEC2005 International Conference on Powder Metallurgy and Particulate

More information

CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden

CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden CHROMIUM STEEL POWDERS FOR COMPONENTS JEANETTE LEWENHAGEN Höganäs AB, Sweden KEYWORDS Pre-alloyed steel powder, chromium, PM ABSTRACT Chromium as an alloying element is of great interest due to its low

More information

EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS

EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS Michael L. Marucci and Francis G. Hanejko Hoeganaes Corporation Cinnaminson, NJ 08077 - USA Abstract Fe-Cu-C

More information

EFFECT OF SINTERING CONDITIONS ON PARTICLE CONTACTS AND MECHANICAL PROPERTIES OF PM STEELS PREPARED FROM 3%Cr PREALLOYED POWDER

EFFECT OF SINTERING CONDITIONS ON PARTICLE CONTACTS AND MECHANICAL PROPERTIES OF PM STEELS PREPARED FROM 3%Cr PREALLOYED POWDER Powder Metallurgy Progress, Vol.2 (2002), No 4 211 EFFECT OF SINTERING CONDITIONS ON PARTICLE CONTACTS AND MECHANICAL PROPERTIES OF PM STEELS PREPARED FROM 3%Cr PREALLOYED POWDER S. Kremel, H. Danninger,

More information

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation

More information

CHAPTER 5 LIQUIDNITRIDING OF STAINLESS STEEL CLADDING AND OPTIMISATION OF LIQUIDNITRIDING PROCESS

CHAPTER 5 LIQUIDNITRIDING OF STAINLESS STEEL CLADDING AND OPTIMISATION OF LIQUIDNITRIDING PROCESS 108 CHAPTER 5 LIQUIDNITRIDING OF STAINLESS STEEL CLADDING AND OPTIMISATION OF LIQUIDNITRIDING PROCESS 5.1 INTRODUCTION Stainless steels are preferred in industrial applications for their corrosion resistance

More information

WJM Technologies excellence in material joining

WJM Technologies excellence in material joining Girish P. Kelkar, Ph.D. (562) 743-7576 girish@welding-consultant.com www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient

More information

LASER CUTTING OF STAINLESS STEEL

LASER CUTTING OF STAINLESS STEEL LASER CUTTING OF STAINLESS STEEL Laser inert gas cutting is the most applicable process type used for cutting of stainless steel. Laser oxygen cutting is also applied in cases where the cut face oxidation

More information

Section 4: NiResist Iron

Section 4: NiResist Iron Section 4: NiResist Iron Section 4 Ni-Resist Description of Grades...4-2 201 (Type 1) Ni-Resist...4-3 202 (Type 2) Ni-Resist...4-6 Stock Listings...4-8 4-1 Ni-Resist Description of Grades Ni-Resist Dura-Bar

More information

AUSTENITIC STAINLESS DAMASCENE STEEL

AUSTENITIC STAINLESS DAMASCENE STEEL AUSTENITIC STAINLESS DAMASCENE STEEL Damasteel s austenitic stainless Damascene Steel is a mix between types 304L and 316L stainless steels which are variations of the 18 percent chromium 8 percent nickel

More information

Heat Treatment of Steel

Heat Treatment of Steel Heat Treatment of Steel Steels can be heat treated to produce a great variety of microstructures and properties. Generally, heat treatment uses phase transformation during heating and cooling to change

More information

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS Kris Vaithinathan and Richard Lanam Engelhard Corporation Introduction There has been a significant increase in the world wide use of platinum for jewelry

More information

X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE.

X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE. TM A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS METALLURGICAL SPECIAL STEELS INNOVATION RESEARCH SERVICE DEVELOPMENT Enhancing your performance THE INDUSTRIAL ENVIRONMENT

More information

Effect of Small Additions of Boron on the Mechanical Properties and Hardenability of Sintered P/M Steels

Effect of Small Additions of Boron on the Mechanical Properties and Hardenability of Sintered P/M Steels Effect of Small Additions of Boron on the Mechanical Properties and Hardenability of Sintered P/M Steels Michael Marucci *, Alan Lawley **, Robert Causton *, and Suleyman Saritas *** * Hoeganaes Corporation,

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet AISI 316 UNS S31600 EN 1.4401 AISI 316L UNS S31630 EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing

Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing Heat Treatment of Steels :Recrystallization annealing The carbon and alloy steels were treated at a temperature of about 700 C, which is about 20 C below the eutectoid temperature. The holding time should

More information

Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking

Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking R. E. Ricker, M. R. Stoudt, and D. J. Pitchure Materials Performance Group Metallurgy Division

More information

PRECIPITATION HARDENING P/M STAINLESS STEELS

PRECIPITATION HARDENING P/M STAINLESS STEELS PRECIPITATION HARDENING P/M STAINLESS STEELS Chris Schade, Pat Stears Hoeganaes Corporation Cinnaminson, NJ 08077 Alan Lawley, Roger Doherty Drexel University Philadelphia, PA 19104 ABSTRACT Applications

More information

Hyper duplex stainless steel for deep subsea applications

Hyper duplex stainless steel for deep subsea applications Hyper duplex stainless steel for deep subsea applications This article looks at the development of hyper-duplex stainless steels by Sandvik (SAF Sandvik 3207 HD) for use in subsea umbilicals to connect

More information

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL Hossam Halfa Steel Technology Department, Central Metallurgical R&D Institute (CMRDI), Helwan, Egypt, hossamhalfa@cmrdi.sci.eg;

More information

SELECTIVE DISSOLUTION AND CORROSION FATIGUE BEHAVIORS OF 2205 DUPLEX STAINLESS STEEL

SELECTIVE DISSOLUTION AND CORROSION FATIGUE BEHAVIORS OF 2205 DUPLEX STAINLESS STEEL W.-T. Tsai, I.-H. Lo Department of Materials Science and Engineering National Cheng Kung University Tainan, Taiwan SELECTIVE DISSOLUTION AND CORROSION FATIGUE BEHAVIORS OF 2205 DUPLEX STAINLESS STEEL ABSTRACT

More information

ALLOY 2205 DATA SHEET

ALLOY 2205 DATA SHEET ALLOY 2205 DATA SHEET UNS S32205, EN 1.4462 / UNS S31803 GENERAL PROPERTIES ////////////////////////////////////////////////////// //// 2205 (UNS designations S32205 / S31803) is a 22 % chromium, 3 % molybdenum,

More information

PM Steels That Contain Manganese

PM Steels That Contain Manganese PM Steels That Contain Manganese Bruce Lindsley and Brian James Hoeganaes Corporation Cinnaminson, NJ 08077, USA ABSTRACT The ferrous PM industry continues to develop and expand its use of non-traditional

More information

A Comparison of FC-0208 to a 0.3% Molybdenum Prealloyed Low-Alloy Powder with 0.8% Graphite

A Comparison of FC-0208 to a 0.3% Molybdenum Prealloyed Low-Alloy Powder with 0.8% Graphite A Comparison of FC-0208 to a 0.3% Molybdenum Prealloyed Low-Alloy Powder with 0.8% Graphite Francis Hanejko Manager, Customer Applications Hoeganaes Corporation Cinnaminson, NJ 08077 Abstract Iron copper

More information

FATIGUE PROPERTIES OF P/M MATERIALS. Robert C. O'Brien. Hoeganaes Corporation River Road Riverton, New Jersey 08077

FATIGUE PROPERTIES OF P/M MATERIALS. Robert C. O'Brien. Hoeganaes Corporation River Road Riverton, New Jersey 08077 FATIGUE PROPERTIES OF P/M MATERIALS Robert C. O'Brien Hoeganaes Corporation River Road Riverton, New Jersey 08077 Presented at the SAE Congress Detroit, Michigan, February 29-March 4, 1988 Abstract The

More information

Austenitic Stainless Steels

Austenitic Stainless Steels Copyright 2008 ASM International. All rights reserved. Stainless Steels for Design Engineers (#05231G) www.asminternational.org CHAPTER 6 Austenitic Stainless Steels Summary AUSTENITIC STAINLESS STEELS

More information

PRELIMINARY BROCHURE. Uddeholm Ramax HH

PRELIMINARY BROCHURE. Uddeholm Ramax HH PRELIMINARY BROCHURE Uddeholm Ramax HH Uddeholm Ramax HH Uddeholm Ramax HH provides several benefits: The product offers uniform hardness in all dimensions combined with excellent indentation resistance.

More information

HEAT TREATMENT OF STEEL

HEAT TREATMENT OF STEEL HEAT TREATMENT OF STEEL Heat Treatment of Steel Most heat treating operations begin with heating the alloy into the austenitic phase field to dissolve the carbide in the iron. Steel heat treating practice

More information

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal

More information

Laser beam sintering of coatings and structures

Laser beam sintering of coatings and structures Laser beam sintering of coatings and structures Anne- Maria Reinecke, Peter Regenfuß, Maren Nieher, Sascha Klötzer, Robby Ebert, Horst Exner Laserinstitut Mittelsachsen e.v. an der Hochschule Mittweida,

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Sheet T409 INTRODUCTION NAS 409 is an 11% chromium, stabilized ferritic stainless steel. It is not as resistant to corrosion or high-temperature oxidation

More information

EFFECT OF MICROSTRUCTURE ON PROPERTIES AND PERFORMANCE OF SPRAY FORMED AISI M2 HIGH-SPEED STEEL

EFFECT OF MICROSTRUCTURE ON PROPERTIES AND PERFORMANCE OF SPRAY FORMED AISI M2 HIGH-SPEED STEEL EFFECT OF MICROSTRUCTURE ON PROPERTIES AND PERFORMANCE OF SPRAY FORMED AISI M2 HIGH-SPEED STEEL E. R. B. de Jesus; E. S. de Jesus Filho; J. L. Rossi Instituto de Pesquisas Energéticas e Nucleares - IPEN

More information

UDDEHOLM BALDER UDDEHOLM BALDER UDDEHOLM STEEL FOR INDEXABLE INSERT CUTTING TOOLS

UDDEHOLM BALDER UDDEHOLM BALDER UDDEHOLM STEEL FOR INDEXABLE INSERT CUTTING TOOLS UDDEHOLM BALDER Reliable and efficient steel is essential for good results. The same goes for achieving high productivity and high availability. When choosing the right steel many parameters must be considered,

More information

Alloys & Their Phase Diagrams

Alloys & Their Phase Diagrams Alloys & Their Phase Diagrams Objectives of the class Gibbs phase rule Introduction to phase diagram Practice phase diagram Lever rule Important Observation: One question in the midterm Consider the Earth

More information

UDDEHOLM VANADIS 30 SUPERCLEAN

UDDEHOLM VANADIS 30 SUPERCLEAN UDDEHOLM VANADIS 30 SUPERCLEAN UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information is based on

More information

ATI 2205 ATI 2205. Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

ATI 2205 ATI 2205. Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205) ATI 2205 Duplex Stainless Steel (UNS S31803 and S32205) GENERAL PROPERTIES ATI 2205 alloy (UNS S31803 and/or S32205) is a nitrogen-enhanced duplex stainless steel alloy. The nitrogen serves to significantly

More information

Module 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV

Module 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV Module 34 Heat reatment of steel IV Lecture 34 Heat reatment of steel IV 1 Keywords : Austenitization of hypo & hyper eutectoid steel, austenization temperature, effect of heat treatment on structure &

More information

The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel. Dominique AU

The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel. Dominique AU The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel Dominique AU Report submitted in partial fulfilment of the degree of Postgraduate diploma in Research Auckland University

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet AISI 304 UNS S30400 EN 1.4301 AISI 304L UNS S30430 EN 1.4307 INTRODUCTION: Types 304 and 304L are the most versatile and widely used of

More information

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 304 (S30400)/ EN 1.4301 304L (S30403) / EN 1.4307 304H (S30409) Introduction: Types 304, 304L and 304H are the most versatile and widely

More information

North American Stainless

North American Stainless North American Stainless Flat Product Stainless Steel Grade Sheet 316 (S31600)/EN 1.4401 316L (S31603)/ EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic stainless

More information

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC:669.35-153.881-412.2=20 RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS M. ŠULER 1, L. KOSEC 1, A. C. KNEISSL 2, M. BIZJAK 1, K. RAIĆ

More information

STAVAX SUPREME. Stainless tool steel

STAVAX SUPREME. Stainless tool steel STAVAX SUPREME Stainless tool steel General Demands placed on plastic mould tooling are increasing. Such conditions require mould steels that possess a unique combination of toughness, corrosion resistance

More information

STAINLESS STEEL AISI GRADES FOR PM APPLICATIONS

STAINLESS STEEL AISI GRADES FOR PM APPLICATIONS STAINLESS STEEL AISI GRADES FOR PM APPLICATIONS Chris Schade Hoeganaes Corporation Cinnaminson, NJ 08077 John Schaberl Ancor Specialties Ridgway, PA 15853 Alan Lawley Drexel University Philadelphia, PA

More information

Stainless steel grade chart

Stainless steel grade chart Stainless steel grade chart ATLAS STEELS METAL DISTRIBUTION Chemical analysis (%) specified C Si Mn P S Cr Mo Ni Other Austenitic stainless steels 253MA S30815 0.05 1.1-2.0 0.8 0.040 0.030 20.0-22.0 10.0-12.0

More information

Functional Gradient Hardmetals: From Research To Application

Functional Gradient Hardmetals: From Research To Application New Materials - B2B/B2R&B, 21.Nov.2011, Bratislava/SK Functional Gradient Hardmetals: From Research To Application Walter Lengauer Vienna University of Technology PHYSICAL METALLURGY GROUP Prof. W. Lengauer

More information

Experiment: Heat Treatment - Quenching & Tempering

Experiment: Heat Treatment - Quenching & Tempering Experiment: Heat Treatment - Quenching & Tempering Objectives 1) To investigate the conventional heat treatment procedures, such as quenching and annealing, used to alter the properties of steels. SAE

More information

INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS

INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC: 669.15'26'74'28-194 INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS Nenad

More information

Engine Bearing Materials

Engine Bearing Materials Engine Bearing Materials Dr. Dmitri Kopeliovich (Research & Development Manager) The durable operation of an engine bearing is achieved if its materials combine high strength (load capacity, wear resistance,

More information

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance.

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. The chemical composition and the very latest in production technique make the property profile

More information

DEVELOPMENT OF SURFACE TREATMENT FOR THERMALLY AND MECHANICALLY LOADED PARTS OF COMBUSTION ENGINES

DEVELOPMENT OF SURFACE TREATMENT FOR THERMALLY AND MECHANICALLY LOADED PARTS OF COMBUSTION ENGINES DEVELOPMENT OF SURFACE TREATMENT FOR THERMALLY AND MECHANICALLY LOADED PARTS OF COMBUSTION ENGINES Pavel NOVÁK 1, Jiří VYSTRČIL 1, Ondřej CHOCHOLATÝ 2, Alena MICHALCOVÁ 1, Dalibor VOJTĚCH 1 1 Ústav kovových

More information

2017A ALUMINUM ALLOY IN DIFFERENT HEAT TREATMENT CONDITIONS

2017A ALUMINUM ALLOY IN DIFFERENT HEAT TREATMENT CONDITIONS Acta Metallurgica Slovaca, Vol. 18, 2012, No. 2-3, p. 82-91 82 2017A ALUMINUM ALLOY IN DIFFERENT HEAT TREATMENT CONDITIONS K. Mroczka 1)*, A. Wójcicka 1), P. Kurtyka 1) 1) Department of Technology and

More information

A Multilayer Clad Aluminum Material with Improved Brazing Properties

A Multilayer Clad Aluminum Material with Improved Brazing Properties A Multilayer Clad Aluminum Material with Improved Brazing Properties An interlayer between cladding and core is shown to be an effective barrier against silicon penetration during brazing BY H. ENGSTROM

More information

THE INFLUENCE OF STEEL GRADE AND STEEL HARDNESS ON TOOL LIFE WHEN MILLING IN HARDENED TOOL STEEL

THE INFLUENCE OF STEEL GRADE AND STEEL HARDNESS ON TOOL LIFE WHEN MILLING IN HARDENED TOOL STEEL THE INFLUENCE OF STEEL GRADE AND STEEL HARDNESS ON TOOL LIFE WHEN MILLING IN HARDENED TOOL STEEL S. Gunnarsson, B. Högman and L. G. Nordh Uddeholm Tooling AB Research and Development 683 85 Hagfors Sweden

More information

Improved Powder Performance Through Binder Treatment of Premixes

Improved Powder Performance Through Binder Treatment of Premixes % of Graphite Bonded % of Lubricant Bonded % of Copper Bonded Improved Powder Performance Through Binder Treatment of Premixes C.T. Schade 1 and M. Marucci 1 1 Hoeganaes Corporation, 1001 Taylors Lane,

More information

DX2202 Duplex stainless steel

DX2202 Duplex stainless steel Stainless Europe Grade DX22 Duplex stainless steel Chemical Composition Elements C Mn Cr Ni Mo N %.25.3 23. 2.5

More information

CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER

CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER Sang H. Yoo, T.S. Sudarshan, Krupa Sethuram Materials Modification Inc, 2929-P1 Eskridge Rd, Fairfax, VA, 22031

More information

UDDEHOLM IMPAX SUPREME

UDDEHOLM IMPAX SUPREME UDDEHOLM IMPAX SUPREME Uddeholm Impax Supreme is a premium prehardened mould steel with very good polishing and texturing properties. Uddeholm Impax Supreme is available in a very wide dimensional range,

More information

Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association

Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association Duplex Stainless Steel Fabrication Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association 1 Promoting molybdenum - as a material with superior properties and performance in a

More information

RAMAX S Prehardened stainless holder steel

RAMAX S Prehardened stainless holder steel T O O L S T E E L F A C T S RAMAX S Prehardened stainless holder steel Wherever tools are made Wherever tools are used This information is based on our present state of knowledge and is intended to provide

More information

Materials Standards for Metal Injection Molded Parts

Materials Standards for Metal Injection Molded Parts MPIF Standard 35 s Standards for Metal Injection Molded Parts Issued 1993 Revised 2000 and 2007 Scope MPIF Standard 35 is issued to provide the design and materials engineer with the information necessary

More information

THE MICROSTRUCTURE AND PROPERTIES OF HOT PRESSED IRON BRONZE POWDERS. BOROWIECKA-JAMROZEK Joanna

THE MICROSTRUCTURE AND PROPERTIES OF HOT PRESSED IRON BRONZE POWDERS. BOROWIECKA-JAMROZEK Joanna April 29 th 2015 THE MICROSTRUCTURE AND PROPERTIES OF HOT PRESSED IRON BRONZE POWDERS BOROWIECKA-JAMROZEK Joanna Department of Applied Computer Science and Armament Engineering, Faculty of Mechatronics

More information

Enhanced version of 316/316L austenitic stainless steel. Better material performance at a lower cost. Juha Kela 16.6.2014. Juha Kela / 316plus

Enhanced version of 316/316L austenitic stainless steel. Better material performance at a lower cost. Juha Kela 16.6.2014. Juha Kela / 316plus Enhanced version of 316/316L austenitic stainless steel. Better material performance at a lower cost. Juha Kela 16.6.2014 8 July 2014 1 Lower cost 8 July 2014 2 Lower cost 316 plus is available at lower,

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

Effect of Hydrogenation Pressure on Microstructure and Mechanical Properties of Ti-13Nb-13Zr Alloy Produced by Powder Metallurgy

Effect of Hydrogenation Pressure on Microstructure and Mechanical Properties of Ti-13Nb-13Zr Alloy Produced by Powder Metallurgy Materials Science Forum Vols. 660-661 (2010) pp 176-181 Online available since 2010/Oct/25 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.660-661.176

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information

PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send

More information

PROCESSING OF AISI M2 HSS WITH ADDITION OF NbC BY MECHANICAL ALLOYING USING TWO DIFFERENT TYPES OF ATTRITOR MILLS

PROCESSING OF AISI M2 HSS WITH ADDITION OF NbC BY MECHANICAL ALLOYING USING TWO DIFFERENT TYPES OF ATTRITOR MILLS Materials Science Forum Vols. 660-661 (2010) pp 17-22 Online available since 2010/Oct/25 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.660-661.17

More information

Drill Pipe Hard-facing

Drill Pipe Hard-facing Drill Pipe Hard-facing GLOBAL PROTECTION AGAINST WEAR AND TEAR Oxyacetylene Rods Flux- and Metal Cored Wires Electrodes PTA - Welding Oxyacetylene Welding and Spray Powders Flame Spraying FLSP Arc Spraying

More information

Aluminium as Construction Material in Ammonia Refrigeration Cycles

Aluminium as Construction Material in Ammonia Refrigeration Cycles Aluminium as Construction Material in Ammonia Refrigeration Cycles Experiences With Aluminium Compared to other metals, aluminium has only a brief history as an engineering material. While, about 150 years

More information

Grade Selection... Coated Grades / CVD... Coated Grades / PVD... Cermet... PCBN (T-CBN)... PCD (T-DIA)... Ceramics...

Grade Selection... Coated Grades / CVD... Coated Grades / PVD... Cermet... PCBN (T-CBN)... PCD (T-DIA)... Ceramics... Products Grade Selection... Coated / CVD... Coated / PVD... Cermet... PCBN (T-CBN)... PCD (T-DIA)... Ceramics... Uncoated Cemented Carbides... Ultra fine Grain Cemented Carbides... -2-4 -6-8 -0-2 - -4-5

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 430 (S43000)/ EN 1.4016 Introduction: SS430 is a low-carbon plain chromium, ferritic stainless steel without any stabilization of carbon

More information

THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send

More information

MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF GRAY CAST IRON AND AlSi ALLOY AFTER LASER BEAM HARDENING

MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF GRAY CAST IRON AND AlSi ALLOY AFTER LASER BEAM HARDENING Materials Science Forum Vols. 638-642 (2010) pp 769-774 Online available since 2010/Jan/12 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.638-642.769

More information

Chapter Outline: Phase Transformations in Metals

Chapter Outline: Phase Transformations in Metals Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 2205 (S32205)/ EN 1.4462 (S31803) Introduction: SS2205 is a duplex stainless steel with a microstructure, when heat treated properly,

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

EFFECT OF HEAT TREATMENT PROCESS ON TRIBOLOGICAL BEHAVIOR OF TI-6AL-4V ALLOY

EFFECT OF HEAT TREATMENT PROCESS ON TRIBOLOGICAL BEHAVIOR OF TI-6AL-4V ALLOY Int. J. Mech. Eng. & Rob. Res. 2013 Sabry S Youssef et al., 2013 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 2, No. 4, October 2013 2013 IJMERR. All Rights Reserved EFFECT OF HEAT TREATMENT PROCESS

More information

Urea and Nitric Acid Plants: Improvement of Shut-Down, Revamping, Debottlenecking and Refurbishment

Urea and Nitric Acid Plants: Improvement of Shut-Down, Revamping, Debottlenecking and Refurbishment pp Urea and Nitric Acid Plants: Improvement of Shut-Down, Revamping, Debottlenecking and Refurbishment J. M. SLUYTERS GEMACO SA Herstal, Belgium A presentation on special corrosion-resistant steels for

More information

EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE MICROSTRUCTURE AND MAGNETIC PROPERTIES OF SINTERED NdFeB MAGNETS

EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE MICROSTRUCTURE AND MAGNETIC PROPERTIES OF SINTERED NdFeB MAGNETS Effect Rev. Adv. of particle Mater. Sci. size 28 distribution (2011) 185-189 on the microstructure and magnetic properties of sintered... 185 EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE MICROSTRUCTURE

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Module 3 Machinability. Version 2 ME, IIT Kharagpur

Module 3 Machinability. Version 2 ME, IIT Kharagpur Module 3 Machinability Lesson 1 Cutting Tool Materials of common use Instructional Objectives At the end of this lesson, the students will be able to (i) Identify the needs and cite the chronological development

More information

WHAT IS SINTER-HARDENING? W. Brian James. Hoeganaes Corporation Cinnaminson, NJ 08077

WHAT IS SINTER-HARDENING? W. Brian James. Hoeganaes Corporation Cinnaminson, NJ 08077 WHAT IS SINTER-HARDENING? W. Brian James Abstract Hoeganaes Corporation Cinnaminson, NJ 08077 Presented at PM 2 TEC '98 International Conference on Powder Metallurgy & Particulate Materials May 31 - June

More information

Appendice Caratteristiche Dettagliate dei Materiali Utilizzati

Appendice Caratteristiche Dettagliate dei Materiali Utilizzati Appendice Caratteristiche Dettagliate dei Materiali Utilizzati A.1 Materiale AISI 9840 UNI 38NiCrMo4 AISI 9840 Steel, 650 C (1200 F) temper, 25 mm (1 in.) round Material Notes: Quenched, 540 C temper,

More information

Cutting Tool Materials

Cutting Tool Materials Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of cutting tool metallurgy and specific tool applications for various

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-

ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :- Standard Specification for Wrought High Strength Ferritic Steel Butt Welding Fittings 1. Scope :- 1.1 This specification covers wrought high strength ferritic steel butt-welding fitting of seamless and

More information

Metals and Non-metals. Comparison of physical properties of metals and non metals

Metals and Non-metals. Comparison of physical properties of metals and non metals Metals and Non-metals Comparison of physical properties of metals and non metals PHYSICAL PROPERTY METALS NON-METALS Physical State Metallic lustre (having a shining surface) Mostly solids (Liquid -mercury)

More information

Martensite transformation, microsegregation, and creep strength of. 9 Cr-1 Mo-V steel weld metal

Martensite transformation, microsegregation, and creep strength of. 9 Cr-1 Mo-V steel weld metal Martensite transformation, microsegregation, and creep strength of 9 Cr-1 Mo-V steel weld metal M. L. Santella¹, R. W. Swindeman¹, R. W. Reed¹, and J. M. Tanzosh² ¹ Oak Ridge National Laboratory, Oak Ridge,

More information